212 research outputs found

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    New methods for digital halftoning and inverse halftoning

    Get PDF
    Halftoning is the rendition of continuous-tone pictures on bi-level displays. Here we first review some of the halftoning algorithms which have a direct bearing on our paper and then describe some of the more recent advances in the field. Dot diffusion halftoning has the advantage of pixel-level parallelism, unlike the popular error diffusion halftoning method. We first review the dot diffusion algorithm and describe a recent method to improve its image quality by taking advantage of the Human Visual System function. Then we discuss the inverse halftoning problem: The reconstruction of a continuous tone image from its halftone. We briefly review the methods for inverse halftoning, and discuss the advantages of a recent algorithm, namely, the Look Up Table (LUT)Method. This method is extremely fast and achieves image quality comparable to that of the best known methods. It can be applied to any halftoning scheme. We then introduce LUT based halftoning and tree-structured LUT (TLUT)halftoning. We demonstrate how halftone image quality in between that of error diffusion and Direct Binary Search (DBS)can be achieved depending on the size of tree structure in TLUT algorithm while keeping the complexity of the algorithm much lower than that of DBS

    Robust Phase Retrieval with Green Noise Binary Masks

    Full text link
    Phase retrieval with pre-defined optical masks can provide extra constraint and thus achieve improved performance. The recent progress in optimization theory demonstrates the superiority of random masks in phase retrieval algorithms. However, traditional approaches just focus on the randomness of the masks but ignore their non-bandlimited nature. When using these masks in the reconstruction process for phase retrieval, the high frequency part of the masks is often removed in the process and thus leads to degraded performance. Based on the concept of digital halftoning, this paper proposes a green noise binary masking scheme which can greatly reduce the high frequency content of the masks while fulfilling the randomness requirement. The experimental results show that the proposed green noise binary masking scheme outperform the traditional ones when using in a DMD-based coded diffraction pattern phase retrieval system

    Novel methods in image halftoning

    Get PDF
    Ankara : Department of Electrical and Electronics Engineering and Institute of Engineering and Science, Bilkent Univ., 1998.Thesis (Master's) -- Bilkent University, 1998.Includes bibliographical references leaves 97-101Halftoning refers to the problem of rendering continuous-tone (contone) images on display and printing devices which are capable of reproducing only a limited number of colors. A new adaptive halftoning method using the adaptive QR- RLS algorithm is developed for error diffusion which is one of the halftoning techniques. Also, a diagonal scanning strategy to exploit the human visual system properties in processing the image is proposed. Simulation results on color images demonstrate the superior quality of the new method compared to the existing methods. Another problem studied in this thesis is inverse halftoning which is the problem of recovering a contone image from a given halftoned image. A novel inverse halftoning method is developed for restoring a contone image from the halftoned image. A set theoretic formulation is used where sets are defined using the prior information about the problem. A new space domain projection is introduced assuming the halftoning is performed ,with error diffusion, and the error diffusion filter kernel is known. The space domain, frequency domain, and space-scale domain projections are used alternately to obtain a feasible solution for the inverse halftoning problem which does not have a unique solution. Simulation results for both grayscale and color images give good results, and demonstrate the effectiveness of the proposed inverse halftoning method.Bozkurt, GözdeM.S

    Perceptual error optimization for Monte Carlo rendering

    Full text link
    Realistic image synthesis involves computing high-dimensional light transport integrals which in practice are numerically estimated using Monte Carlo integration. The error of this estimation manifests itself in the image as visually displeasing aliasing or noise. To ameliorate this, we develop a theoretical framework for optimizing screen-space error distribution. Our model is flexible and works for arbitrary target error power spectra. We focus on perceptual error optimization by leveraging models of the human visual system's (HVS) point spread function (PSF) from halftoning literature. This results in a specific optimization problem whose solution distributes the error as visually pleasing blue noise in image space. We develop a set of algorithms that provide a trade-off between quality and speed, showing substantial improvements over prior state of the art. We perform evaluations using both quantitative and perceptual error metrics to support our analysis, and provide extensive supplemental material to help evaluate the perceptual improvements achieved by our methods

    Perceptual Error Optimization for {Monte Carlo} Rendering

    Get PDF
    Realistic image synthesis involves computing high-dimensional light transport integrals which in practice are numerically estimated using Monte Carlo integration. The error of this estimation manifests itself in the image as visually displeasing aliasing or noise. To ameliorate this, we develop a theoretical framework for optimizing screen-space error distribution. Our model is flexible and works for arbitrary target error power spectra. We focus on perceptual error optimization by leveraging models of the human visual system's (HVS) point spread function (PSF) from halftoning literature. This results in a specific optimization problem whose solution distributes the error as visually pleasing blue noise in image space. We develop a set of algorithms that provide a trade-off between quality and speed, showing substantial improvements over prior state of the art. We perform evaluations using both quantitative and perceptual error metrics to support our analysis, and provide extensive supplemental material to help evaluate the perceptual improvements achieved by our methods
    corecore