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Abstract 

We study a multi-product maritime inventory routing problem (MIRP) with sailing time 

uncertainty. We explicitly consider the replanning that happens after uncertainty is revealed. The 

objective is to determine the stability of the adjusted plans after the occurrence of an uncertain 

event and to evaluate the effect of incorporating different stability metrics in the rescheduling 

process. Five stability metrics are introduced, and mathematical formulations of the MIRP 

incorporating each metric are presented. A reoptimization framework is then used to analyze the 

impact of each stability metric. Calculations are performed using 270 instances. The main result is 

that adjustments to the original plan occur at no additional cost almost 50% of the time. If decision 

makers want a more stable plan, they should accept a 5% cost deterioration, resulting in 20% more 

stable solutions. 

Keywords: reoptimization, uncertainty, stability metrics, maritime inventory routing 

 

1. Introduction 

In 2020, more than 80% of the volume of goods in international trade was carried by maritime 

transport, corresponding to 10.7 billion tons. It is expected that the volume of maritime trade will 

grow by 2.4% annually between 2022 and 2026 (UNCTAD, 2021), and therefore optimized 

maritime transportation is of great importance. We study the maritime inventory routing problem 

(MIRP) which is a particular maritime transportation planning problem (Papageorgiou et al., 2014). 

The MIRP is a variant of the inventory routing problem (IRP) in a maritime context. The IRP 

integrates inventory management decisions with routing decisions under a vendor-managed 

inventory (VMI) system, where the supplier is responsible for determining the delivery schedule 

for a given customer, the delivery quantity for that customer, and the assignment of customers to 

vehicle routes. 

In the MIRP there are five time elements, shown in Figure 1 along with six event points labelled 

from "a" to "f". The routing is between points "a" and "b" and after "f". Although the vessel is 

stationed at a port between points "b" and "f", the temporal status of this interval affects the routing 

after "f" to reach "b" at the next port. 
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Figure 1. Five time elements 

There are always several uncertain parameters in maritime trade. According to UNCTAD (2021), 

supply chain disruptions, changes in globalization patterns, transportation costs, port congestion, 

and pandemics are the main uncertain elements. In the MIRP, there are several problem features 

that could be influenced by uncertainty, some of which are listed below: 

• The sailing time can be uncertain due to reasons such as bad weather conditions (Rodrigues 

& Agra, 2022), mechanical failure of vessels (Rodrigues & Agra, 2022), or the ice 

conditions in the Arctic region (Choi et al., 2015). 

• The waiting time can be uncertain due to port congestion (Agra et al., 2015). 

• The port delay time can be uncertain for reasons such as strikes and equipment failure at 

ports (Christiansen & Nygreen, 2005). 

• Demand, which is the main feature with uncertainty in inland IRPs (Touzout et al., 2021), 

can also be uncertain in a maritime setting (Cheng & Duran, 2004; Soroush & Al-Yakoob, 

2018). 

Previous research on the MIRP under uncertainty has mostly focused on sailing time as an uncertain 

parameter. Papageorgiou et al. (2014) stated that the sailing time is one of the primary features 

influenced by uncertainty in maritime applications. Accordingly, sailing time is considered as the 

only source of uncertainty in the current study. 

Three different approaches for dealing with uncertainty in an optimization problem have been 

proposed in the literature (Rodrigues & Agra (2022), De Maio et al. (2021), Aytug et al. (2005)), 

defined in Table 1. 

Table 1. Three approaches for dealing with uncertainty 

Approaches 

Which decisions are made 
before uncertainty is 

revealed 

Which 

decisions are 

made after 

uncertainty is 

revealed 

Notes Considering 
uncertain 

information 
explicitly 

Considering 

deterministic 

parameters 

Proactive All decisions - No adjustment 

These approaches are better suited for 
problems with low uncertainty and 
where the original plan can be 
maintained without any adjustment. 

Reactive - 
An initial 

plan 

All the 
decisions are 

recourse actions 

These approaches are better suited for 

problems with high uncertainty. 

Mixed 
An initial 

plan 
- 

Some of the 

decisions are 

recourse actions 

This is known as a priori optimization, a 
concept introduced by Bertsimas et al. 
(1990) 

(un)loading time  Sailing time  Set up time  Waiting time  Port delay time  

a. Departure 

time at port 𝑖 
b. Arrive at 

anchorage 

d. Start time for 

port visit (𝑗, 𝑚) 

c. In-wharf 

start time 

e. Start 

(un)loading 

f. End time for 

port visit (𝑗, 𝑚) 
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In a MIRP with reactive approaches, frequent adjustments to the original plan can lead to 

inefficiencies from the perspective of the port planner (Liu et al., 2017), since these adjustments 

can trigger a series of changes in subsequent decisions such as staff scheduling and container 

storage (Xu et al., 2012). It is therefore important to know how stable the adjusted plans are, i.e., 

how large the deviation from the original plan is when reactive actions are applied. Hence, the 

research question of the current study is: how to measure the stability of solutions to a MIRP under 

the uncertainty of sailing time? We introduce stability metrics that examine the sequence of routes, 

which port visits are made, and the quantities loaded and unloaded in each visit. 

The only paper having used a reactive approach for the MIRP is by Dong et al. (2018) who solved 

an uncertain MIRP using a mixed integer linear programming model and then reviewed the 

information revealed in each period. Whenever the solution obtained after considering this 

information is infeasible, a reoptimization is performed for the entire planning horizon, ignoring 

the amount of deviation from the original plan. After the reoptimization, the horizon is rolled 

forward and the procedure is iterated until the end of the horizon. 

Touzout et al. (2021) attempted to measure the stability of solutions to the IRP under uncertain 

demand using reoptimization models. They stated that their method could be extended to other 

applications and proposed to consider other sources of uncertainty. In this regard, the current study 

aims to introduce a reoptimization framework for the MIRP under sailing time uncertainty in which 

stability metrics are introduced. The main contribution of this paper is threefold: 

1. Unlike Dong et al. (2018) and Touzout et al. (2021), who performed reoptimization at 

specific time intervals, in the current study reoptimization can occur at any point in time. 

This allows us to respond to uncertainties whenever they are revealed. This is explained in 

Section 5. 

2. Relevant stability metrics for the MIRP are identified, and mathematical formulations for 

each of these metrics are proposed. This is explained in Section 6. 

3. Each of the formulations is tested by performing computational experiments to determine 

the impact of each stability metric. This is explained in Section 7. 

The remainder of the paper is organized as follows. Section 2 reviews the literature on MIRPs with 

uncertainties and classifies the papers according to uncertain parameters, approaches, and models. 

Section 3 provides a description of the problem. Mathematical notations are explained in Section 

4. Section 5 is devoted to the reoptimization framework. Stability metrics are introduced in Section 

6, followed by their analysis in Section 7, where numerical results and findings are presented. 

Finally, Section 8 provides concluding remarks. 

 

2. Literature review 

The most recent review of the MIRP was presented by Papageorgiou et al. (2014), who studied a 

deterministic single-product MIRP. The authors stated that robustness is a challenge for MIRP and 

therefore recommended the development of approaches that can deal with uncertainty. Ksciuk et 

al. (2022) provided a review of uncertainty in maritime ship routing and scheduling, examining 
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uncertainty in eight different problems, including the MIRP. The authors mentioned that in the 

MIRP, there are no fixed pickup and delivery port pairs, and no predetermined number of port 

calls. Therefore, they concluded that this makes the MIRP a challenging problem even without 

uncertainty. 

The current section focuses on MIRPs with uncertainty. The reviewed papers are summarized in 

Table 2, which indicates the uncertain parameters, the approaches used to deal with uncertainty, 

and the employed model. The remainder of this section first introduces some of the commonly used 

modelling techniques in an uncertain environment and then discusses each of the approaches used 

to deal with uncertainty. 

Some of the commonly used techniques for modelling of optimization problems under uncertainty 

are the following: 

• Stochastic programming is a modeling framework for optimization problems under 

uncertainty (Klein Haneveld et al., 2020), in which the uncertain parameters are assumed 

to follow known (or partially known) probability distributions (Rodrigues & Agra, 2022). 

• Recourse models are a class of models in stochastic programming, including two-stage and 

multistage models. When the true value of an uncertain parameter is observed, corrective 

actions can be taken in recourse models (Klein Haneveld et al., 2020). 

• Chance-constrained programming, introduced by Charnes & Cooper (1959), provides a tool 

for solving optimization problems under uncertainty. This method optimizes the problem 

in such a way that the constraints are satisfied with a given probability. The minimum 

required reliability should be set by the decision maker to a value between zero and one. If 

this value is zero, the decision maker is extremely risk seeking, and if it is one, it indicates 

an extremely conservative attitude (risk averse). 

• Robust optimization accounts for uncertainty sets where the probability distribution is 

unknown or does not exist (Rodrigues & Agra, 2022). The decision maker constructs a 

solution that is feasible for each realization of uncertainty in the given set (Bertsimas et al., 

2011). In other words, it optimizes the problem based on the worst possible outcome within 

the uncertainty set. Unlike stochastic programming, where the uncertain parameter is 

assumed to be a random variable that follows a known (or partially known) probability 

distribution, the uncertainty model in robust optimization is usually deterministic and set-

based (Bertsimas et al., 2011). Therefore, the uncertain parameters can take any value 

within the uncertainty set. 

• Reoptimization can be used to deal with uncertainty or in situations where the planning 

horizon is shorter than the horizon of the actual problem (Dong et al., 2018). 

• The integration of simulation and optimization can be used to deal with uncertainty. Zhou 

et al. (2021) studied different types of integration approaches in maritime logistics. 

In terms of proactive approaches, Cheng & Duran (2004) considered a decision support system that 

uses a simulation model and an optimization model. The simulation model represents the inventory 

and transportation system, and the optimization model is formulated as a discrete-time Markov 

decision process that deals with the uncertainty of sailing time and of demand. A deterministic 
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model with penalty costs is used as a proactive approach in two studies. First, Christiansen & 

Nygreen (2005) considered the uncertainty of sailing time and waiting time for a single-product 

MIRP. They applied soft inventory constraints, where levels should lie within a certain interval, 

and introduced lower and upper alarm intervals with artificial penalty costs to increase the 

robustness of their model. Second, Rakke et al. (2011) introduced a deterministic model with 

penalty costs for deviating from long-term customer contracts, maximizing revenue based on the 

spot market price and the quantity of sales in that market. 

In another proactive approach by Soroush & Al-Yakoob (2018) for a single-product MIRP, demand 

was assumed to be a normally distributed random variable, and penalties for understocking or 

overstocking were considered. The authors proposed a stochastic optimization model with linear 

constraints and a convex objective function. They used DICOPT as a commercial solver to solve 

the problem. 

Zhang et al. (2018) employed time windows to model sailing time uncertainty for a single-product 

MIRP. They defined flexible solutions as those that can accommodate unplanned disruptions by 

adjusting routing solutions where delivery dates and total delivery quantities cannot be changed. 

Furthermore, a Lagrangian heuristic was implemented to find flexible solutions using soft 

constraints, and a simulator was introduced that generates a disruption in each simulation run to 

evaluate the robustness of the solutions. Diz et al. (2019) considered the uncertainty of the total 

time vessels spend in ports due to delays in vessel operations for a single-product MIRP. They 

developed a robust optimization scheme using more vessels to protect the solution against delays. 

The risk of infeasibility was quantified for different levels of robustness and Gurobi used to solve 

the problem. 

Regarding the mixed approaches, three studies have considered recourse models that take into 

account routing, the quantities to be loaded and unloaded, the order of port visits in the first stage, 

as well as visit times to ports and inventory decisions in the second stage, which can be adjusted to 

the scenario. The first study, by Agra et al. (2015), introduced a two-stage stochastic programming 

model with recourse and solved this model using a decomposition algorithm in which optimality 

cuts are added dynamically. The second study, by Agra et al. (2016), used a model similar to that 

of the previous study, but solved it with a combination of a commercial solver and local search 

heuristics. In the third study, by Agra et al. (2018), robust optimization was used and a 

decomposition algorithm was suggested. Also, an iterated local search heuristic was introduced to 

improve the decomposition algorithm. 

Several techniques to handle uncertainty in MIRPs were compared by Rodrigues et al. (2019), who 

considered uncertain sailing times for a single-product MIRP and employed different models and 

algorithms to handle uncertainty. They discovered that three methods provide a good trade-off 

between the amount and probability of inventory limit violations and routing costs. These methods 

are 1) deterministic modeling with inventory buffers, 2) stochastic programming with high 

penalties for inventory bounds violations, and 3) a hybrid algorithm that solves a deterministic 

approach with inventory buffers derived from a conditional value-at-risk approach. 
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Another mixed methodology applied to MIRP under uncertainty comes from Cho et al. (2018), 

who proposed a two-stage stochastic programming model in which production inventory schedule 

decisions are made in the first stage and the production rate is adjusted for each scenario in the 

second stage. Liu et al. (2021) applied a two-stage distributionally robust optimization algorithm 

in which the routing decisions are made in the first stage, while decisions regarding quantities to 

be loaded and unloaded, visit time to ports, and inventory levels are made in the second stage after 

observing uncertainties. 

A reactive methodology was applied once in the context of MIRP by Dong et al. (2018). The 

authors developed stochastic simulations to account for several sources of uncertainty, presented 

in Table 2, and an algorithm that integrates reoptimization and stochastic simulation results. They 

reoptimized the model at a specified frequency, typically once per day. At each stage, the 

parameters are updated as uncertainties are observed, and the optimization problem is solved. This 

procedure is repeated for each day of the time horizon of the current problem. 

Table 2. Summary of MIRP papers with uncertainty. 

Year Authors Uncertain parameters 
Approach 

Models 
P* R** M† 

2004 Cheng & Duran 
• Sailing times 

• Demand 
✓   Simulation and optimization 

2005 
Christiansen & 

Nygreen 

• Sailing times 

• Port delay times 
✓   

Deterministic model with 

penalty cost for inventory 

violation 

2011 Rakke et al.  • Spot market price ✓   

Deterministic model with 

penalty cost for deviation from 

the customer long-term contracts 

2015 Agra et al.  
• Sailing times 

• Waiting times 
  ✓ Stochastic programming 

2016 Agra et al.  • Sailing times   ✓ Stochastic programming 

2018 
Soroush & Al-

Yakoob  
• Demand ✓   

Chance-constrained 

programming 

2018 Agra et al.  
• Sailing times 

• Port delay times 
  ✓ Robust optimization 

2018 Cho et al. • Sailing times   ✓ Stochastic programming 

2018 Zhang et al.  • Sailing times ✓   Stochastic programming 

2018 Dong et al.  

• Vessel availability 

• Trip delays 

• Pick-up window    

information 

• Consumption and 

production rates 

 ✓  Reoptimization 
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2019 Diz et al.  
• Waiting times 

• Port delay times 
✓   Robust optimization 

2019 Rodrigues et al. • Sailing times ✓  ✓ 

• Deterministic models with 

inventory buffers 

• Robust optimization 

• Stochastic programming 

• Conditional value-at-risk 

2021 Liu et al.  
• Sailing times 

• Waiting times 
  ✓ 

Two-stage distributionally 

robust optimization 

2023 Current study • Sailing times  ✓  
Reoptimization including 

stability metrics 

* P: Proactive approaches     ** R: Reactive approaches    † M: Mixed approaches 

 

3. Problem description 

The MIRP considers the transportation of products between multiple ports while meeting inventory 

requirements. Different ports produce and consume multiple products at a given production and 

consumption rate. Initial inventories, minimum inventory levels, and maximum inventory levels 

are specified for each port. 

A heterogeneous fleet of vessels with a given capacity, a fixed speed, and a daily operating cost is 

given. The position of a vessel at the beginning of the planning horizon is referred to as its origin, 

which can be a port or any location at sea. Sailing times from the origin to each port and between 

each pair of ports are determined based on the given distance and speed of the vessel. The sailing 

costs are also derived from the sailing time multiplied by the daily cost of a vessel. The maximum 

unloading quantities are determined by the consumption ports based on the vessel capacity and the 

maximum inventory of the port. The maximum number of visits to each port is predetermined. The 

holding cost and penalty cost for each product in each port are known. The objective of the problem 

is to minimize the sum of three components: sailing costs, inventory holding costs, penalty costs 

for backlogs and overstocks.  

The sailing times are assumed to be subject to uncertainty due to weather conditions. Although a 

planning horizon is specified, the uncertainty in sailing times may cause the planning horizon to be 

exceeded. The problem is solved under deterministic conditions and whenever the uncertainty is 

revealed, reoptimization is performed. 

 

4. Mathematical notations 

This section explains some of the most frequently used notations throughout this paper, whereas 

the complete list of notations can be found in Appendix A. The problem consists of some ports 

represented by 𝑖 and 𝑗, and each port can be visited at most �̅� times. There is a set of products 
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denoted by 𝐾 and a set of vessels denoted by 𝑉. We define a network in which the nodes are 

represented by (𝑖, 𝑚), denoting the visit 𝑚 to port 𝑖. The vessels movement from node (𝑖, 𝑚) to 

node (𝑗, 𝑛) are represented by (𝑖, 𝑚, 𝑗, 𝑛). The set of possible port arrivals (𝑖, 𝑚) is defined as 𝑆𝐴 

and the set of port arrivals that may be made by vessel 𝑣 is defined as 𝑆𝑣
𝐴. The set of all possible 

vessel movements (𝑖, 𝑚, 𝑗, 𝑛) is defined as 𝑆𝑋 and the set of all possible moves for vessel 𝑣 is 

defined as 𝑆𝑣
𝑋. 

The binary variable 𝑜𝑖𝑚𝑣𝑘 is one if and only if product k is loaded onto or unloaded from vessel v 

at the port visit (𝑖, 𝑚). The amount of product k loaded onto or unloaded from vessel v at port 

visit (𝑖, 𝑚) is denoted by 𝑞𝑖𝑚𝑣𝑘. The amount of product k that vessel v transports from port visit 

(𝑖, 𝑚) to port visit (𝑗, 𝑛) is denoted by 𝑓𝑖𝑚𝑗𝑛𝑣𝑘. Let 𝑠𝑖𝑚𝑘 represent the inventory level of product k 

at the start of port visit (𝑖, 𝑚) and 𝑠𝑖𝑚𝑘
𝐸  represent the inventory level of product k at the end of port 

visit (𝑖, 𝑚).  

The sailing of vessel 𝑣 from port arrival (𝑖, 𝑚) directly to port arrival (𝑗, 𝑛) is denoted by 𝑥𝑖𝑚𝑗𝑛𝑣, 

sailing of vessel 𝑣 from its initial position to port arrival (𝑖, 𝑚) is denoted by 𝑥𝑖𝑚𝑣
𝑂 , the port visit 

(𝑖, 𝑚) is denoted by 𝑦𝑖𝑚, the visit to port 𝑖 by vessel 𝑣 at port arrival (𝑖, 𝑚) is denoted by 𝑤𝑖𝑚𝑣. 

Let 𝑡𝑖𝑚 be the start time for port arrival (𝑖, 𝑚) and 𝑡𝑖𝑚
𝐸  be the end time for port arrival (𝑖, 𝑚).  

Figure 2 depicts the route of one vessel as an example of this network, where O𝑣 is the origin of 

𝑣. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Example of the network 

 

𝑥𝑖1𝑣
𝑂 = 1 

𝑞𝑗2𝑣𝑘 

𝑞𝑖1𝑣𝑘 

𝑥𝑗2𝑖2𝑣 = 1 

𝑓𝑗2𝑖2𝑣𝑘 
𝑥𝑖1𝑗2𝑣 = 1 

𝑓𝑖1𝑗2𝑣𝑘 

  

 

 

  

𝑖, �̅� . . . 

. . . 

O1 ● 

O2 ● 

𝑤𝑖1𝑣 = 1 

𝑦𝑖1 = 1 

𝑤𝑖2𝑣 = 1 

𝑦𝑖2 = 1 

𝑦𝑗2 = 1 

𝑤𝑗2𝑣 = 1 

 

𝑗, �̅� 

𝑖, 1 

𝑗, 1 𝑗, 2 

𝑖, 2 
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5. Reoptimization framework 

The mathematical formulation of the MIRP given in Appendix A is the same as that of Shaabani 

et al. (2023). It is used as the basic model of the reoptimization framework. The solution of this 

deterministic model is considered as the initial plan for the reoptimization. 

Periodic reoptimization considers the problem periodically at fixed time intervals. Continuous 

reoptimization, on the other hand, solves the problem throughout the day and whenever data 

change; a procedure collects the information up to that point and then starts the reoptimization 

(Pillac et al., 2013). In the current study, unlike Dong et al. (2018) and Touzout et al. (2021), a 

continuous-time model is used that reacts to uncertainties as soon as they appear, hence continuous 

reoptimization is performed. In this context, 𝑇𝑈 is defined as the time at which an uncertain event 

occurs. Therefore, the nominal sailing times are used until 𝑇𝑈 and then the sailing times are 

changed due to the uncertain event. Since 𝑇𝑈 is an uncertain event, it can occur at any time in 

[0, 𝑇]. We assume that there is only one 𝑇𝑈 value in each planning horizon. Whenever the 𝑇𝑈 value 

is revealed, the following changes are made to the basic model to prepare the model for 

reoptimization. 

• The set 𝑆𝐴 in the basic model, is replaced with 𝑆𝐵, excluding port arrivals visited before 

𝑇𝑈. In the same manner, the set 𝑆𝑣
𝐴 is replaced with 𝑆𝑣

𝐵, the set 𝑆𝑋 is replaced with 𝑆𝑌, the 

set 𝑆𝑣
𝑋 is replaced with 𝑆𝑣

𝑌. 

• The solution to the deterministic problem is extracted and defined as the data set for the 

reoptimization model. The sailing of vessel 𝑣 from port arrival (𝑖, 𝑚) directly to port arrival 

(𝑗, 𝑛) is denoted by 𝑋𝑖𝑚𝑗𝑛𝑣, the sailing of vessel 𝑣 from its initial position to port arrival 

(𝑖, 𝑚) is denoted by 𝑋𝑖𝑚𝑣
𝑂 , the visit to port arrival (𝑖, 𝑚) is denoted by 𝑌𝑖𝑚, the visit of port 

𝑖 by vessel 𝑣 at port arrival (𝑖, 𝑚) is denoted by 𝑊𝑖𝑚𝑣, and the amount of product k loaded 

onto or unloaded from vessel v at port visit (𝑖, 𝑚) is denoted by 𝑄𝑖𝑚𝑣𝑘. 

• Due to the occurrence of the uncertain event, two new time constraints are defined: 

           𝑡𝑖𝑚 ≥ 𝑇𝑈 (𝑖, 𝑚) ∈ 𝑆𝐵 (1) 

           𝑡𝑖𝑚
𝐸 ≥ 𝑇𝑈 (𝑖, 𝑚) ∈ 𝑆𝐵 . (2) 

If a vessel was on route from (𝑖, 𝑚) to (𝑗, 𝑛) when time hit 𝑇𝑈, then the vessel is forced to 

visit (𝑗, 𝑛), but the planned arrival time may be affected by the updated sailing times. 

• The initial inventory levels are updated when the new problem starts after 𝑇𝑈. If 𝐽𝑖𝑘 = −1, 

the amount of inventory consumed up to 𝑇𝑈 is subtracted from the initial inventory, and if 

𝐽𝑖𝑘 = 1, the amount of inventory produced up to 𝑇𝑈 is added to the initial inventory. 

• The values of the decision variables visited before 𝑇𝑈 are fixed. These decision variables 

are as follows: 𝑥𝑖𝑚𝑗𝑛𝑣, 𝑥𝑖𝑚𝑣
𝑂 , 𝑜𝑖𝑚𝑣𝑘, 𝑞𝑖𝑚𝑣𝑘, 𝑓𝑖𝑚𝑗𝑛𝑣𝑘, 𝑠𝑖𝑚𝑘, 𝑠𝑖𝑚𝑘

𝐸 , 𝑡𝑖𝑚
𝐸 . 

• Constraints (A28) and (A29) are deleted because the uncertainty of the sailing time is 

considered, which may lead to exceeding the planning horizon. 
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Now the modified model is ready, and we call it “Model 0”, which represents the metric “cost”. 

The reoptimized solution represents the sailing costs and the port operation costs, plus penalty costs 

for backlogs and overstocks without stability metrics. The sailing costs and port operation costs are 

called 𝐶∗. Therefore, the reoptimized solution may differ from the initial solution. In this context, 

stability metrics are introduced in the next section to reduce this discrepancy. 

 

6. Stability metrics 

In this section we present five stability metrics for the MIRP and new constraints added to the 

model are then given for each metric. The objective function of the mathematical model for each 

of the stability metrics consists of two parts: first it minimizes the violation of the metrics, second 

it minimizes the penalty cost for backlogs and overstocks. Based on the values of consumption and 

production rates, vessel capacity, and minimum and maximum inventories, the sizes of the different 

elements in the objective function are such that we implicitly prioritize the first part of the objective 

function before the second part. 

6.1. Sequence preservation 

The sequence preservation metric, called 𝑆𝑃, means that the sequence of the reoptimized solution 

should not differ significantly from that of the original solution (Dettenbach & Ubber, 2015). 

Applications of the sequence preservation metric mostly belong to routing and scheduling problems 

(Touzout et al., 2021). 

In the MIRP, traveling times are typically much longer than in an inland IRP, and because the 

uncertain event can occur at any time, changing the sequence and rerouting may be costly. If the 

sequence of shipments has changed, more lifting operations are required at the new port in order 

to reach the unscheduled product unloads, resulting in higher costs. Another case where sequence 

preservation is critical in maritime transport occurs on transshipment routes where another vessel 

is waiting at a port of transshipment. 

The mathematical formulation of the 𝑆𝑃 metric contains two new binary variables. The binary 

variable 𝑧𝑖𝑚𝑗𝑛𝑣
𝑆𝑃  is defined to indicate whether or not there is a sequence change, and 𝑧𝑖𝑚𝑣

𝑆𝑃𝑂 is a 

binary variable equal to one if and only if there is a change in the first visit made by the vessel. 

Therefore, two new constraints are defined as follows: 

𝑧𝑖𝑚𝑗𝑛𝑣
𝑆𝑃 = |𝑋𝑖𝑚𝑗𝑛𝑣 − 𝑥𝑖𝑚𝑗𝑛𝑣| 𝑣 ∈ 𝑉, (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣

𝑌 (3) 

𝑧𝑖𝑚𝑣
𝑆𝑃𝑂 = |𝑋𝑖𝑚𝑣

𝑂 − 𝑥𝑖𝑚𝑣
𝑂 | 𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣

𝐵. (4) 

Constraints (3) and (4) are nonlinear but can be linearized into constraints (6) to (9) as shown by 

Touzout et al. (2021). Constraints (3) count a sequence change when an arc from (𝑖, 𝑚) to (𝑗, 𝑛) is 

visited by vessel 𝑣 in the original solution but not in the reoptimized solution, and vice versa. 

Constraints (4) count a sequence change if vessel v sails directly from its initial position to port 

arrival (𝑖, 𝑚) in the original solution but does not in the reoptimized solution, and vice versa. The 

mathematical formulation for the 𝑆𝑃 metric is as follows: 



11 
 

Model 1: Reoptimization based on sequence preservation (SP) metric 

Minimize ∑ ∑ 𝑧𝑖𝑚𝑗𝑛𝑣
𝑆𝑃

(𝑖,𝑚,𝑗,𝑛)∈𝑆𝑣
𝑋𝑣∈𝑉

+ ∑ ∑ 𝑧𝑖𝑚𝑣
𝑆𝑃𝑂

(𝑖,𝑚)∈𝑆𝑣
𝐴𝑣∈𝑉

+ ∑ ∑ 𝐶𝑖𝑘
𝑃

𝑘∈𝐾𝑣|𝐽𝑖𝑘=−1

(𝑟𝑖𝑚𝑘 + 𝑟𝑖𝑚𝑘
𝐸 )

(𝑖,𝑚)∈𝑆𝐴

+ ∑ ∑ 𝐶𝑖𝑘
𝑃

𝑘∈𝐾𝑣|𝐽𝑖𝑘=−1

𝑟𝑖𝑘
𝑇

𝑖∈𝑁

+ ∑ ∑ 𝐶𝑖𝑘
𝑃𝑃

𝑘∈𝐾𝑣|𝐽𝑖𝑘=1

𝑟𝑖𝑘
𝑃𝑇

𝑖∈𝑁

 

(5) 

subject to   

(1) and (2)   

(A2) to (A27) and (A30) to (A45)   

𝑧𝑖𝑚𝑗𝑛𝑣
𝑆𝑃 ≥ 𝑋𝑖𝑚𝑗𝑛𝑣 − 𝑥𝑖𝑚𝑗𝑛𝑣 𝑣 ∈ 𝑉, (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣

𝑌 (6) 

𝑧𝑖𝑚𝑗𝑛𝑣
𝑆𝑃 ≥ 𝑥𝑖𝑚𝑗𝑛𝑣 − 𝑋𝑖𝑚𝑗𝑛𝑣 𝑣 ∈ 𝑉, (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣

𝑌 (7) 

𝑧𝑖𝑚𝑣
𝑆𝑃𝑂 ≥ 𝑋𝑖𝑚𝑣

𝑂 − 𝑥𝑖𝑚𝑣
𝑂  𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣

𝐵 (8) 

𝑧𝑖𝑚𝑣
𝑆𝑃𝑂 ≥ 𝑥𝑖𝑚𝑣

𝑂 − 𝑋𝑖𝑚𝑣
𝑂  𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣

𝐵 (9) 

𝑧𝑖𝑚𝑗𝑛𝑣
𝑆𝑃 ∈ {0,1} 𝑣 ∈ 𝑉, (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣

𝑌 (10) 

𝑧𝑖𝑚𝑣
𝑆𝑃𝑂 ∈ {0,1} 𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣

𝐵. (11) 
 

6.2. Sequence preservation with vessel replacement 

The sequence preservation with vessel replacement metric, called 𝑆𝑃𝑉, is similar to the 𝑆𝑃 metric 

with one difference. This metric measures the preservation of the sequence of the original solution 

for the reoptimized solution, even if the vessels are replaced with others. For example, an arc from 

(𝑖, 𝑚) to (𝑗, 𝑛) that was traversed by vessel 1 in the original solution can be traversed by vessel 3 

in the reoptimized solution. This metric is especially helpful when it is important to retain the 

sequence even with a new vessel. In addition, the 𝑆𝑃𝑉 metric may make a correct measurement 

when the fleet is homogeneous, whereas 𝑆𝑃 metric may make a correct measurement when the 

fleet is heterogeneous. 

The mathematical formulation of the 𝑆𝑃𝑉 metric uses two new binary variables. The binary 

variable 𝑧𝑖𝑚𝑗𝑛
𝑆𝑃𝑉

 is defined to indicate whether or not there is sequence change with vessel 

replacement, and 𝑧𝑖𝑚
𝑆𝑃𝑉𝑂 is a binary variable equal to one if and only if there is sequence change 

with vessel replacement for the initial position of the vessels. Therefore, two new constraints are 

defined as follows: 

𝑧𝑖𝑚𝑗𝑛
𝑆𝑃𝑉 = |∑ 𝑋𝑖𝑚𝑗𝑛𝑣

𝑣∈𝑉

− ∑ 𝑥𝑖𝑚𝑗𝑛𝑣

𝑣∈𝑉

| 
(𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑌 (12) 

𝑧𝑖𝑚
𝑆𝑃𝑉𝑂 = |∑ 𝑋𝑖𝑚𝑣

𝑂

𝑣∈𝑉

− ∑ 𝑥𝑖𝑚𝑣
𝑂

𝑣∈𝑉

| 
(𝑖, 𝑚) ∈ 𝑆𝐵 . (13) 
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Like constraints (3) and (4), constraints (12) and (13) can be linearized, as is the case in constraints 

(15) to (18). Constraints (12) count a change of sequence with vessel replacement if an arc from 

(𝑖, 𝑚) to (𝑗, 𝑛) was visited in the original solution but not in the reoptimized solution and vice 

versa. Constraints (13) count a change of sequence with vessel replacement if a vessel sails directly 

from its initial position to port arrival (𝑖, 𝑚) in the original solution but not in the reoptimized 

solution and vice versa. The mathematical formulation for the 𝑆𝑃𝑉 metric is as follows: 

Model 2: Reoptimization based on sequence preservation with vessel replacement (SPV) metric 

Minimize ∑ 𝑧𝑖𝑚𝑗𝑛
𝑆𝑃𝑉

(𝑖,𝑚,𝑗,𝑛)∈𝑆𝑋

+ ∑ 𝑧𝑖𝑚
𝑆𝑃𝑉𝑂

(𝑖,𝑚)∈𝑆𝐴

+ ∑ ∑ 𝐶𝑖𝑘
𝑃

𝑘∈𝐾𝑣|𝐽𝑖𝑘=−1

(𝑟𝑖𝑚𝑘 + 𝑟𝑖𝑚𝑘
𝐸 )

(𝑖,𝑚)∈𝑆𝐴

+ ∑ ∑ 𝐶𝑖𝑘
𝑃

𝑘∈𝐾𝑣|𝐽𝑖𝑘=−1

𝑟𝑖𝑘
𝑇

𝑖∈𝑁

+ ∑ ∑ 𝐶𝑖𝑘
𝑃𝑃

𝑘∈𝐾𝑣|𝐽𝑖𝑘=1

𝑟𝑖𝑘
𝑃𝑇

𝑖∈𝑁

 

(14) 

subject to   

(1) and (2)   

(A2) to (A27) and (A30) to (A45)   

𝑧𝑖𝑚𝑗𝑛
𝑆𝑃𝑉 ≥ ∑ 𝑋𝑖𝑚𝑗𝑛𝑣

𝑣∈𝑉

− ∑ 𝑥𝑖𝑚𝑗𝑛𝑣

𝑣∈𝑉

 (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑌 (15) 

𝑧𝑖𝑚𝑗𝑛
𝑆𝑃𝑉 ≥ ∑ 𝑥𝑖𝑚𝑗𝑛𝑣

𝑣∈𝑉

− ∑ 𝑋𝑖𝑚𝑗𝑛𝑣

𝑣∈𝑉

 (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑌 (16) 

𝑧𝑖𝑚
𝑆𝑃𝑉𝑂 ≥ ∑ 𝑋𝑖𝑚𝑣

𝑂

𝑣∈𝑉

− ∑ 𝑥𝑖𝑚𝑣
𝑂

𝑣∈𝑉

 (𝑖, 𝑚) ∈ 𝑆𝐵 (17) 

𝑧𝑖𝑚
𝑆𝑃𝑉𝑂 ≥ ∑ 𝑥𝑖𝑚𝑣

𝑂

𝑣∈𝑉

− ∑ 𝑋𝑖𝑚𝑣
𝑂

𝑣∈𝑉

 (𝑖, 𝑚) ∈ 𝑆𝐵 (18) 

𝑧𝑖𝑚𝑗𝑛
𝑆𝑃𝑉 ∈ {0,1} (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑌 (19) 

𝑧𝑖𝑚
𝑆𝑃𝑉𝑂 ∈ {0,1} (𝑖, 𝑚) ∈ 𝑆𝐵 . (20) 

 

6.3. Visit deviation 

The visit deviation metric, called 𝑉𝐷, compares port visits in the reoptimized solution to those in 

the original solution and counts visit violations which should be minimized (Touzout et al., 2021). 

This metric does not consider the vessel number. As an example, port 𝑖 at visit 𝑚 that is visited by 

vessel 1 in the original solution, may be visited by vessel 3 in the reoptimized solution. This metric 

is helpful in situations where it is very costly to miss a scheduled visit. If a planned port visit is 

omitted in the reoptimized solution, this may result in wasted time and resources, and if a new port 

visit occurs in the reoptimized solution that was not planned in the original solution, this may result 

in higher operating costs due to the unavailability of resources at a port. 
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The mathematical formulation of the 𝑉𝐷 metric has a new binary variable, 𝑧𝑖𝑚
𝑉𝐷 which is defined to 

denote whether or not there is a visit deviation for port arrival (𝑖, 𝑚). Thus, the new constraint is 

defined as follows: 

𝑧𝑖𝑚
𝑉𝐷 = |𝑌𝑖𝑚 − 𝑦𝑖𝑚| (𝑖, 𝑚) ∈ 𝑆𝐵 . (21) 

Like constraints (3) and (4), constraint (21) can be linearized, resulting in constraints (23) and (24). 

Constraints (21) count a visit violation if port arrival (𝑖, 𝑚) was visited in the original solution and 

not in the reoptimized solution, and vice versa. The mathematical formulation for the 𝑉𝐷 metric is 

as follows: 

Model 3: Reoptimization based on visit deviation (VD) metric 

Minimize ∑ 𝑧𝑖𝑚
𝑉𝐷

(𝑖,𝑚)∈𝑆𝐴

+ ∑ ∑ 𝐶𝑖𝑘
𝑃

𝑘∈𝐾𝑣|𝐽𝑖𝑘=−1

(𝑟𝑖𝑚𝑘 + 𝑟𝑖𝑚𝑘
𝐸 )

(𝑖,𝑚)∈𝑆𝐴

+ ∑ ∑ 𝐶𝑖𝑘
𝑃

𝑘∈𝐾𝑣|𝐽𝑖𝑘=−1

𝑟𝑖𝑘
𝑇

𝑖∈𝑁

+ ∑ ∑ 𝐶𝑖𝑘
𝑃𝑃

𝑘∈𝐾𝑣|𝐽𝑖𝑘=1

𝑟𝑖𝑘
𝑃𝑇

𝑖∈𝑁

 

(22) 

subject to   

(1) and (2)   

(A2) to (A27) and (A30) to (A45)   

𝑧𝑖𝑚
𝑉𝐷 ≥ 𝑌𝑖𝑚 − 𝑦𝑖𝑚 (𝑖, 𝑚) ∈ 𝑆𝐵 (23) 

𝑧𝑖𝑚
𝑉𝐷 ≥ 𝑦𝑖𝑚 − 𝑌𝑖𝑚 (𝑖, 𝑚) ∈ 𝑆𝐵 (24) 

𝑧𝑖𝑚
𝑉𝐷 ∈ {0,1} (𝑖, 𝑚) ∈ 𝑆𝐵 . (25) 

 

6.4. Visit deviation without vessel replacement 

The visit deviation without vessel replacement metric, called 𝑉𝐷𝑉, computes the number of ports 

that are not visited in the reoptimized solution but are visited in the original solution with a certain 

vessel number. This metric differs with previous metric in terms of vessel number. For example, if 

𝑊221 = 1 and 𝑤223 = 1 then 𝑉𝐷𝑉 metric is equal to 2 but 𝑉𝐷 metric is equal to 0 because  𝑌22 =

1 and 𝑦22 = 1. 

The mathematical formulation of the 𝑉𝐷𝑉 metric contains a new binary variable. Let 𝑧𝑖
𝑉𝐷𝑉 denote 

whether there is a visit deviation without vessel replacement for port 𝑖 or not. Hence, the new 

constraint is defined as follows: 

𝑧𝑖𝑚𝑣
𝑉𝐷𝑉 = |𝑊𝑖𝑚𝑣 − 𝑤𝑖𝑚𝑣| 𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣

𝐵. (26) 

Constraints (26) count a violation of visit without vessel replacement if the number of visits to port 

𝑖 in the original solution is not the same as in the reoptimized solution. Like constraints (3) and (4), 

constraints (26) can be linearized as shown in constraints (28) and (29). The mathematical 

formulation for the 𝑉𝐷𝑉 metric is as follows: 
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Model 4: Reoptimization based on visit deviation without vessel replacement (VDV) metric 

Minimize ∑ ∑ 𝑧𝑖𝑚𝑣
𝑉𝐷𝑉

𝑣∈𝑉(𝑖,𝑚)∈𝑆𝑣
𝐴

+ ∑ ∑ 𝐶𝑖𝑘
𝑃

𝑘∈𝐾𝑣|𝐽𝑖𝑘=−1

(𝑟𝑖𝑚𝑘 + 𝑟𝑖𝑚𝑘
𝐸 )

(𝑖,𝑚)∈𝑆𝐴

+ ∑ ∑ 𝐶𝑖𝑘
𝑃

𝑘∈𝐾𝑣|𝐽𝑖𝑘=−1

𝑟𝑖𝑘
𝑇

𝑖∈𝑁

+ ∑ ∑ 𝐶𝑖𝑘
𝑃𝑃

𝑘∈𝐾𝑣|𝐽𝑖𝑘=1

𝑟𝑖𝑘
𝑃𝑇

𝑖∈𝑁

 

(27) 

subject to   

(1) and (2)   

(A2) to (A27) and (A30) to (A45)   

𝑧𝑖𝑚𝑣
𝑉𝐷𝑉 ≥ 𝑊𝑖𝑚𝑣 − 𝑤𝑖𝑚𝑣 𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣

𝐵 (28) 

𝑧𝑖𝑚𝑣
𝑉𝐷𝑉 ≥ 𝑤𝑖𝑚𝑣 − 𝑊𝑖𝑚𝑣 𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣

𝐵 (29) 

𝑧𝑖𝑚𝑣
𝑉𝐷𝑉 ∈ {0,1} 𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣

𝐵. (30) 
 

6.5. Quantity deviation 

The quantity deviation metric, called 𝑄𝐷, calculates the difference between the quantity of product 

loaded onto or unloaded from a vessel at a port in the original solution and the loaded or unloaded 

quantity in the reoptimized solution. Minimizing this metric leads to fewer planning issues 

(Touzout et al., 2021) and it is significant because it is the only metric that addresses the inventory 

component of the MIRP. 

The mathematical formulation of the 𝑄𝐷 metric contains a new variable. Let 𝑧𝑖𝑚𝑣𝑘
𝑄𝐷

 be the 

difference in the quantity of product 𝑘 loaded onto or unloaded from vessel 𝑣 upon arrival at port 

(𝑖, 𝑚) in the original solution and the reoptimized solution. Thus, the new constraint is defined as 

follows: 

𝑧𝑖𝑚𝑣𝑘
𝑄𝐷 = |𝑄𝑖𝑚𝑣𝑘 − 𝑞𝑖𝑚𝑣𝑘| 𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣

𝐵, 𝑘 ∈ 𝐾𝑣: 𝐽𝑖𝑘 ≠ 0. (31) 

Constraints (31) calculate the difference between the loaded or unloaded quantity in the original 

solution and the reoptimized solution. Like constraints (3) and (4), constraints (31) can be 

linearized as in constraints (33) and (34). The mathematical formulation for the 𝑄𝐷 metric is as 

follows: 

Model 5: Reoptimization based on quantity deviation (QD) metric 

Minimize ∑ ∑ ∑ 𝑧𝑖𝑚𝑣𝑘
𝑄𝐷

𝑘∈𝐾𝑣
𝐽𝑖𝑘≠0

𝑣∈𝑉(𝑖,𝑚)∈𝑆𝑣
𝐴

+ ∑ ∑ 𝐶𝑖𝑘
𝑃

𝑘∈𝐾𝑣|𝐽𝑖𝑘=−1

(𝑟𝑖𝑚𝑘 + 𝑟𝑖𝑚𝑘
𝐸 )

(𝑖,𝑚)∈𝑆𝐴

+ ∑ ∑ 𝐶𝑖𝑘
𝑃

𝑘∈𝐾𝑣|𝐽𝑖𝑘=−1

𝑟𝑖𝑘
𝑇

𝑖∈𝑁

+ ∑ ∑ 𝐶𝑖𝑘
𝑃𝑃

𝑘∈𝐾𝑣|𝐽𝑖𝑘=1

𝑟𝑖𝑘
𝑃𝑇

𝑖∈𝑁

 

(32) 

subject to   

(1) and (2)   

(A2) to (A27) and (A30) to (A45)   

𝑧𝑖𝑚𝑣𝑘
𝑄𝐷 ≥ 𝑄𝑖𝑚𝑣𝑘 − 𝑞𝑖𝑚𝑣𝑘 𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣

𝐵, 𝑘 ∈ 𝐾𝑣: 𝐽𝑖𝑘 ≠ 0 (33) 
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𝑧𝑖𝑚𝑣𝑘
𝑄𝐷

≥ 𝑞𝑖𝑚𝑣𝑘 − 𝑄𝑖𝑚𝑣𝑘 𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣
𝐵, 𝑘 ∈ 𝐾𝑣: 𝐽𝑖𝑘 ≠ 0 (34) 

𝑧𝑖𝑚𝑣𝑘
𝑄𝐷 ≥ 0 𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣

𝐵, 𝑘 ∈ 𝐾𝑣: 𝐽𝑖𝑘 ≠ 0. (35) 

 

7. Analysis of the stability metrics 

In this section, each stability metric is analyzed. First, the problem instances are presented in 

Section 7.1. The evaluation procedure is explained in Section 7.2 and numerical results and 

findings are presented in Section 7.3. 
 

7.1. Problem instances 

There are 270 instances in this paper. Instances are divided into three groups called A, B and C. 

Group A consists of instances with one product, three vessels and eight ports; Group B consists of 

instances with two products, four vessels and 16 ports; and group C is similar to group A but with 

four products. In group A and B, each port is limited to at most one product, but in group C, there 

are sometimes more than one product in a given port. The input parameters of instances are derived 

from base cases I1 to I10 of Shaabani et al. (2023) where each case differs by the initial inventory 

of product 𝑘 at port 𝑖, the maximum inventory of product 𝑘 at port 𝑖, and the demand rate of port 𝑖 

for product 𝑘. Two different time horizons (𝑇 = 30, 60 days) are considered for the problem. 

The sailing times are assumed to be subject to uncertainty due to weather conditions. As was done 

by Agra et al. (2015), in the current study we introduce two possible changes in sailing times, 

considering that sailing times can also remain unchanged. In the first change, sailing times are 

increased to 1.5 times the original value, and in the second change, they are increased to twice the 

original value. Based on any of these changes, the sailing times for each port may change. Since 

uncertainty may affect an area at sea, sailing times are selected based on the combination of arrival 

and departure ports. Therefore, for example, if an event occurs in the area of port 1, all sailing times 

from port 1 to other ports and from other ports to port 1 are affected. Table 3 shows the three 

probability distributions considered, where each column represents one of the possible changes that 

can occur for sailing times and each row represents a probability distribution and gives the 

probability for each of the three possible changes. If all sailing times are assigned to the first 

column, then no uncertainty has occurred. However, since the current problem examines 

uncertainty in sailing times, this is not considered, and another change is created based on the same 

probability distribution until at least one sailing time is assigned to the second or third column. 

Besides, three scenarios are generated for each probability distribution. 

Table 4 shows the characteristics of the problem instances where the total number of instances is 

270 (3 groups × 5 base cases × 2 time horizons × 3 probability distributions × 3 scenarios). 

Let g be a group of instances and 𝐺 = {𝐴, 𝐵, 𝐶} be the set of groups. Also, let 𝑢 be a base case and 

𝑈 a set of base cases, then 

𝑈 = {
𝐼1, . . . , 𝐼5        ,    𝑔 ∈ {𝐴, 𝐵}
𝐼6, . . . , 𝐼10      ,        𝑔 ∈ {𝐶}

 . 
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According to Shaabani et al. (2023), the structure of instances can make the MIRP difficult to solve; 

therefore, these instances are selected such that the optimal solutions can be found in less than 

21,600 seconds, thereby enabling a fair analysis of the stability metrics. 

Table 3. Probability distributions for sailing time 

Probability 

distributions 

Sailing time 

× 1 × 1.5 × 2 

𝑃 = 1 0.85 0.10 0.05 

𝑃 = 2 0.50 0.30 0.20 

𝑃 = 3 0.15 0.45 0.40 
 

Table 4. Characteristics of the problem instances 

Groups 

𝑔 

Number of 

products 
|𝐾| 

Number 

of vessels 
|𝑉| 

Number 

of ports 
|𝑁| 

Base cases 

𝑈 

Time 

horizon 

𝑇 

Probability 

distributions

 𝑃 

Scenarios 

𝑆 

𝐴 1 3 8 {𝐼1, . . . , 𝐼5} 

{30, 60} {1, 2, 3} {1, 2, 3} 𝐵 2 4 16 {𝐼1, . . . , 𝐼5} 

𝐶 4 3 8 {𝐼6, . . . , 𝐼10} 
 

7.2. Evaluation procedure 

A set of metrics which represents the "𝑐𝑜𝑠𝑡" metric and five introduced stability metrics in Section 

6 is defined as Θ = {𝜃0, . . . , 𝜃5} where 𝜃0 = 𝑐𝑜𝑠𝑡, 𝜃1 = 𝑆𝑃, 𝜃2 = 𝑆𝑃𝑉, 𝜃3 = 𝑉𝐷, 𝜃4 = 𝑉𝐷𝑉, 𝜃5 =

𝑄𝐷. 

All instances are solved directly by CPLEX 20.1. First the deterministic model given in Section 5 

is solved according to Algorithm 1. Then, the evaluation procedure for an instance is given in 

Algorithm 2 and matrix 𝑅 represents the structure of the outcomes for all metrics for an instance 

and is shown in Table 5. 

The details of the evaluation procedure are as follows. After solving the deterministic model the 

modifications to the basic model explained in Section 5 are applied. Now the modified model can 

be solved, minimizing the "𝑐𝑜𝑠𝑡" metric, and the reoptimized solution is obtained, which includes 

the sailing costs and port operation costs, plus penalty costs for backlogs and overstocks, but only 

the sailing costs and port operation costs, which is called 𝐶∗, is reported. Since all models include 

penalty cost terms and the values obtained for these terms are mostly identical, the solutions for all 

models are reported without the value for penalty costs. 

The model is then solved considering each stability metric. Therefore, the five models given in 

Section 6 are solved, and the objective values are given in the main diagonal part of Table 5. Then, 

similarly to the procedure introduced by Touzout et al. (2021), an evaluation of the stability metrics 

is performed, where one metric is fixed at its optimal value by some additional constraints 

presented in Table 6, and the model is solved to optimality. For example, in the second row in 

Table 5, the 𝑆𝑃 metric was fixed at its optimal value (𝑆𝑃∗) except for the main diagonal element, 

and then the optimal value of the other metrics was found. For example, 𝑄𝐷∗(𝑆𝑃∗) reports the 

optimal solution of the model with the 𝑄𝐷 metric, while 𝑆𝑃 is kept at its optimal value. 
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Algorithm 1: Solving the deterministic model 

1: Inputs: A group 𝑔 ∈ 𝐺, a base case 𝑢 ∈ 𝑈, a planning horizon 𝑇 ∈ {30, 60} 

2: Solve the deterministic model in Section 5 

3: Output: Initial plan for the reoptimization  

 

Algorithm 2: The evaluation procedure for an instance 

1: Inputs: One probability distribution 𝑃 ∈ {1,2,3}, one of its scenarios 𝑆 ∈ {1,2,3}, an uncertain 

event occurs at 𝑇𝑈, an empty matrix 𝑅 

2: Modifications to the model (according to Section 5) 

3: for 𝜃𝑖 ∈ Θ 

4:       Solve the “Model 𝑖” (according to Section 5 and Section 6.1 to 6.5) 

5: end for 

6: for 𝜃𝑖 ∈ Θ 

7:        for 𝜃𝑗 ∈ 𝛩, 𝜃𝑗 ≠ 𝜃𝑖  

8:              Add the additional constraints 𝛼𝑗 to the “Model 𝑖” (according to Table 6) 

9:              Solve the model 

10:        end for 

11: end for 

12: Output: Matrix 𝑅 (Shown in Table 5) 

 

Table 5. Matrix 𝑅 showing the structure of outcomes for an instance 

 Cost SP SPV VD VDV QD 

Cost 𝐶∗ 𝑆𝑃∗(𝐶∗) 𝑆𝑃𝑉∗(𝐶∗) 𝑉𝐷∗(𝐶∗) 𝑉𝐷𝑉∗(𝐶∗) 𝑄𝐷∗(𝐶∗) 

SP 𝐶∗(𝑆𝑃∗) 𝑆𝑃∗ 𝑆𝑃𝑉∗(𝑆𝑃∗) 𝑉𝐷∗(𝑆𝑃∗) 𝑉𝐷𝑉∗(𝑆𝑃∗) 𝑄𝐷∗(𝑆𝑃∗) 

SPV 𝐶∗(𝑆𝑃𝑉∗) 𝑆𝑃∗(𝑆𝑃𝑉∗) 𝑆𝑃𝑉∗ 𝑉𝐷∗(𝑆𝑃𝑉∗) 𝑉𝐷𝑉∗(𝑆𝑃𝑉∗) 𝑄𝐷∗(𝑆𝑃𝑉∗) 

VD 𝐶∗(𝑉𝐷∗) 𝑆𝑃∗(𝑉𝐷∗) 𝑆𝑃𝑉∗(𝑉𝐷∗) 𝑉𝐷∗ 𝑉𝐷𝑉∗(𝑉𝐷∗) 𝑄𝐷∗(𝑉𝐷∗) 

VDV 𝐶∗(𝑉𝐷𝑉∗) 𝑆𝑃∗(𝑉𝐷𝑉∗) 𝑆𝑃𝑉∗(𝑉𝐷𝑉∗) 𝑉𝐷∗(𝑉𝐷𝑉∗) 𝑉𝐷𝑉∗ 𝑄𝐷∗(𝑉𝐷𝑉∗) 

QD 𝐶∗(𝑄𝐷∗) 𝑆𝑃∗(𝑄𝐷∗) 𝑆𝑃𝑉∗(𝑄𝐷∗) 𝑉𝐷∗(𝑄𝐷∗) 𝑉𝐷𝑉∗(𝑄𝐷∗) 𝑄𝐷∗ 
 

Table 6. Additional constraints 

Additional 

constraints 

indicator 
Added constraints 

𝛼0 
∑ ∑ 𝐶𝑖𝑗𝑣

𝑇

(𝑖,𝑚,𝑗,𝑛)∈𝑆𝑣
𝑋

𝑥𝑖𝑚𝑗𝑛𝑣

𝑣∈𝑉

+ ∑ ∑ 𝐶𝑜𝑖𝑣
𝑇𝑂

(𝑖,𝑚)∈𝑆𝑣
𝐴

𝑥𝑖𝑚𝑣
𝑂

𝑣∈𝑉

+ ∑ ∑ ∑ 𝐶𝑖𝑘
𝑂

𝑘∈𝐾𝑣|𝐽𝑖𝑘≠0

𝑜𝑖𝑚𝑣𝑘

(𝑖,𝑚)∈𝑆𝑣
𝐴𝑣∈𝑉

= 𝐶∗ 

𝛼1  Constraints (6) 𝑡𝑜 (11), and 
∑ ∑ 𝑧𝑖𝑚𝑗𝑛𝑣

𝑆𝑃

(𝑖,𝑚,𝑗,𝑛)∈𝑆𝑣
𝑋𝑣∈𝑉

+ ∑ ∑ 𝑧𝑖𝑚𝑣
𝑆𝑃𝑂

(𝑖,𝑚)∈𝑆𝑣
𝐴𝑣∈𝑉

= 𝑆𝑃∗ 

𝛼2  Constraints (15) 𝑡𝑜 (20), and ∑ 𝑧𝑖𝑚𝑗𝑛
𝑆𝑃𝑉

(𝑖,𝑚,𝑗,𝑛)∈𝑆𝑋

+ ∑ 𝑧𝑖𝑚
𝑆𝑃𝑉𝑂

(𝑖,𝑚)∈𝑆𝐴

= 𝑆𝑃𝑉∗ 
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𝛼3  Constraints (23) 𝑡𝑜 (25), and ∑ 𝑧𝑖𝑚
𝑉𝐷

(𝑖,𝑚)∈𝑆𝐴

= 𝑉𝐷∗ 

𝛼4  Constraints (28) 𝑡𝑜 (30), and 
∑ ∑ 𝑧𝑖𝑚𝑣

𝑉𝐷𝑉

𝑣∈𝑉(𝑖,𝑚)∈𝑆𝑣
𝐴

= 𝑉𝐷𝑉∗ 

𝛼5  Constraints (33) 𝑡𝑜 (35), and 
∑ ∑ ∑ 𝑧𝑖𝑚𝑣𝑘

𝑄𝐷

𝑘∈𝐾𝑣
𝐽𝑖𝑘≠0

𝑣∈𝑉(𝑖,𝑚)∈𝑆𝑣
𝐴

= 𝑄𝐷∗ 

 

7.3. Numerical results and findings 

This section contains the results for the three groups, A, B, and C. Each group includes 90 instances 

and the aggregate result of these 90 instances is given for each group. To create an aggregate result, 

the equivalence rate must be defined. 

Two metrics are said to be equivalent when optimizing one does not prevent the other from being 

optimal and vice versa (Touzout et al., 2021). This is evaluated using the output of Algorithm 2. 

Also, two metrics are said to be divergent if optimizing one worsens the value of the other metric 

and vice versa. A new matrix is created corresponding to matrix 𝑅 in which each cell has a value 

of 1 when two metrics are equivalent and has a value of 0 when two metrics are divergent. 

Here is an example, Table 7(a) shows the results for the first scenario of the first probability 

distribution of group 𝐴 with time horizon 60 for base case 𝐼1, where 𝑆𝑃 and 𝑉𝐷 are equivalent 

since 𝑆𝑃∗(𝑉𝐷∗) = 𝑆𝑃∗ and 𝑉𝐷∗(𝑆𝑃∗) = 𝑉𝐷∗ but 𝑆𝑃 and 𝑄𝐷 are divergent because 𝑆𝑃∗ = 6 and 

by fixing 𝑄𝐷 at the optimal value, the 𝑆𝑃∗ deteriorates so that 𝑆𝑃∗(𝑄𝐷∗) = 7 and 𝑄𝐷∗ = 464.37 

and by fixing 𝑆𝑃 at the optimal value, the 𝑄𝐷∗ deteriorates such that 𝑄𝐷∗(𝑆𝑃∗) = 746.32. Table 

7(b) shows the new matrix corresponding to the matrix in Table 7(a) showing which metrics are 

equivalent. 

The matrix shown in Table 7(b) is an example of a single instance, and this type of matrix is created 

for all instances. Thus, there are 90 such matrices for each group and the ratio of instances in which 

each pair of metrics is equivalent is called the equivalence rate of these metrics. Table 8 shows the 

equivalence rate between the stability metrics for the three groups. 

Table 7. Results for an instance of group 𝐴 

(a) Results (b) Metrics are: equivalent = 𝟏  or divergent = 𝟎 

 Cost SP SPV VD VDV QD  Cost SP SPV VD VDV QD 

Cost 632.99 9 9 7 8 900.46 Cost - 0 0 0 0 0 

SP 732.79 6 6 4 5 746.32 SP 0 - 1 1 1 0 

SPV 740.52 6 6 4 5 746.32 SPV 0 1 - 1 1 0 

VD 732.52 6 6 4 5 746.32 VD 0 1 1 - 1 0 

VDV 732.52 6 6 4 5 746.32 VDV 0 1 1 1 - 0 

QD 673.78 7 7 5 6 464.37 QD 0 0 0 0 0 - 
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Table 8. The percent equivalence rate between the stability metrics 

Group A Cost SP SPV VD VDV QD 

Cost - 40.00 40.00 45.56 53.33 42.22 

SP 40.00 - 94.44 78.89 76.67 62.22 

SPV 40.00 94.44 - 78.89 88.89 56.67 

VD 45.56 78.89 78.89 - 100.00 73.33 

VDV 53.33 76.67 88.89 100.00 - 73.33 

QD 42.22 62.22 56.67 73.33 73.33 - 

Group B Cost SP SPV VD VDV QD 

Cost - 40.00 36.67 57.78 70.00 60.00 

SP 40.00 - 93.33 70.00 70.00 80.00 

SPV 36.67 93.33 - 78.89 70.00 88.89 

VD 57.78 70.00 78.89 - 91.11 83.33 

VDV 70.00 70.00 70.00 91.11 - 88.89 

QD 60.00 80.00 88.89 83.33 88.89 - 

Group C Cost SP SPV VD VDV QD 

Cost - 51.11 51.11 50.00 47.78 58.89 

SP 51.11 - 96.67 66.67 64.44 91.11 

SPV 51.11 96.67 - 64.44 58.89 82.22 

VD 50.00 66.67 64.44 - 38.89 35.56 

VDV 47.78 64.44 58.89 38.89 - 75.56 

QD 58.89 91.11 82.22 35.56 75.56 - 
 

 

Figure 3 illustrates the information from Table 8 and Figure 4 shows the average value of the 

equivalence rate for the three groups. Based on these two figures, the following observations can 

be made. 

• As shown in Figure 4, cost is the only metric that is always below a 60% equivalence ratio. 

This is not surprising, since it is costly to keep a plan unchanged when it is subject to 

uncertainty, but there is a slight difference when comparing the cost with the five stability 

metrics. On average, keeping SP or SPV at the optimal value is almost divergent with 

optimizing cost (equivalence rate below 45%). Looking at the different groups, it can be 

seen that SP or SPV with cost metric are less divergent in group C compared with group A 

and B, which is due to the structure of group C, where each port is not limited to one 

product; therefore, it is less difficult to keep the sequence. 

• The equivalence rate between VD and VDV for group A is 100%. There may be two reasons 

for this. First, this is a single-product problem where it is not difficult to keep a scheduled 

visit when uncertainties arise, so it is not necessary to replace a vessel to keep a scheduled 

visit. For group B, where there are two products, this value was reduced by 10%. Second, 

in these two cases, each port is limited to at most one product, so it is easy to keep a 

scheduled visit. 

• The largest difference in the equivalence rate of similar pairs of metrics between three 

groups belongs to two pairs (VD and VDV, VD and QD), where there is a high equivalence 
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rate (over 70%) for groups A and B, but it is very low (under 40%) for group C. The main 

reason for this large difference is the structure of the groups, where each port is limited to 

at most one product for groups A and B but in group C, there is no such limitation; however, 

it could still be that there is only one product. Therefore, the results state these two pairs 

(VD and VDV, VD and QD) are divergent when each port is not limited to one product. 

• The SP and SPV are the only two metrics shown to be strongly equivalent for all groups, 

with an average of about 95%. As shown in Figure 4, the equivalence rate of all other pairs 

of metrics averages less than 80%. 

• Although the highest equivalence rate is between SP and SPV, eight other pairs of metrics 

also have high equivalence rates. As shown in Figure 4, equivalence rate for eight pairs of 

metrics is between 70% and 80%. 

• On average, as seen in Figure 4, keeping QD at its optimal value is more likely to lead to 

convergence in the other metrics than keeping VD at its optimal value. However, based on 

Figure 3, it is the other way around when considering only group A, since there is only one 

product, which leads to less flexibility in terms of quantity delivered, but it is much easier 

to keep the visit unchanged since it always includes one product. 

• Keeping VD or VDV at the optimal value leads to almost the same equivalence rate in all 

three groups with SP. This is because minimal changes in scheduled port visits contribute 

to a smaller number of changes in visit order optimization. 
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Figure 3. Equivalence rate between the stability metrics for groups A, B, and C 

 

 
Figure 4. Average equivalence rate between the stability metrics  
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Since the cost metric is the most divergent metric, a more detailed analysis is performed for it, 

while the other metrics have their optimal value. In this context, the percentage of the cost gap of 

the optimal cost with respect to the other metrics is computed. For example, the cost gap of the cost 

metric with respect to the SP metric is calculated as 
𝐶∗(𝑆𝑃∗)−𝐶∗

𝐶∗ , where 𝐶∗ is the optimal value for 

cost metric and 𝐶∗(𝑆𝑃∗) is the optimal solution of the model with the cost metric, while 𝑆𝑃 is kept 

at its optimal value. Figure 5 shows the frequency of the cost gap in percent. Figure 5(a) through 

5(e) show the cost gap for each of the three groups for SP, SPV, VD, VDV, and QD, and Figure 

5(f) shows the mean of the cost gap for all groups and the cumulative percentage for the average 

of the five stability metrics. A cost gap of zero means that the cost metric is equivalent to the given 

metric. 

Figure 5 shows that almost 20% of the instances for all metrics have a cost gap of 0% to 5%, and 

almost 15% of the instances for the SP and SPV metrics and almost 10% of the instances for the 

VD, VDV, and QD metrics have a cost gap between 5% and 10%. In addition, almost 45% of the 

instances for the SP and SPV metrics and almost 55% of the instances for VD, VDV, and QD 

metrics are equivalent to the cost metric. Consequently, less than 20% of the instances for all 

metrics have a cost gap greater than 10%. This means that a decision maker has a choice between 

a more stable plan with some cost deterioration or minimizing costs by making frequent 

adjustments to the original plan. If the decision maker chooses to make frequent adjustments to the 

original plan, the cost deterioration threshold is set to 0%, which, based on the cumulative 

percentages shown in Figure 5(f), means that optimizing for stability results in no additional cost 

nearly 50% of the time. If the decision maker chooses a more stable plan, a certain threshold for 

cost deterioration can be set. The results show that if the decision maker accepts a cost deterioration 

of 5%, this leads to 20% more stable solutions. Thus, in almost 70% of the instances, optimizing 

stability resulted in a maximum of 5% additional cost. Even more stable solutions can be obtained 

where more than 80% of the instances lead to stable solutions, but the decision maker has to accept 

a cost deterioration of 10%. 
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Figure 5. The frequency of the cost gap in percent 
 

An absolute equivalence is defined here. An instance is said to be "absolutely equivalent" if all 

pairs of metrics are equivalent, meaning that optimizing any metric in one instance does not prevent 

the other from being optimal; thus, there are no conflicting metrics. The result shows that the 

number of instances with absolute equivalence for groups A, B, and C is 20, 9, and 14, respectively. 

Overall, almost 16% of the instances have absolute equivalence, which means that the problem 

involves conflicting decisions in about 84% of the instances. This may motivate the use of multiple-

criteria decision analysis (MCDA) or multi-objective optimization to find trade-offs between 

different conflicting stability metrics. 
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8. Conclusion 

We have studied the problem of maritime inventory routing under sailing time uncertainty. Five 

stability metrics were introduced and embedded in the mathematical formulations to determine the 

extent of changes to an original plan when uncertainties occur. Therefore, a reoptimization 

framework was implemented to determine the impact of each stability metric on the reoptimized 

plan. 

The analyses have shown that it is costly to keep a plan unchanged. Therefore, the cost metric 

becomes worse when any other metrics have been set to their optimal values. The remaining pairs 

of metrics, including all pairs among SP, SPV, VD, VDV, QD can be divided into three groups. 

The first group, with the strongest equivalence rate of about 95%, includes only SP and SPV. The 

second group also contains only one pair, which includes VD and QD with the weakest equivalence 

rate of about 64%. The third group, where the equivalence rate is between 70% and 80%, includes 

the remaining eight pairs of metrics (SP and VD, SP and VDV, SP and QD, SPV and VD, SPV 

and VDV, SPV and QD, VD and VDV, VDV and QD). An analysis of the percentage of the cost 

gap showed that optimization of the stability metrics without additional costs occurs in almost 50% 

of the cases but accepting a 5% cost deterioration can lead to 20% more stable solutions. 
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Appendix A. Mathematical model 

This appendix first defines the notations and then presents the mathematical model. 

Indices 

𝑖, 𝑗 Indices for ports, 𝑖, 𝑗 ∈ {1, … , |𝑁|} 

𝑚, 𝑛 Indices for visits at each port, 𝑚, 𝑛 ∈ {1, … , �̅�} 

𝑣 Index for vessels, 𝑣 ∈ {1, … , |𝑉|} 

𝑘 Index for products, 𝑘 ∈ {1, … , |𝐾|} 

(𝑖, 𝑚) Index for mth visit of port i  

Sets 

𝑆𝐴 Set of possible port arrivals (𝑖, 𝑚) 

𝑆𝑣
𝐴 Set of port arrivals that may be visited by vessel v 

𝑆𝑋 Set of all possible vessel movements (𝑖, 𝑚, 𝑗, 𝑛) 

𝑆𝑣
𝑋 Set of all possible movements of vessel v 

𝑉𝑖 Set of vessels that can visit port i 

𝐾𝑣 Set of products that vessel v can transport  

𝑁 Set of ports 

𝑉 Set of vessels 

𝐾 Set of products 

Parameters 

�̅� Maximum number of visits 

𝐽𝑖𝑘 
1 if port i is a supplier of product k; −1 if port i is a consumer of product k; 0 if port i is 

neither a supplier nor a consumer of product k 

𝑅𝑖𝑘 Demand rate of port i for product k 

𝑄𝑣𝑘
𝑂  Load of vessel v of product k at the beginning of the planning horizon 

𝐶𝑣𝑘 Capacity of the compartment of vessel v dedicated to product k 

𝑄𝑖𝑘
𝑀𝐼𝑁 Minimum unloading quantities of product k at port i 

𝑄𝑖𝑘
𝑀𝐴𝑋 Maximum unloading quantities of product k at port i 

𝑇 Length of the time horizon 

𝑇𝑖𝑘
𝑄

 Time required to (un)load one unit of product k at port i 

𝑇𝑖𝑘
𝑆  Set up time required to operate product k at port i 

𝑇𝑖𝑗𝑣 Sailing time between port i and j by vessel v  

𝑇𝑖𝑣
𝑂 Sailing time from initial position to port i by vessel v 

𝑇𝑖
𝐵 Minimum interval between the departure of one vessel and the next arrival at port i 

𝑇𝑖𝑚
𝑊  Waiting time at port arrival (𝑖, 𝑚) 

𝑆𝑖𝑘
𝑂  Initial inventory level of product k at port i  

𝑆𝑖𝑘
𝑀𝐼𝑁 Minimum inventory level of product k at port i  

𝑆𝑖𝑘
𝑀𝐴𝑋 Maximum inventory level of product k at port i  

𝐶𝑖𝑗𝑣
𝑇  Sailing cost of vessel v from port I to port j 
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𝐶𝑜𝑖𝑣
𝑇𝑂 Sailing cost of vessel v from its initial port position to port i 

𝐶𝑖𝑘
𝑂  Operating cost of product k at port i  

𝐶𝑖𝑘
𝑃  Penalty cost for backlogging of product k at port i  

𝐶𝑖𝑘
𝑃𝑃 Penalty cost for having more than maximum allowed level at port i for product k 

Binary variables 

𝑥𝑖𝑚𝑗𝑛𝑣 1 if and only if vessel v sails from port arrival (𝑖, 𝑚) directly to port arrival (𝑗, 𝑛) 

𝑥𝑖𝑚𝑣
𝑂  1 if and only if vessel v sails directly from its initial position to port arrival (𝑖, 𝑚) 

𝑤𝑖𝑚𝑣 1 if and only if vessel v visits port i at arrival (𝑖, 𝑚) 

𝑧𝑖𝑚𝑣 1 if and only if vessel v ends its route at port arrival (𝑖, 𝑚) 

𝑦𝑖𝑚 1 if and only if vessel visit port arrival (𝑖, 𝑚) 

𝑧𝑣
𝑂 1 if and only if vessel v is not used 

𝑜𝑖𝑚𝑣𝑘 1 if and only if product k is loaded onto or unloaded from vessel v at port visit (𝑖, 𝑚) 

Continuous variables 

𝑞𝑖𝑚𝑣𝑘 Amount of product k loaded onto or unloaded from vessel v at port visit (𝑖, 𝑚) 

𝑓𝑖𝑚𝑗𝑛𝑣𝑘 Amount of product k that vessel v transports from port visit (𝑖, 𝑚) to port visit (𝑗, 𝑛) 

𝑓𝑖𝑚𝑣𝑘
𝑂  Amount of product k that vessel v transports from its initial position to port visit (𝑖, 𝑚) 

𝑡𝑖𝑚 Start time for port arrival (𝑖, 𝑚) 

𝑡𝑖𝑚
𝐸  End time for port arrival (𝑖, 𝑚) 

𝑡𝑖
+ Remaining time from the end of the last visit of port i until time T 

𝑠𝑖𝑚𝑘 Inventory level of product k at the start of port visit (𝑖, 𝑚) 

𝑠𝑖𝑚𝑘
𝐸  Inventory level of product k at the end of port visit (𝑖, 𝑚) 

𝑠𝑖𝑘
𝑇  

Inventory level of product k, above the minimum stock level for port i at the end of 

time T or at the end of the last visit (if this occurs after T) 

𝑠𝑖𝑘
𝑃𝑇 

Amount of product k below the maximum stock level for port i at the end of time T or 

at the end of last visit (if this occurs after T) 

𝑟𝑖𝑚𝑘 Backlog of product k at the start of port visit (𝑖, 𝑚) 

𝑟𝑖𝑚𝑘
𝐸  Backlog of product k at the end of port visit (𝑖, 𝑚) 

𝑟𝑖𝑘
𝑇  Amount of product k below the minimum level for port i at the end of time T 

𝑟𝑖𝑘
𝑃𝑇 Amount of product k above the maximum level for port i at the end of time T 

 

Minimize ∑ ∑ 𝐶𝑖𝑗𝑣
𝑇

(𝑖,𝑚,𝑗,𝑛)∈𝑆𝑣
𝑋

𝑥𝑖𝑚𝑗𝑛𝑣

𝑣∈𝑉

+ ∑ ∑ 𝐶𝑜𝑖𝑣
𝑇𝑂

(𝑖,𝑚)∈𝑆𝑣
𝐴

𝑥𝑖𝑚𝑣
𝑂

𝑣∈𝑉

+ ∑ ∑ ∑ 𝐶𝑖𝑘
𝑂

𝑘∈𝐾𝑣|𝐽𝑖𝑘≠0

𝑜𝑖𝑚𝑣𝑘

(𝑖,𝑚)∈𝑆𝑣
𝐴𝑣∈𝑉

+ ∑ ∑ 𝐶𝑖𝑘
𝑃

𝑘∈𝐾𝑣|𝐽𝑖𝑘=−1

(𝑟𝑖𝑚𝑘 + 𝑟𝑖𝑚𝑘
𝐸 )

(𝑖,𝑚)∈𝑆𝑣
𝐴

+ ∑ ∑ 𝐶𝑖𝑘
𝑃

𝑘∈𝐾𝑣|𝐽𝑖𝑘=−1

𝑟𝑖𝑘
𝑇

𝑖∈𝑁

+ ∑ ∑ 𝐶𝑖𝑘
𝑃𝑃

𝑘∈𝐾𝑣|𝐽𝑖𝑘=+1

𝑟𝑖𝑘
𝑃𝑇

𝑖∈𝑁

 

(A1) 
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subject to   

routing constraints:   

∑ 𝑥𝑖𝑚𝑣
𝑂

(𝑖,𝑚)∈𝑆𝑣
𝐴

+ 𝑧𝑣
𝑂 = 1 𝑣 ∈ 𝑉 (A2) 

𝑤𝑖𝑚𝑣 − ∑ 𝑥𝑗𝑛𝑖𝑚𝑣

(𝑗,𝑛)∈𝑆𝑣
𝐴

𝑗≠𝑖

− 𝑥𝑖𝑚𝑣
𝑂 = 0 

𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 (A3) 

𝑤𝑖𝑚𝑣 − ∑ 𝑥𝑖𝑚𝑗𝑛𝑣

(𝑗,𝑛)∈𝑆𝑣
𝐴

𝑗≠𝑖

− 𝑧𝑖𝑚𝑣 = 0 
𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣

𝐴 (A4) 

∑ 𝑤𝑖𝑚𝑣

𝑣∈𝑉𝑖

= 𝑦𝑖𝑚 (𝑖, 𝑚) ∈ 𝑆𝐴 (A5) 

𝑦𝑖(𝑚−1) − 𝑦𝑖𝑚 ≥ 0 (𝑖, 𝑚) ∈ 𝑆𝐴: 𝑚 > 1 (A6) 

𝑥𝑖𝑚𝑣
𝑂 , 𝑤𝑖𝑚𝑣, 𝑧𝑖𝑚𝑣 ∈ {0,1}  𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣

𝐴 (A7) 

𝑥𝑖𝑚𝑗𝑛𝑣 ∈ {0,1} 𝑣 ∈ 𝑉, (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑋 (A8) 

𝑧𝑣
𝑂 ∈ {0,1} 𝑣 ∈ 𝑉 (A9) 

𝑦𝑖𝑚 ∈ {0,1} (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 (A10) 

loading and unloading constraints:   

𝑓𝑖𝑚𝑣𝑘
𝑂 + ∑ 𝑓𝑗𝑛𝑖𝑚𝑣𝑘

(𝑗,𝑛)∈𝑆𝑣
𝐴

+ 𝐽𝑖𝑘𝑞𝑖𝑚𝑣𝑘 = ∑ 𝑓𝑖𝑚𝑗𝑛𝑣𝑘

(𝑗,𝑛)∈𝑆𝑣
𝐴

 

(A11) 

 𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴, 𝑘 ∈ 𝐾𝑣 

𝑓𝑖𝑚𝑣𝑘
𝑂 = 𝑄𝑣𝑘

𝑂  𝑥𝑖𝑚𝑣
𝑂  𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣

𝐴, 𝑘 ∈ 𝐾𝑣 (A12) 

𝑓𝑖𝑚𝑗𝑛𝑣𝑘 ≤ 𝐶𝑣𝑘𝑥𝑖𝑚𝑗𝑛𝑣 𝑣 ∈ 𝑉, (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝑋 , 𝑘 ∈ 𝐾𝑣 (A13) 

0≤ 𝑞𝑖𝑚𝑣𝑘 ≤ 𝐶𝑣𝑘𝑜𝑖𝑚𝑣𝑘 𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴, 𝑘 ∈ 𝐾𝑣: 𝐽𝑖𝑘 = 1 (A14) 

𝑄𝑖𝑘
𝑀𝐼𝑁𝑜𝑖𝑚𝑣𝑘 ≤ 𝑞𝑖𝑚𝑣𝑘 ≤ 𝑄𝑖𝑘

𝑀𝐴𝑋𝑜𝑖𝑚𝑣𝑘 𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴, 𝑘 ∈ 𝐾𝑣: 𝐽𝑖𝑘 = −1 (A15) 

∑ 𝑜𝑖𝑚𝑣𝑘

𝑘∈𝐾𝑣

≥ 𝑤𝑖𝑚𝑣 𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴 (A16) 

∑ ∑ ∑ 𝑞𝑖𝑚𝑣𝑘

𝑘∈𝐾𝑣
𝐽𝑖𝑘=−1

𝑣∈𝑉(𝑖,𝑚)∈𝑆𝑣
𝐴

≥ ∑ ∑ 𝑅𝑖𝑘𝑇
𝑘∈𝐾

𝐽𝑖𝑘=−1
𝑖∈𝑁

− ∑ ∑ 𝑆𝑖𝑘
𝑂

𝑘∈𝐾
𝐽𝑖𝑘=−1

𝑖∈𝑁

 
(A17) 

 𝑜𝑖𝑚𝑣𝑘 ≤ 𝑤𝑖𝑚𝑣 𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴, 𝑘 ∈ 𝐾𝑣 (A18) 

𝑓𝑖𝑚𝑗𝑛𝑣𝑘 ≥ 0 𝑣 ∈ 𝑉, (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑣
𝐴, 𝑘 ∈ 𝐾𝑣 (A19) 

𝑓𝑖𝑚𝑣𝑘
𝑂 ≥ 0 𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣

𝐴, 𝑘 ∈ 𝐾𝑣 (A20) 

𝑞𝑖𝑚𝑣𝑘 ≥ 0 𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴, 𝑘 ∈ 𝐾𝑣: 𝐽𝑖𝑘 ≠ 0 (A21) 
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𝑜𝑖𝑚𝑣𝑘 ∈ {0,1} 𝑣 ∈ 𝑉, (𝑖, 𝑚) ∈ 𝑆𝑣
𝐴, 𝑘 ∈ 𝐾𝑣: 𝐽𝑖𝑘 ≠ 0 (A22) 

time constraints:   

𝑡𝑖𝑚 
𝐸 ≥ 𝑡𝑖𝑚 + ∑ ∑ 𝑇𝑖𝑘

𝑆  𝑜𝑖𝑚𝑣𝑘

𝑘∈𝐾𝑣𝑣∈𝑉

+ ∑ ∑ 𝑇𝑖𝑘
𝑄 𝑞𝑖𝑚𝑣𝑘

𝑘∈𝐾𝑣𝑣∈𝑉

 

(A23) 

 (𝑖, 𝑚) ∈ 𝑆𝐴 

𝑡𝑖𝑚 − 𝑡𝑖(𝑚−1)
𝐸 − 𝑇𝑖

𝐵𝑦𝑖𝑚 ≥ 0 (𝑖, 𝑚) ∈ 𝑆𝐴: 𝑚 > 1 (A24) 

𝑡𝑖𝑚 
𝐸 + ∑ 𝑇𝑖𝑗𝑣

𝑣∈𝑉𝑖∩𝑉𝑗

𝑥𝑖𝑚𝑗𝑛𝑣 + 𝑇𝑗𝑛
𝑊𝑦𝑗𝑛 − 𝑡𝑗𝑛 ≤ 2𝑇 (1 − ∑ 𝑥𝑖𝑚𝑗𝑛𝑣

𝑣∈𝑉𝑖∩𝑉𝑗

) 
(A25) 

 (𝑖, 𝑚, 𝑗, 𝑛) ∈ 𝑆𝑋 

∑ 𝑇𝑖𝑣
𝑂

𝑣∈𝑉

𝑥𝑖𝑚𝑣
𝑂 + 𝑇𝑖𝑚

𝑊 𝑦𝑖𝑚 ≤ 𝑡𝑖𝑚 (𝑖, 𝑚) ∈ 𝑆𝐴 (A26) 

𝑡𝑖
+ ≥ 𝑇 − 𝑡𝑖�̅�

𝐸  𝑖 ∈ 𝑁 (A27) 

𝑡𝑖𝑚 ≤ 𝑇 (𝑖, 𝑚) ∈ 𝑆𝐴 (A28) 

𝑡𝑖𝑚
𝐸 ≤ 𝑇 (𝑖, 𝑚) ∈ 𝑆𝐴 (A29) 

𝑡𝑖𝑚 ≥ 0, 𝑡𝑖𝑚
𝐸 ≥ 0 (𝑖, 𝑚) ∈ 𝑆𝐴 (A30) 

𝑡𝑖
+ ≥ 0 𝑖 ∈ 𝑁 (A31) 

inventory constraints (consumption ports):  

𝑠𝑖1𝑘 = 𝑆𝑖𝑘
𝑂 − 𝑅𝑖𝑘𝑡𝑖1 + 𝑟𝑖1𝑘 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾: 𝐽𝑖𝑘 = −1 (A32) 

𝑠𝑖𝑚𝑘
𝐸 + 𝑟𝑖𝑚𝑘 = 𝑠𝑖𝑚𝑘 + 𝑟𝑖𝑚𝑘

𝐸 + ∑ 𝑞𝑖𝑚𝑣𝑘

𝑣∈𝑉

− 𝑅𝑖𝑘(𝑡𝑖𝑚
𝐸 − 𝑡𝑖𝑚) 

(A33) 

 (𝑖, 𝑚) ∈ 𝑆𝐴, 𝑘 ∈ 𝐾𝑣: 𝐽𝑖𝑘 = −1 

𝑠𝑖𝑚𝑘 + 𝑟𝑖(𝑚−1)𝑘
𝐸 = 𝑠𝑖(𝑚−1)𝑘

𝐸 + 𝑟𝑖𝑚𝑘 − 𝑅𝑖𝑘(𝑡𝑖𝑚 − 𝑡𝑖(𝑚−1)
𝐸 ) 

(A34) 
 (𝑖, 𝑚) ∈ 𝑆𝐴: 𝑚 > 1, 𝑘 ∈ 𝐾: 𝐽𝑖𝑘 = −1 

𝑠𝑖�̅�𝑘
𝐸 + 𝑟𝑖𝑘

𝑇 = 𝑟𝑖�̅�𝑘
𝐸 + 𝑠𝑖𝑘

𝑇 + 𝑅𝑖𝑘𝑡𝑖
+ + 𝑆𝑖𝑘

𝑀𝐼𝑁 
(A35) 

 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾: 𝐽𝑖𝑘 = −1 

𝑠𝑖𝑚𝑘, 𝑆𝑖𝑚𝑘
𝐸 ≤ 𝑆𝑖𝑘

𝑀𝐴𝑋 (𝑖, 𝑚) ∈ 𝑆𝐴, 𝑘 ∈ 𝐾: 𝐽𝑖𝑘 = −1 (A36) 

𝑠𝑖𝑚𝑘, 𝑠𝑖𝑚𝑘
𝐸 , 𝑟𝑖𝑚𝑘, 𝑟𝑖𝑚𝑘

𝐸 ≥ 0 (𝑖, 𝑚) ∈ 𝑆𝐴, 𝑘 ∈ 𝐾: 𝐽𝑖𝑘 = −1 (A37) 

𝑠𝑖𝑘
𝑇 , 𝑟𝑖𝑘

𝑇 ≥ 0 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾: 𝐽𝑖𝑘 = −1 (A38) 

inventory constraints (production ports):  

𝑠𝑖1𝑘 = 𝑆𝑖𝑘
𝑂 + 𝑅𝑖𝑘𝑡𝑖1 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾: 𝐽𝑖𝑘 = 1 (A39) 
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𝑠𝑖𝑚𝑘
𝐸 = 𝑠𝑖𝑚𝑘 − ∑ 𝑞𝑖𝑚𝑣𝑘

𝑣∈𝑉

+ 𝑅𝑖𝑘(𝑡𝑖𝑚
𝐸 − 𝑡𝑖𝑚) (𝑖, 𝑚) ∈ 𝑆𝐴, 𝑘 ∈ 𝐾𝑣: 𝐽𝑖𝑘 = 1 (A40) 

𝑠𝑖𝑚𝑘 = 𝑠𝑖(𝑚−1)𝑘
𝐸 + 𝑅𝑖𝑘(𝑡𝑖𝑚 − 𝑡𝑖(𝑚−1)

𝐸 ) (𝑖, 𝑚) ∈ 𝑆𝐴: 𝑚 > 1, 𝑘 ∈ 𝐾: 𝐽𝑖𝑘 = 1 (A41) 

𝑠𝑖�̅�𝑘
𝐸 + 𝑅𝑖𝑘𝑡𝑖

+ − 𝑟𝑖𝑘
𝑃𝑇 = 𝑆𝑖𝑘

𝑀𝐴𝑋 − 𝑠𝑖𝑘
𝑃𝑇 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾: 𝐽𝑖𝑘 = 1 (A42) 

𝑠𝑖𝑚𝑘, 𝑆𝑖𝑚𝑘
𝐸 ≤ 𝑆𝑖𝑘

𝑀𝐴𝑋 (𝑖, 𝑚) ∈ 𝑆𝐴, 𝑘 ∈ 𝐾: 𝐽𝑖𝑘 = 1 (A43) 

𝑠𝑖𝑚𝑘, 𝑠𝑖𝑚𝑘
𝐸 ≥ 0 (𝑖, 𝑚) ∈ 𝑆𝐴, 𝑘 ∈ 𝐾: 𝐽𝑖𝑘 = 1 (A44) 

𝑠𝑖𝑘
𝑃𝑇 , 𝑟𝑖𝑘

𝑃𝑇 ≥ 0 𝑖 ∈ 𝑁, 𝑘 ∈ 𝐾: 𝐽𝑖𝑘 = 1 (A45) 
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