15,967 research outputs found

    An exact general remeshing scheme applied to physically conservative voxelization

    Full text link
    We present an exact general remeshing scheme to compute analytic integrals of polynomial functions over the intersections between convex polyhedral cells of old and new meshes. In physics applications this allows one to ensure global mass, momentum, and energy conservation while applying higher-order polynomial interpolation. We elaborate on applications of our algorithm arising in the analysis of cosmological N-body data, computer graphics, and continuum mechanics problems. We focus on the particular case of remeshing tetrahedral cells onto a Cartesian grid such that the volume integral of the polynomial density function given on the input mesh is guaranteed to equal the corresponding integral over the output mesh. We refer to this as "physically conservative voxelization". At the core of our method is an algorithm for intersecting two convex polyhedra by successively clipping one against the faces of the other. This algorithm is an implementation of the ideas presented abstractly by Sugihara (1994), who suggests using the planar graph representations of convex polyhedra to ensure topological consistency of the output. This makes our implementation robust to geometric degeneracy in the input. We employ a simplicial decomposition to calculate moment integrals up to quadratic order over the resulting intersection domain. We also address practical issues arising in a software implementation, including numerical stability in geometric calculations, management of cancellation errors, and extension to two dimensions. In a comparison to recent work, we show substantial performance gains. We provide a C implementation intended to be a fast, accurate, and robust tool for geometric calculations on polyhedral mesh elements.Comment: Code implementation available at https://github.com/devonmpowell/r3

    Computação exata em geometria projetiva orientada e tratamento de degenerações

    Get PDF
    Orientador: Pedro J. de RezendeDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Não informado.Abstract: One of the greatest challenges in computational geometry today is to build the bridge between theory and practice which requires tools for the robust implementation of the algorithms that populate the literature. We attempt here to contribute a step in this direction. In the first part of this thesis, we present an extension to the technique of symbolic perturbation for oriented projective geometry. We describe the implementation of a library based on this technique which consists of geometric primitives sufficient for programming a large class of robust geometric algorithms, using exact arithmetic. In the second part, we describe the design of GeoPrO: a distributed programming environment for geometric visualization. We present an overview of its classes that allow for easy extensibility and portability. Due to a client-server architecture, comprised of a kernel, with multiple contexts, applications and visualizers, GeoPrO supports distributed execution over a heterogeneous network. Visualizers are currently available for the planar and the spheric models of the oriented projective geometry, running on Silicon Graphics workstations, while another is being implemented in Java for multi-platform support.MestradoMestre em Ciência da Computaçã

    Simple and Robust Boolean Operations for Triangulated Surfaces

    Full text link
    Boolean operations of geometric models is an essential issue in computational geometry. In this paper, we develop a simple and robust approach to perform Boolean operations on closed and open triangulated surfaces. Our method mainly has two stages: (1) We firstly find out candidate intersected-triangles pairs based on Octree and then compute the inter-section lines for all pairs of triangles with parallel algorithm; (2) We form closed or open intersection-loops, sub-surfaces and sub-blocks quite robustly only according to the cleared and updated topology of meshes while without coordinate computations for geometric enti-ties. A novel technique instead of inside/outside classification is also proposed to distinguish the resulting union, subtraction and intersection. Several examples have been given to illus-trate the effectiveness of our approach.Comment: Novel method for determining Union, Subtraction and Intersectio

    Engineering Art Galleries

    Full text link
    The Art Gallery Problem is one of the most well-known problems in Computational Geometry, with a rich history in the study of algorithms, complexity, and variants. Recently there has been a surge in experimental work on the problem. In this survey, we describe this work, show the chronology of developments, and compare current algorithms, including two unpublished versions, in an exhaustive experiment. Furthermore, we show what core algorithmic ingredients have led to recent successes

    Geometric Rounding and Feature Separation in Meshes

    Full text link
    Geometric rounding of a mesh is the task of approximating its vertex coordinates by floating point numbers while preserving mesh structure. Geometric rounding allows algorithms of computational geometry to interface with numerical algorithms. We present a practical geometric rounding algorithm for 3D triangle meshes that preserves the topology of the mesh. The basis of the algorithm is a novel strategy: 1) modify the mesh to achieve a feature separation that prevents topology changes when the coordinates change by the rounding unit; and 2) round each vertex coordinate to the closest floating point number. Feature separation is also useful on its own, for example for satisfying minimum separation rules in CAD models. We demonstrate a robust, accurate implementation

    Three-dimensional alpha shapes

    Full text link
    Frequently, data in scientific computing is in its abstract form a finite point set in space, and it is sometimes useful or required to compute what one might call the ``shape'' of the set. For that purpose, this paper introduces the formal notion of the family of α\alpha-shapes of a finite point set in \Real^3. Each shape is a well-defined polytope, derived from the Delaunay triangulation of the point set, with a parameter \alpha \in \Real controlling the desired level of detail. An algorithm is presented that constructs the entire family of shapes for a given set of size nn in time O(n2)O(n^2), worst case. A robust implementation of the algorithm is discussed and several applications in the area of scientific computing are mentioned.Comment: 32 page

    Intersection of paraboloids and application to Minkowski-type problems

    Full text link
    In this article, we study the intersection (or union) of the convex hull of N confocal paraboloids (or ellipsoids) of revolution. This study is motivated by a Minkowski-type problem arising in geometric optics. We show that in each of the four cases, the combinatorics is given by the intersection of a power diagram with the unit sphere. We prove the complexity is O(N) for the intersection of paraboloids and Omega(N^2) for the intersection and the union of ellipsoids. We provide an algorithm to compute these intersections using the exact geometric computation paradigm. This algorithm is optimal in the case of the intersection of ellipsoids and is used to solve numerically the far-field reflector problem
    corecore