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A B ST R A C T

NOVEL M ETHODS IN IM AGE HALFTONING

Gözde Bozkurt
M.S. in Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Ahmet Enis Çetin 
July 1998

Halftoning refers to the problem of rendering continuous-tone (contone) images 
on display and printing devices which are capable of reproducing only a limited 
number of colors. A new adaptive halftoning method using the adaptive QR- 
RLS algorithm is developed for error diffusion which is one of the halftoning 
techniques. Also, a diagonal scanning strategy to exploit the human visual 
system properties in processing the image is proposed. Simulation results on 
color images demonstrate the superior quality of the new method compared to 
the existing methods. Another problem studied in this thesis is inverse halfton­
ing which is the problem of recovering a contone image from a given halftoned 
image. A novel inverse halftoning method is developed for restoring a contone 
image from the halftoned image. A set theoretic formulation is used where 
sets are defined using the prior information about the problem. A new space 
domain projection is introduced assuming the halftoning is performed ,with er­
ror diffusion, and the error diffusion filter kernel is known. The space domain, 
frequency domain, and space-scale domain projections are used alternately to 
obtain a feasible solution for the inverse halftoning problem which does not 
have a unique solution. Simulation results for both grayscale and color images 
give good results, and demonstrate the effectiveness of the proposed inverse 
halftoning method.
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ÖZET

YEN İ İMGE YA R ITO N LA M A  YÖ N TEM LER İ 

Gözde Bozkurt
Elektrik ve Elektronik Mühendisliği Bölümü Yüksek Lisans

Tez Yöneticisi: Prof. Dr. Ahmet Enis Çetin 
Temmuz 1998

Yantonlama, sürekli tonlu imgelerin sınırlı sayıda renk üreten basma ve 
gösterim cihazlarında üretilmesi problemidir. Bir yantonlama tekniği olan hata 
dağıtılmasında, uyarlanır QR-RLS algoritması kullanılarak yeni bir uyarlanır 
yantonlama yöntemi geliştirilmiştir. Ayrıca, imgeyi işlemede insan görme sis­
temi özelliklerini kullanan bir köşegen tarama stratejisi önerilmiştir. Renk­
li resimler üzerindeki benzetim sonuçları, önerilen yöntemin diğer yöntem­
lere göre yüksek kalitesini göstermiştir. Bu tezde çalışılan diğer bir prob­
lem, sürekli tonlu imgenin verilen yantonlu imgeden geri elde edilmesi prob­
lemi olan ters yantonlamadır. Yantonlu imgeden sürekli tonlu imge elde et­
mek için yeni bir ters yantonlama yöntemi geliştirilmiştir. Problem hakkında 
önceden bilinen bilgileri kullanarak tanımlanan kümelerle, küme teorisine 
dayalı bir formülasyon kullanılmıştır. Yantonlamanm hata dağıtılması ile 
yapıldığı, ve hata dağıtma süzgecinin bilindiği varsayılarak, yeni bir uzay tanım 
kümesi izdüşümü geliştirilmiştir. Uzay, sıklık, ve uzay-ölçek tanım kümeleri 
izdüşümleri kullanılarak tek bir çözümü olmayan ters yantonlama problemine 
bir olurlu çözüm elde edilmektedir. Gri ölçekli ve renkli imgelere önerilen 
yöntemin uygulanması, iyi sonuçlar vermiş, ve geçerliliğini göstermiştir.
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Anahtar Kelimeler: Renkli imge yantonlama, hata dağıtma, uyarlanır hata 
dağıtma, imge geri getirme, ters yantonlama, ters hata dağıtma, dış bükey 
kümelere izdüşüm.
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Chapter 1

INTRODUCTION

Halftoning refers to the problem of rendering continuous-tone (contone) images 
on display and printing devices which are capable of reproducing only a limited 
number of colors. This reduction in the number of colors causes a highly visible 
degradation in the quality of the image that naturally contains thousands or 
millions of colors. As a common solution to this problem, halftoning techniques 
are used.

In this thesis, a new adaptive signal processing algorithm is employed in the 
method of error diffusion which is a widely used halftoning technique. Various 
space filling curves to define the order of processing in error diffusion exist in 
literature. In this thesis, a diagonal space filling curve to exploit the human 
visual system properties in processing the image is proposed. Simulation re­
sults on color images are presented to demonstrate the superior quality of the 
proposed method compared to the other methods.

Inverse halftoning is the problem of recovering a contone image from a 
given halftoned image. In this area, less research has been performed than 
halftoning. In this thesis, a novel inverse halftoning method is proposed to 
restore a contone image close to the original contone image. A set theoretic 
formulation is used where three sets are defined using the prior information 
about the problem. A new space domain projection is introduced assuming



the halftoning is performed with error diffusion, and the error diffusion filter 
kernel is known. The space domain, frequency domain, and space-scale domain 
projections are used alternately to obtain a feasible solution for the inverse 
halftoning problem which does not have a unique solution. Simulation results 
for both grayscale and color images are presented.

In this Chapter, a survey on halftoning and inverse halftoning literature is 
given. Finally, the contribution and scope of this thesis is presented.

1.1 Motivation

Increasing demand for digital display of images on any of a wide variety of 
devices, and the increasing use of halftone printers to make hard copy outputs 
are given as the motivation for the research that resulted in part of this thesis.

In most computer color displays, the images are stored in a video memory. 
There, usually they are first recorded as full color images, where each color 
pixel is represented by 8 or 12 bits for each of the three channels. However, 
supporting storage of these full color images requires a high cost for high speed 
video memory. Many color display devices therefore reduce memory require­
ments by allocating 8,12, or 16 bits of video memory for each color pixel, thus 
allowing 2̂ , 2̂ ,̂ or 2̂ ® number of colors to be displayed simultaneously. Then, 
a palletized image which contains only colors from a limited palette, is stored 
in video memory and rapidly displayed using look-up tables [1]. However, di­
rect quantization from a very large set of colors to a very limited set of colors 
produces contouring effects in the output image. To prevent this problem, 
halftoning methods are used.

Printing devices are classified as contone and halftone printers [1]. Pho­
tography is the best known process that produces contone images. Using 
photochemical methods which mimic photography, contone printing can be 
realized [1]. However, since they are rather expensive, most printers used are 
based on the halftoning technique. The reproduction of images in all news­
papers, magazines, books, other mass printed media are printed with digital



halftoning technologies. This technology creates an extremely large number of 
pictorial images daily [2].

Color output devices such as halftone color printers and palette-based dis­
plays are capable of producing only a limited number of colors, whereas the 
human eye can distinguish around ten million colors under optimal viewing 
conditions [1]. Therefore, today, digital halftoning plays a key role in almost 
every discipline that involves printing and displaying.

Halftoning has enormous practical value, and a considerable amount of re­
search has been performed in this area. The inverse problem of reconstructing a 
contone image from its halftone version has also a large number of applications 
but much less research has been performed. This fact is the motivation for the 
research that resulted in the second part of this thesis. Contone images are 
needed instead of halftone in order to perform typical image processing tasks 
such as scaling, enhancement, tone correction, sharpening, decimation, inter­
polation, extrapolation, rehalftoning, compression, edge detection, recognition, 
linear or nonlinear filtering.

1.2 Halftoning

The eye perceives only a local spatial average of the color spots produced by 
a printing device, and is relatively insensitive to errors made in high frequen­
cies in an image [1]. Halftoning algorithms, therefore aim to preserve these 
local averages while forcing the errors between the contone image and the 
halftone image to high frequency regions. The existing halftoning techniques 
can be broadly classified as dithering techniques, error diffusion techniques, 
optimization-based halftoning techniques and hybrid techniques. An overview 
of literature in each of these classes is given next.



1.2.1 Dithering Techniques

Random dither, or white noise dithering is historically the first attempt to 
reduce the visible artifacts of direct quantization. The basic idea in dithering 
methods is thresholding each pixel value after adding noise to each pixel. It is 
also known as Roberts’ pseudo-noise technique, and it works by adding white 
noise to each pixel before quantization [3]. Roberts pointed out that dither does 
not increase the noise energy but simply redistributes the quantization noise 
to make it less visible. In frequency domain, the error in coarse quantizing a 
contone level is low in frequency and highly visible, whereas halftoning produces 
errors that are higher in frequency and therefore less visible.

The second class of dithering techniques employ dither matrices that quan­
tize the image by pixelwise thresholding. In conventional digital color halfton­
ing for printers, the image is decomposed into cyan, magenta, yellow, and 
black separations which are halftoned independently [1]. Black colorant is in­
troduced to produce denser blacks, reduce ink usage, and to conserve more 
expensive colorants. The halftoning for each separation is done by comparing 
each pixel value with a deterministic, spatially periodic dither array. Pixels 
for which the image exceeds the value in the corresponding dither matrix are 
turned on. Overlaying screens of color components with the same orientation 
causes the problem of registration. Some variation in the alignment of these 
color screens caused by the mechanical systems used in movement of the re­
production medium produces an artifact called moire patterns [1]. The effect 
is manifested as color shifts. Therefore, rotated screens are used where the 
rotation angle is chosen so as to minimize the occurrence and visibility of low 
frequency interference moire patterns. The most visible black screen is oriented 
along a 45° angle, along which the eye is least sensitive. The yellow, magenta, 
and cyan screens are located along 0°, 15°, and 75°, respectively [4].

Ordered dither algorithms are generally classified as two types: clustered- 
dot dither, and dispersed dot dither [5]. In clustered dot dither, the lower 
threshold values are centered in the pattern, causing a central dot that in­
creases in size as the pixel value increases. In the dither matrix, the thresholds 
that are close in value are near each other so that for a uniform image, the 
halftoning scheme generates a grid of halftone dots consisting of clusters of on



pixels. As the image value increases, the size of the clustered dots increases. 
In dispersed dot dither, the lower threshold values are scattered throughout 
the pattern, causing small dispersed dots that increase in number as the signal 
value increases [6].

Clustered dot patterns are insensitive to most printing distortions such as 
dot overlap, ink spreading, and reproduce well on printers that are incapable 
of reproducing isolated pixels. Therefore rotated clustered dot dithering is 
widely used for color printing. However, when the image is to be produced on 
a device that can successfully display every isolated pixel, the preferred choice is 
dispersed dot dither halftoning which maximizes the use of resolution [5]. For 
displays, alternate dither matrices that produce dispersed dots with greater 
spatial resolution are applied.

The ordered dithering techniques are attractive in the sense that they are 
very simple to implement, and computationally inexpensive because they re­
quire pixelwise operations. However, the major disadvantage of dithering is 
that it gives rise to regular error patterns due to the regular pattern of the 
noise introduced at different pixel locations.

1.2.2 Error Diffusion Techniques

The problems of moire patterns and color shifts created by misregistration 
of color screens in ordered dither is relatively eliminated by the error diffu­
sion algorithm, that is first introduced by Floyd and Steinberg [7], which re­
quires neighborhood operations. They proposed an algorithm which works by 
distributing the quantization error of the current pixel to neighboring pixels. 
Typically, at each pixel, the weighted sum of previous quantization errors is 
added to the current pixel, and the corrected sum is quantized to produce the 
output pixel. These weights form an error diffusion filter. The error diffusion 
aims to preserve the local average value of the image, therefore a unity gain 
lowpass finite impulse response (FIR) filter is used for distributing the error.

Error diffusion was first developed for grayscale images. For color images, 
error diffusion can be applied to each color component independently, which is



called scalar error diffusion, or as in [8], a color pixel can be error diffused in a 
vectorized manner.

Error diffusion works by shaping the error spectrum. In this method, the 
error is concentrated in high frequencies. This is suitable to the human eye 
which is less sensitive to high frequencies. Ulichney [5] proposed an error 
diffusion filter with randomized weighting coefficients to shape the display error 
spectrum to have mostly high frequency content, named as Blue Noise. He 
examined the spectral characteristics of the output error, and demonstrated 
that blue noise is less noticeable to the human eye than errors compared to the 
white power spectrum.

Error diffusion technique is still an active area of research. Variations on 
this technique are employed by many researchers.

Some directional artifacts seen in error diffusion are due largely to the 
traditional raster of processing [5]. Previous approaches for improving error 
diffusion employed various choices of space filling curves to define the order of 
processing, such as serpentine curves [5], Peano curves [9], random space filling 
curves [10]. In [10], purpose of randomness is to erase regular patterns arising 
usually in uniform intensity image regions. A disadvantage of this method is 
large memory consumption which is overcome by performing the halftoning for 
blocks of the image separately. Witten and Neal [9] used an error filter with 
one deterministic weight, and processed the image on a Peano curve.

In [11], error diffusion is modified by incorporating a color printer model 
that accounts for dot overlap distortion in printers. A human visual system 
model in the form of its Modulation Transfer Function (MTF) is incorporated 
into error diffusion in [12].

In contrast to deterministic error filter kernels, some recent research em­
ployed dynamically adjusting the error filter kernel using adaptive signal pro­
cessing techniques. Akarun, Yardımcı, and Çetin [8] have used a vectorized 
error diffusion approach, and updated the error diffusion filter coefficients 
adaptively. Wong [13] minimizes a local frequency-weighted error criterion 
to adjust the error diffusion kernel dynamically using the well known least- 
mean-square(LMS) algorithm [14]. He also proposed an embedded multilevel



error diffusion algorithm to enable rendition at several resolutions which can 
be useful for progressive transmission.

Sequential nature of the error diffusion technique means that the errors get 
propagated in the direction the image is scanned, which can result in subtle 
artifacts. An algorithm in which the errors are diffused isotropically in all 
directions would be preferred.

For single pass processing of the image, error diffusion filter kernel is causal 
which implies that the filter is asymmetric. This asymmetry causes visible 
low frequency wormlike artifacts in binary error diffusion. Symmetric error 
diffusion neural networks have been proposed for gray scale images [15]. An all 
optical implementation of the symmetric error diffusion algorithm is given in 
[16]. One of the advantages of this implementation is its reduced computational 
complexity, and storage requirements, and high speed.

To allow usage of a non-causal error filter, a multi-pass error diffusion is 
proposed in [17], where the quantization error of one iteration (pass) is collected 
and used during the next iteration as quantization error of the future pixels. 
The error filter in this case is preferably chosen as a zero-phase filter so that 
feedback is added to the input image without affecting the phase to retain 
sharp edges. The disadvantage of this algorithm is its iterative nature.

Kolpatzik and Bouman [18] developed an optimization criterion for the 
design of an error diffusion filter, based on a model for the human visual system 
to include the effects of the monitor modulation function and human visual 
modulation transfer function combining the models in [6]. They also developed 
a locally dithered error diffusion algorithm combining the idea in random dither 
and error diffusion.

A fuzzy error diffusion method for color images is presented in [19] which 
makes use of membership functions indicating the location of a pixel with 
respect to each quantization color. This information is used to control the 
amount of error to be spread thus preventing the accumulation of errors.



Another modification to error diffusion of grayscale images proposed in [20] 
is introducing an input dependent threshold into the process to decrease or 
increase edge enhancement in the algorithm.

Most of the error diffusion methods existing in the literature are developed 
for halftoning of grayscale images. Only a few of the methods mentioned are 
proposed for color images where most are not efficient in producing a high 
quality color image output. Another disadvantage of these color error diffusion 
methods is their substantially high computational complexity.

1.2.3 Optimization-based Halftoning Techniques

The problem of halftoning can be formulated as an optimization problem that 
minimizes an error metric between the continuous tone original image and 
its halftone version. These techniques can be referred as optimization-based 
halftoning techniques which are iterative, and requires significantly more com­
putation than error diffusion based techniques, and ordered dither techniques. 
In this approach, the halftoning problem is posed as an optimization prob­
lem which maximizes the visual similarity between the original image and its 
halftone version.

In these methods, a distortion measure is defined, and some methods em­
ploy visual models or printer models in the definition of these measures. There­
fore, they are also referred as model-based halftoning techniques. Pappas [21] 
included both a printer model and a visual model. The simple eye model in [22] 
includes a memoryless nonlinearity followed by a filter which is chosen as the 
MTF referring to the spatial frequency sensitivity of the eye [23]. An optimal 
halftone image is found by minimizing the squared error between the output of 
the cascade of the printer and visual models in response to the halftone image 
and the output of the visual models in response to the original contone image. 
Two dimensional least-squares solution is obtained by iterative optimization 
techniques. A distortion measure in the frequency-domain, frequency weighted 
mean-squared-error criterion between the continuous-amplitude input image 
and discrete-amplitude version, is proposed, and an equivalent approach based



on neural networks is suggested in [15]. Both a space-domain distortion mea­
sure and a frequency-domain distortion measure are proposed in [24], where 
the minimization procedure is performed blockwise in the image. In frequency- 
domain optimization, the weighting function is the MTF proposed in [23].

Similarly, an error metric related to the total generated error between the 
contone and halftone images is defined in [25]. The total error is filtered with 
contrast sensitivity function describing the visibility of signals as a function of 
the spatial frequency because the errors which are not visible are of no interest. 
A descent-type algorithm, and a simulated annealing algorithm are used for the 
optimization problem in [25]. Usage of genetic algorithms is proposed in [26] 
for optimization-based halftoning in a similar way.

Disadvantages of optimization-based methods for halftoning is that there 
are many local optima, the methods are iterative, and they require substantially 
high computational power. For color images, processing requirements further 
increase.

1.2.4 Hybrid Schemes

Hybrid schemes that combine different aspects of halftoning methods are pro­
posed in the literature.

Blue noise halftoning that combines the speed of dithering techniques with 
the quality of error diffusion techniques is the application of large dither ma­
trices produced for obtaining blue noise characteristics [27]. For color images, 
independent blue noise masks are used for each color component.

A number of researchers considered the problem of selecting an optimal 
color palette and the optimal mapping of each pixel of the image to a color from 
the palette in a unified manner. Orchard and Bouman [28] proposed a new error 
diffusion algorithm using an image specific color palette having a binary tree 
structure for efficient implementation. Similarly, in [29,30], dithering process 
is embedded in the quantization process. In [29], the cluster splitting strategy 
of [28] is modified at the leaves so that a pair of leaves after the split are



displaced in opposite directions to span a wider color space. In [30], palette 
colors in color space and color pixels in the color image are alternately updated. 
At each pixel, the palette color to which the pixel belongs is updated according 
to the competitive learning rule. Afterwards, error diffusion step is performed.

Halftoning algorithms based on multiresolution, pyramidal structure, for 
grayscale halftoning are proposed in [31,32]. In [31], at each pyramid level, 
the output binarized image is compared with the original grayscale image over 
a successively larger window of pixels, and some binary pixels are modified in 
order to reduce a weighted averaged error. Similarly, a multiscale error diffusion 
is proposed in [32] where the algorithm begins with the lowest resolution image 
at the top of the image pyramid, and proceeds by always selecting the quadrant 
with the highest average intensity.

1.3 Inverse Halftoning

Inverse halftoning is the problem of recovering a contone image from a given 
halftone image. This inverse problem can be thought as a restoration problem 
or a denoising problem since halftoning can be considered as a process that 
degrades the original image by introducing noise into it. Halftoning is a many- 
to-one mapping, therefore inverse halftoning problem does not a have a unique 
solution. Research in this area is considerably less than that is done for forward 
halftoning.

The existing inverse halftoning methods employ space-domain operations, 
frequency-domain operations, or both, or only space-scale domain operations. 
Literature on inverse halftoning contains research only for recovering a gray­
scale image from its binary halftone version. We give an overview of these 
methods next.

The simplest approach is lowpass filtering the halftone image to remove 
the high-frequency components. Since in error-diffused images, the errors are 
generally concentrated in the high frequencies, this approach seems reason­
able. Different lowpass filters have been used such as halfband lowpass in [33],
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Gaussian lowpass and lowpass filtering based on singular value decomposition 
(SVD) [36]. However, lowpass filtering alone does not work well since this 
also destroys high-frequency information of the original image. This approach 
corresponds to ignoring the spatial constraints, and enforcing only frequency 
constraints.

A projection algorithm, which is essentially an error diflfusion with an addi­
tional inverse quantization step is proposed in [33]. Error diffusion is performed 
at each pixel starting with an approximation of the contone image, e.g., lowpass 
filtered version of the halftone image. The input pixel is adjusted so that the 
corrected pixel value at the input of the quantizer is quantized to the desired 
halftone value at the output. This projection in inverse quantization process 
is performed by maximum a posteriori probability (MAP) projection. A sim­
ilar method [34], based on a MAP estimator is proposed where a constrained 
optimization is solved using iterative techniques.

The method of Projection Onto Convex Sets (POCS) is used in [35, 36] 
where information known about the problem is expressed in the form of two 
constraint sets. Space-domain projection using the first constraint set, then 
frequency-domain projection using the second constraint set, are performed 
alternately, to find an image invariant under both. The first set is the set 
of all contone images which when halftoned give the desired halftone image, 
the second is the set of all images bandlimited to a certain band. The method 
in [35] is designed for recovering a contone image from an image halftoned with 
ordered dithering method. The frequency-domain projection is performed with 
lowpass filtering, and the space-domain projection is performed with making 
the minimum change necessary to each image pixel after comparison with the 
screen function.

Another method using the idea of POCS to reconstruct images from a X] A- 
based error diffused image, is proposed in [36]. A linear SVD based transform 
or a linear Gaussian filtering are used for frequency-domain projection. For 
the space-domain projection, they define a computational procedure for error 
diffusion by slightly modifying the error diffusion to reduce the complexity 
of their reconstruction algorithm. Using this, they propose a matrix space- 
domain description of the error diffusion encoder. However, the computational 
cost of the projection is very high because the algorithm turns out to be a
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linearly constrained Quadratic Programming (QP) problem that tries to solve 
512 X 512 matrix equations for an image of this size. They suggested solving 
this problem by solving a number of QP subproblems of size Lq p , i.e., size of 
the blocks, rather than solving one QP problem of size N'̂ .

In these techniques, the halftoning process is assumed to be known a priori. 
In case of ordered dither halftone images, an algorithm to estimate the screen 
function is proposed in [35]. Similarly, for error-diffused images, Wong [33] 
suggested a method to estimate the error diffusion kernel posing the problem 
as a system identification problem encountered in adaptive signal processing.

Xiong, Orchard, and Ramchandran [37] proposed an inverse halftoning 
scheme using wavelets. The idea behind the wavelet decomposition of a 
halftone image is to selectively choose useful information from each subband. 
This approach can be considered as a space-scale domain method. An explicit 
edge detection based on cross-scale correlation of the highpass wavelet images 
is done to perform spatially varying filtering of the halftone image. In this way, 
background halftoning noise is removed while important edge information is 
preserved in the bandpass bands. Furthermore, no a priori knowledge about 
the halftoning process is assumed.

Another wavelet-based inverse halftoning method is proposed in [38], where 
after subband decomposition of the halftone image, halftone noise in the sub­
bands is eliminated by spatial and frequency selective processing. Frequency 
selective processing corresponds to interband operations, and comparison of 
the magnitudes of the coefficients at different resolution levels but the same 
spatial location, then clipping some coefficient values accordingly. Spatial pro­
cessing corresponds to intraband filtering, i.e., oriented filtering tailored for 
each subband to preserve edges along its orientation.

In [39], a simple table-lookup method referred as a nonlinear decoder to 
convert error-diffused images back to the grayscale domain is implemented. 
Blocks of size 3 x 3 are used as an index into a table consisting of 512 distinct 
binary patterns. This look-up table is built by calculating an output gray value 
for each index (3 x 3) in the training sequence. Then each halftoned pixel is 
decoded based on its 3 x 3 neighborhood which gives the grayscale output from 
the table. This method is simple, however it needs a training phase to obtain
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the look-up table. Furthermore, the reconstructed image quality is relatively 
lower.

1.4 Contribution and Scope

The first contribution of the thesis is the introduction of a new adaptive error 
diffusion method for color images. A rotation based Recursive Least Squares 
algorithm is used in the prediction where the error diffusion filter coefficients 
are updated adaptively. Both scalar and vector implementations of the pro­
posed method is developed. The scalar implementation processes each color 
component of the color image separately whereas the vector implementation 
uses all three color components in the prediction of each color component. Also 
a diagonal scan is used in processing the image to exploit the relative insen­
sitivity of the human visual system to diagonal orientations. The proposed 
method produces high quality halftone images with a very limited number of 
colors.

The second contribution of the thesis is the introduction of a set theoretic 
inverse halftoning method which restores the continuous tone image back from 
its halftone version. A new space-domain projection is proposed which defines a 
set for each pixel, and the projection is performed at each pixel using the a priori 
information that the halftoning is performed with the error diffusion method, 
and the error diffusion filter kernel is known. In addition, frequency and space- 
scale domain projections are used alternately with the proposed space-domain 
projection to find a feasible solution for the inverse halftoning problem that has 
no unique solution. Furthermore, the space-domain projection is extended for 
the case of multilevel error diflPusion encoding. This extension is in turn used 
for restoration of color images from their halftoned versions. The proposed 
inverse halftoning for color images may be viewed as a first attempt in this 
area.

Chapter 2 introduces the new adaptive error diffusion method that results 
into higher quality output images than that of Floyd-Steinberg’s method and
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the error diffusion with Least Mean Square adaptation. Extensive simulation 
results are given to show the performance of the proposed method.

Chapter 3 introduces the proposed inverse halftoning method with a new 
space-domain projection. The simulation results of the proposed method is 
compared with those of the state-of-the-art inverse halftoning methods existing 
in the literature, based on their Peak Signal-to-Noise-Ratio’s.

Chapter 4 gives the conclusions and future work.
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Chapter 2

A N  AD A P TIV E  ERROR  

DIFFUSION M ETHOD

In this chapter, a new error diffusion method is presented in which the adaptive 
Recursive Least Squares (RLS) algorithm is used for prediction. Also, a diago­
nal scan is used in processing the image to take advantage of the human visual 
system. The simulation results of the proposed method is compared with that 
of the Floyd-Steinberg’s method, and the adaptive error diffusion with LMS al­
gorithm both with raster scan and diagonal scan of the image. The simulation 
studies show the superiority of the proposed adaptive error diffusion method.

2.1 Diagonal Error Diffusion

Block diagram of the standard error diffusion technique is given in Figure 2.1. 
Usually, the image is processed in a raster scan fashion, and each input color 
pixel x(s i ,S 2 ) is a 3 X 1 vector, where the index (si,S2 ) denotes the pixel 
location in the image. Let us first introduce new notation to simplify the 
discussion. In the usual raster scan, the index s is given by s =  siM  -I- S2 ,
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where M  is the number of horizontal pixels in the image. The current pixel 
X  (s) together with the diffused error is quantized. The resultant image y  (s ) 

is the dithered image.

Here, Q  is the quantizer, and h is the error diffusion filter. Some well- 
known error diffusion filter masks [7,40] are shown in Figure 2.2 where ·  denotes 
the origin. These masks determine the support of the error diffusion filter. A 
common characteristic of these filters is that they are causal, i.e. their region of 
support is wedge-like to ensure that these filters can be applied in a sequential 
manner [41]. The filter coefficients are deterministic, lowpass in nature, and 
add up to 1 so that errors are neither amplified nor reduced.

.5 3
(— )16 7

Floyd - Steinberg

1 3 5 3 1
3 5 7 5 3

Jarvis, Jiidice and Ninke

Figure 2.2: Error Diffusion Filter Masks: (a) Floyd-Steinberg, (b) Jarvis, Ju- 
dice and Ninke.

A weighted sum of the previous quantization errors in the window, and 
the current pixel x  (s) are added to form u (s), and this value is quantized to 
obtain the dithered pixel value as follows:

u{s)  — x{s )  +  " ^ h { s  — k)e (k)
k<s

e (s) ^  u ( s ) - y  (s)

y(s )  =  Q (u (s ))

(2.1)

(2.2)

(2.3)
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where k < s corresponds to a causal error diffusion mask, and e (s) is the 
quantization error. The error between the original input pixel and the output 
pixel is defined as the output error, Soutis) =  x  (s) -  y (s) which can be 
expressed as

e out{s) =  e (s) -  h {s -  k)e (k) (2.4)
k<s

Let the 2-D Discrete-Time Fourier Transform of eout(s) to be

Eoutiw)^  ^  (2.5)

where w is the 1-D index for w = (wi,W2 ) for simplicity, and Z  is the set of 
all integers. From (2.4), the output error spectrum becomes

E  out{w) ^  E  {w)[I - H { w ) ] (2.6)

where H  (w) is the frequency response of the error diffusion filter. If the 
quantization error spectrum is white, the output error spectrum can be shaped 
by the (I — I f  (w)) filter. Since I f  (w) is lowpass, ( f  — H  (w)) is a highpass 
filter. This is a favorable feature of the error diffusion algorithm because the 
human visual system is less sensitive to high frequency components in an image. 
Furthermore, the error diffusion filter coefficients sum to 1, i.e., f l  {0) =  1. 
This leads to E  o«t(0) =  0, and implies that the mean value of the quantized 
image is matched to the original image mean.

The raster scan used in error diffusion causes vertical or horizontal artifacts, 
and regular patterns that arise especially in uniform intensity regions. It is well- 
known that human visual system is less sensitive to diagonal errors compared 
to the vertical or horizontal errors. To take advantage of this fact we scanned 
the image diagonally. In this way, the error is diagonally diffused, and the 
resulting artifacts are less bothersome. Causal prediction windows shown in 
Figure 2.3 are used in the error diffusion algorithm. Here, we aim to break 
up the horizontal and vertical directionality of the possible error patterns, and 
force the accumulation of the error to be in diagonal orientation to which the 
human eye is less sensitive.

17



Figure 2.3: Diagonal Scanning: dots correspond to the current pixel, and the 
L-shaped window contains the previous pixels.

2.2 A  New Adaptive Error Diffusion

The error diffusion filter pla.ys an important role in shaping the output error 
spectrum. The error filter should be designed so that the output error, eout{s), 
is the least noticeable to a human observer [18]. In contrast to deterministic 
error diffusion filters, recent algorithms use the optimum filter coefficients for 
a given image, or update the coefficients adaptively using Least Mean Square 
(LMS) type adaptive algorithms [8,13].

As in standard dithering, in error diffusion, the aim is decorrelate the quan­
tization noise, the difference between the input and output of the quantizer, 
from the input signal. This results into a whiter error spectrum, so the er­
rors are less visible and less disturbing for the observers. This requires the 
prediction of the quantization error of the current pixel from the previous 
quantization errors. The prediction aims to minimize the energy of the output 
error eout{s), as shown in Figure 2.4, as follows:

F;[))e„„,(5)]p] = F;[)|x(s)-y(60in.

This is equivalent to minimizing

B ( | | e W - E '> ( s - * ) e W lP ] .
k<s

(2.7)

(2.8)

Then the optimal filter coefficients are chosen as the miniraizer of (2.8). Dif­
ferentiating (2.8) with respect to h{i),  and setting the results to zero, the 
following set of linear equations are obtained:

E[e (s)e'^(s -  i)] =  ^ (s -  k)E[e (s)e^(s -  i)],
k<s

I <  S (2.9)
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Figure 2.4: Prediction of the quantization error.

The error diffusion coefficients h can be obtained by solving the system 
of equations in (2.9). An estimate of the covariance matrix E[e (s)e^(s· — i)] 
can be obtained from the quantization error statistics of the image. However, 
since a typical image does not have stationary characteristics, this approach 
does not yield satisfactory results.

Considering the fact that the image signal characteristics are generally non- 
stationary, that is significant difference exists in the statistics of different re­
gions of the image, an adaptive algorithm is used in the minimization of the 
output error sequence. In this thesis, in order to achieve better prediction than 
the LMS algorithm which was used in some earlier work, we considered using 
an RLS-type adaptive algorithm. The LMS provides an approximate solution 
to the Least Squares(LS) problem that arise in many applications of signal 
processing. Two different classes of methods have been developed for solving 
these problems: the LMS is based on the gradient descent technique, and the 
RLS algorithm uses exponentially weighted LS criterion.

The RLS algorithm provides an exact solution of the LS problem at each 
time step. There are various RLS algorithms, where most widely used are 
the Fast RLS algorithms such as Fast Transversal filters(FTF) [42]. These 
RLS algorithms were preferred because they provide optimal weights at ev­
ery sample, are faster than LMS-based techniques in convergence, and can be 
numerically more stable. However in the fast RLS algorithm, the input data 
vector is updated by a shift at each time step, and in the case of error diffu­
sion, the L-shaped window contains the pixels used in the prediction where the 
data vector is altered by a 2-D shift. Therefore, fast RLS algorithms are not 
exactly suitable for a linear combiner implementation which is the prediction 
problem of the current quantization error. Recently, LS problems are solved
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using rotation-based methods, based on updating the QR-decomposition of 
the input data matrix. These rotation-based algorithms are more robust to 
low precision arithmetic that reduce the implementation costs whereas non­
rotation-based RLS algorithms may break down [43]. QR algorithms offer fast 
convergence behavior and better tracking ability. The QR-linear combiner is 
well suited for the prediction problem in error diffusion. The complexity of the 
QR-RLS adaptation is Order(A^^), where LMS adaptation has a complexity of 
Order(A^). N  is the number of pixels in the prediction window, which is chosen 
as =  4 as in Floyd-Steinberg’s method. Therefore, the complexity of the 
QR-RLS algorithm does not increase much.

The basic linear LS estimator is the linear combiner. The problem of pre­
diction of the quantization error in error diffusion can be implemented as QR- 
linear combiner. Using a linear combination of the previous quantization error 
signals, we want to estimate the desired signal e (s). The previous quantization 
errors e { s  — i) are represented as e ¿(s). The estimate is e (s) =  /i^ (s)ep(s), 
where ep(s) =  [e i ( s ) , ..., e denotes the Â  x 1 data vector and h{s)
denotes the weight vector. The purpose of recursive LS estimation is to choose 
h (s) so as to minimize the sum of exponentially weighted squared errors.

^  A* "“[e (m) -  h'^\s)ep{rn)f (2.10)
m=l

The factor 0 A < 1 is called the forgetting factor. Its aim is to forget the 
data in the distant past to have a better tracking capability in a nonstationary 
environment.

The summary of the QR-RLS algorithm is given as follows;

R{0)  =  V s i  N,'i^i0) =  0 
for s =  1,2 ,. . .

Q (s)
v/Xi2(s - l )  V ^ r ( 5 - 1 )

ep(s) e(5) 0 ’̂

7 (5) =  n<^os^i(s)
i= l

f {s)  =  f { s) j {s )

R{s)  r (s )  R-'^\s) 

O’̂ (s) f(s)
N

2 0



h{s)  =  h { s - l ) - g { s ) f { s )

A detailed discussion of the QR-RLS algorithm can be found in [43].

In the implementation of the QR-Linear combiner, the previous quantiza­
tion errors in the causal so-called half plane window are used as inputs, and 
the current quantization error is used as the desired signal. In the scalar imple-

Figure 2.5: QR Linear Combiner, Scalar Implementation.

mentation of the algorithm, the red, green and blue components of each pixel 
are processed separately by running three QR-RLS algorithms in parallel, each 
giving the output for each one of the color components red, green, blue, as 
shown in Figure 2.5. The number of pixels in the prediction window of each 
color component is chosen as N — 4 in our implementations.

In the vector implementation, all three color components of the previous 
quantization errors are used in the prediction of the each component of the 
current quantization error, as in Figure 2.6. Again, three parallel QR-RLS 
algorithms are run for each of the color components. Here, the aim is to use 
the correlation among the color components. The number of pixels in the 
prediction window, is chosen as =  12 in the vector implementation for each 
color component.
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Figure 2.6: QR Linear Combiner, Vector Implementation.

2.3 Simulation Results

In this section, we demonstrate the effectiveness of our error diffusion algorithm 
using three specially selected color images. To render the illusion of a color 
ramp, two photographs Sunset image, and Minnesota image are used. These 
images are good test images with slowly varying color regions. Third test image 
is the well-known Peppers image, which has both slowly varying regions, and 
sharp edges.

We implemented both the scalar and vector versions of the RLS-based adap­
tive error diffusion algorithm. We give the results of the scalar implementation. 
The results of the new algorithm is compared with that of the Floyd-Steinberg’s 
method, and the adaptive error diffusion with LMS algorithm both with raster 
scanning and diagonal scanning of the image. The quality measure for the re­
sulting images are the observer’s evaluations and whiteness comparison of the 
power spectrum of the quantization noise images.
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The step size parameter n used in the implementation of the error diffusion 
with LMS is set to 0.95. A scaling coefficient of 0.9 is used which scales the 
error diffusion filter coefficients after each update. This means that all the 
errors are not fed back through this filter but only 90% of them are fed back 
to the input pixel before quantization. The forgetting factor parameter A in 
error diffusion with QR-RLS adaptation is chosen as 0.95 so that errors in the 
past are deemphasized, and the algorithm adapts to the local variations in the 
image.

VVe first give the simulation results for the Sunset image. The original image 
is shown in Figure 2.7, and the quantized image with median cut algorithm [44] 
to 16 colors is given in Figure 2.8, respectively. The quantized image shows 
the contouring effect very clearly in sea and sky regions, and false contours 
appearing because of the small number of available colors to represent these 
slowly varying color changing regions. The error diffused image with Floyd- 
Steinberg filter is shown in Figure 2.9 where contouring is a little improved, 
but the performance is poor in edge regions, i.e. the region where the sky and 
sea merge. The color impulses in the form of dots of a color emerging on a 
different colored background are visible. The error diffused images by adaptive 
algorithms LMS and QR-RLS adaptation using raster scan are shown in Fig­
ure 2.10 and Figure 2.11 respectively. The LMS-based adaptive error diffusion 
shows improvement when compared to that of the Floyd-Steinberg’s method 
in reducing the color impulses and the behavior in edge regions. However, as 
can be observed in Figure 2.11, nearly all of the problems of quantization and 
dithering are removed in QR-RLS based adaptive error diffusion. The sky and 
sea merge naturally, and the smooth transitions from one color to the next 
are successfully reproduced as in the original image. The error diffused im­
age by LMS adaptation with diagonal scan is shown in Figure 2.12. There’s 
slight improvement in removing the color impulses. The error diffused image 
by QR-RLS adaptation with diagonal scan is shown in Figure 2.13. These 
figures show that QR-RLS based adaptive error diffusion with both raster and 
diagonal processing are the most successful methods.

The areas of slowly varying regions, or areas of uniform intensity in an 
image are the most problematic regions for a halftoning algorithm. Therefore,
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a good measure for the quality of a halftoning technique is the ability to render 
these areas. In this context, the proposed method gives the best result.

As a performance measure, we use the power spectra of the quantization er­
ror as pointed out in [18]. We estimate the power spectrum of the quantization 
error for the resulting images by Welch’s periodogram averaging method [45]. 
We compare estimates for LMS with raster scan, and with diagonal scan, QR- 
RLS with raster scan and diagonal scan, and Floyd-Steinberg’s method.

In Figure 2.14, the spectrum of the quantization errors in a horizontal 
line of the Sunset image is shown. Since it is difficult to plot 2-D spectrum, 
the spectrum of a line of the image is shown here. As can be observed from 
these plots, the power spectrum of the image error diffused by the QR-RLS 
adaptation method has not only the lowest energy but also the flattest response 
whereas the error diffusion with Floyd-Steinberg has the highest energy. The 
LMS-based method lies between the two curves. This experiment verifies the 
fact that QR-RLS based method produces the best results. Similar results are 
obtained for other lines of the image.

All three algorithms are compared also for diagonal scanning scheme in 
Figure 2.14. Floyd-Steinberg’s method always produces an error spectrum 
with the largest energy. The adaptive algorithms both reduce the energy with 
best performance corresponding to the QR-RLS based error diffusion method.

We also compare the power spectrum estimates for both types of order of 
processing the Sunset image, namely the raster and diagonal processing, as 
shown in Figure 2.15. In the first plot, we can see that the error spectrum for 
the error diffusion using LMS with diagonal scanning of the image is flatter 
than the one with raster processing, and has reduced energy.

The average error spectra over all lines of the image is shown in Figure 2.16. 
It is observed that the proposed method with QR-RLS adaptation shows the 
flattest response also for an average of the lines image. This verifies our obser­
vation that similar results are obtained for all lines of the image.

The simulation results for the well-known Peppers image are given next. 
The original Peppers image is shown in Figure 2.17, and the quantized ima,ge
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to 16 colors with median cut algorithm is shown in Figure 2.18. False contours 
are clearly visible particularly on the green pepper in the middle because it has 
slowly varying color regions on its body from green to red and again to green 
and so on. This is again one of the problematic regions of the Peppers image. 
Figure 2.19 shows the image error diffused by Floyd-Steinberg’s method. White 
color impulses on the upper red pepper are observed. Actually, we can see that 
Floyd-Steinberg’s method produces very poor results in the edge regions which 
are smeared to each other. The color impulses are highly visible, and color shifts 
especially in the top region of the pepper in the middle is very disturbing. The 
Peppers image error diffused with LMS adaptation shown in Figure 2.20 shows 
better performance, and improves the behavior in edge regions. The color 
impulses are eliminated. However, the contouring effects in the mentioned 
problematic region are disturbing because the transition is not smooth. The 
resulting image error diffused with QR-RLS adaptation is shown in Figure 2.21. 
It is observed that this image shows the most superior performance among the 
error diffusion methods discussed so far. It is sharper and brighter, and the 
problematic region shows smooth transition for the slowly varying colors. The 
images for the adaptive error diffusion methods with diagonal scanning are 
given in Figure 2.22, and Figure 2.23. The image error diffused with QR-RLS 
adaptation gives the highest quality output.

For the Peppers image, we also plot the error power spectra for the three 
algorithms in Figure 2.24. The performance of the adaptive methods for the 
raster scan is such that the method with QR-RLS gives the lowest energy and 
flattest response. The one with LMS gives the second lowest energy response. 
The Floyd-Steinberg’s method has the highest energy. For the diagonal scan, 
LMS shows improvement and has a lower energy error spectrum than that of 
the raster scan.

The error spectra for raster and diagonal scanning of both adaptive error 
diffusion methods are shown in Figure 2.25. The average of the error spectra 
over all lines of the image for the three methods is shown in Figure 2.26. There­
fore, on the overall response, the error spectra of the adaptive error diffusion 
method QR-RLS adaptation shows the flattest response.

The simulation results for the Minnesota image are given in the following. 
The original image in Figure 2.27 is quantized to 16 colors with the median
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cut algorithm as shown in Figure 2.28. False contours and edges are visible in 
the quantized image particularly in the sky region. The image error diffused 
with Floyd-Steinberg’s method shown in Figure 2.29 creates color impulses, 
and the edges are smeared to each other. These artifacts, color impulses and 
false edges, are reduced in adaptive error diffusion algorithms. The one with 
LMS adaptation is shown in Figure 2.30. Although the color impulses are 
eliminated, there are still false contours in slowly varying regions, and edges 
are converted into jagged edges. The error diffusion with QR-RLS adaptation 
results in the image in Figure 2.31 which shows the best performance. The 
sky has almost nearly smooth transition from one color to the next. The edge 
regions are sharper. The images in Figure 2.32 and Figure 2.33 are obtained 
by diagonal scan which shows some improvement when compared to those of 
raster scan. Diagonal scanning of the image produces better performance in 
removing the false contours in the sky.

Simulations for a smaller number of colors in the resulting image are carried 
out for the Minnesota image. The original Minnesota image in Figure 2.27 is 
quantized to 8 colors as shown in Figure 2.34. The false contours in the sky 
region are farther emphasized in this case because the number of colors is 
very small to represent the smooth transition in the sky region. The image 
in Figure 2.35 is error diffused with Floyd-Steinberg’s method. The same 
problems are visible with more emphasis on the contouring effect. Figure 2.36 
shows the image error diffused with LMS adaptation, and Figure 2.37 shows 
the same case with diagonal scanning. Here, we compare the raster scan and 
diagonal scan. As can be observed, the image with diagonal scanning eliminates 
a larger number of color impulses, and shows better performance. The images 
error diffused with QR-RLS adaptation both with raster scan and diagonal scan 
are shown in Figure 2.38, and Figure 2.39, respectively. The one with diagonal 
scanning has less number of color impulses, and it is somewhat brighter. We 
asked five people to evaluate the resulting error diffused images both with raster 
scan and diagonal scan in these four figures. All of them evaluated the images 
processed with diagonal scanning to have better quality in this case where the 
number of bits/pixel is low.

The power spectrum estimates of the three methods for the Minnesota im­
age is shown in Figure 2.40. The same observations for the error spectra of
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this image are made. The error spectra for the error diffusion with QR-RLS 
adaptation shows the flattest response with the least energy where the Floyd- 
Steinberg’s method has the highest energy, and the error diffusion with LMS 
adaptation lies in between. As can be observed from Figure 2.41, the diagonal 
scanning of the image improves the quality of the image since it flattens the 
error spectrum. The difference between the error spectra for the error diffu­
sion with QR-RLS adaptation with raster scan and diagonal scan shown in 
Figure 2.41 is negligible. The average of the error spectra over all lines of the 
image for the three methods is shown in Figure 2.42.

Similar results can be obtained for other images as well. Our simulation 
studies show that QR-RLS algorithm in error diffusion outperforms determin­
istic and LMS type error diffusion algorithms. Since QR-RLS algorithm is 
much more successful in tracking the nonstationary image characteristics than 
the LMS algorithm, the resulting image quality is better.

The improvement is due to higher quality prediction in the error diffusion 
process. This is achieved by employing the QR-RLS method which is compu­
tationally more complex than the LMS algorithm.
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Figure 2.7: Original Sunset Image

:·* h'··̂  'V? o·.· M ^

Figure 2.8: Quantized Sunset Image (16 colors)

Figure 2.9: Error-diffused Sunset Image with Floyd-Steinberg’s Method
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Figure 2.10: Error-diffused Sunset Image with LMS adaptation

Figure 2.11: Error-diffused Sunset Image with QR-RLS adaptation
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Figure 2.12: Error-diffused Sunset Image with LMS adaptation (diagonal scan)

Figure 2.13: Error-diffused Sunset Image with QR-RLS adaptation (diagonal

scan)
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Figure 2.14: Comparison of the error spectra of a line of the Sunset image.

Figure 2.15: Comparison of the error spectra with raster scan and diagonal 
scan of a line of the Sunset image.

Figure 2.16: Comparison of the average error spectra over all lines of the Sunset 

image.
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Figure 2.17: Original Peppers Image
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Figure 2.18: Quantized Peppers Image (16 colors.)

Figure 2.19: Error-diffused Peppers Image with Floyd-Steinberg’s Method
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Figure 2.20: Error-diffused Peppers Image with LMS adaptation

Figure 2.21: Error-diffused Peppers Image with QR-RLS adaptation
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Figure 2.22: Error-diffused Peppers Image with LMS adaptation (diagonal 

scan)

Figure 2.23: Error-diffused Peppers Image with QR-RLS adaptation (diagonal

scan)
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Figure 2.24: Comparison of the error spectra of a line of the Peppers image.

Figure 2.25: Comparison of the error spectra with raster scan and diagonal 
scan of a line of the Peppers image.

Figure 2.26: Comparison of the average error spectra over all lines of the 

Peppers image.
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Figure 2.27: Original Minnesota Image

Figure 2.28: Quantized Minnesota Image (16 colors)

Figure 2.29: Error-diffused Minnesota Image with Floyd-Steinberg’s method

(16 colors)
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Figure 2.30: Error-diffused Minnesota Image with LMS adaptation (16 colors)

Figure 2.31: Error-diffused Minnesota Image with QR-RLS adaptation (16

colors)
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Figure 2.32; Error-diffused Minnesota Image with LMS adaptation (diagonal 

scan, 16 colors)

Figure 2.33: Error-diffused Minnesota Image with QR-RLS adaptation (diag­

onal scan, 16 colors)
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Figure 2.34: Quantized Minnesota Image (8 colors)

Figure 2.35: Error-diffused Minnesota Image with Floyd-Steinberg’s method

(8 colors)
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Figure 2.36; Error-diifused Minnesota Image with LMS adaptation (8 colors)

Figure 2.37: Error-diffused Minnesota Image with LMS adaptation (diagonal

scan, 8 colors)
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Figure 2.38: Error-diffused Minnesota Image with QR-RLS adaptation (8 col­

ors)

Figure 2.39: Error-diffused Minnesota Image with QR-RLS adaptation (diag­

onal scan, 8 colors)
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Figure 2.40: Comparison of the error spectra of a line of the Minnesota image.

Figure 2.41: Comparison of the error spectra with raster scan and diagonal 
scan of a line of the Minnesota image.

Figure 2.42: Comparison of the average error spectra over all lines of the

Minnesota image.
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Chapter 3

A  SET THEORETIC INVERSE  

H ALFTONING M ETHOD

In this chapter, a new inverse halftoning method based on the method Projec­
tion onto Convex Sets is proposed. Space, frequency, and space-scale domain 
projections are used which take advantage of the prior knowledge about the 
error diffusion filter kernel, and the relatively smooth character of the natural 
images. The simulation results are presented, and compared with some other 
inverse halftoning methods existing in the literature [33,36,37].

3.1 Background

As discussed in Chapter 1 , halftoning is a process that deliberately injects noise 
into the original image in order to obtain visually pleasing output images for- 
displaying or printing purposes. Therefore, inverse halftoning can be considered 
as a restoration problem. The aim is to reconstruct a high quality image from 
the observed image, which is a quantized and corrupted version of the original 
image. Conventionally, this type of estimation problems have been solved by
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optimizing an objective function with or without constraints [46]. However, 
the solution to the restoration problem of a continuous tone (contone) image 
from a given binary halftone image is not unique. This fact can be explained 
by a simple argument given by [33]. For images of size N x N at 8 bits per 
pixel, there are 256^  ̂ possible gray scale images. On the other hand, there is 
only a total of 2^  ̂ possible binary images of size N x N. Therefore, there are 
many gray-scale images that can be halftoned into the same binary image, and 
the estimation problem can be considered as an ill-posed inverse problem. For 
ill-posed signal recovery problems of this type, incorporation of all available 
information significantly improves the quality of the solution. Our research is 
motivated by the fact that set theoretic formulation is ideally suitable for the 
inverse halftoning problem that has many feasible solutions.

3.1.1 Set Theoretic Formulation

The first basic component of a set theoretic formulation is the solution space 5 
that can take many forms, e.g., a space of matrices, functions or distributions 
[46]. The solution space is chosen such that all available information is modeled 
easily and accurately. Let us call the proposed solution a  which belongs to 
the space H for the image restoration problem. Let the property set (7  ̂ be 
the set representing information arising from the data and a priori knowledge 
about the problem. The pair (H, {Ck)kei) is called a set theoretic formulation 
of the problem [46]. In the method of Projection onto Convex Sets (POCS), 
each piece of information is associated with a convex set, if possible, in the 
solution space, and the intersection of these sets, the feasibility set, represents 
the acceptable solutions [46]. Then the solution set C  is given by

C = f)Ct
kei

where any point in C  is called a set theoretic estimate.

(3.1)

All available information usually does not describe the solution in the same 
domain. For instance, the available information may describe the signal in 
both time and frequency domains.
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The structure of the solution space can be the Hilbert space of square- 
integrable functions where the metric is given by

d{a ,b)  =  { [  \a — b 
Jn

1/2 (3.2)

Another widely used Hilbert space is the A;-dimensional Euclidean space 
whose metric is given by d{a , 6 ) =  (Z)f=i |a i -  b Another example is
the space C\ of Lebesgue square-integrable functions on TẐ  commonly used in 
n-dimensional signal recovery  ̂ [46].

H =  =  {a  ; 7^" —)■ 7?., | [  \a {x i , ... ,Xn)\^dxi.. .dxn < +oo}.  (3.3)

Generating a set theoretic estimate is solving the feasibility problem

Find a e C  =  f ] C  k-
her

(3^4)

This problem can be usually solved not in one step but iteratively, and a 
sequence (a„)„>o converges in some sense to a point in C  [46]. The method of 
POCS is a widely used iterative method to develop an algorithm for finding a 
solution in the set C . The key idea is to make successive orthogonal or relaxed 
projections onto the sets C  k-

The distance from a point a to a nonempty subset in a metric space 
(S, d), is defined as

d(a , C* A:) =  min d{a ,b )  subject to b G C  k- (3,5)

A projection of a onto C * is any point b in Ck  such that d{a,Ck)  =  d{a,b).  
If S is a Hilbert space and if C  a: is closed and convex every point o  has a 
unique projection denoted as Pk{a),  onto C  k-

Relaxed projection onto C  is shown in Figure 3.1. The case A =  1 corre­
sponds to a projection (unrelaxed iteration), 0 < A < 1 to an underprojection, 
1 < A < 2 to an overprojection, and A =  2 to a reflection [46].

T̂Z is the set of real numbers, Af is the set of noniiegative integers.
set C  is convex if for all a , 6 S C, aa -h (1 — a)b € C  for any 0 < a < 1.
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Figure 3.1: Relaxed projection onto C  .

A general serial projection method is obtained by introducing variable 
relaxation parameters

( V r t  G  A / " )  O  n + l  —  ®  71 “ b  7 l )  ®  7 l ) (3.6)

where the sequence (A„)„>o lies in [0,2]. The cyclic version of (3.6) is referred 
as POCS in literature [46].

Some widely used convex sets include the set of nonnegative signals,

C  n =  {a  G I (Va; eTZ) a (x) > 0}, (3.7)

in the space , and the set of bandlimited signals,

C f  =  {a i (ViyeTZ) J=fa ]{u) =  0 if \v\ > D)  (3.8)

where Ĵ [a ] denotes the Fourier transform of a .

The property sets can be hyperplanes in that is

C  k =  {̂ a G 77̂  I < a ,h k > =  (3-9)

where 6  ̂ is a nonzero vector in TZ'̂ , 5k is a real number, and the operator 
< a ,b > is a scalar product.

Closed half-spaces are also convex sets:

C)i = {a € I < o ,6 i  > < Jj}. (3.10)

Another widely used convex set model include hyperslabs: 

Cyt =  ( a G 77.*̂ |7 jfc< < a ,bk > < 5k}, (3.11)

P̂rojection is serial if only one set is activated at each iteration, and cyclic if kn =  
n(modulo m) + 1, (m is the number of property sets).
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which can be written as the intersection of two half-spaces, so the previous 
projections apply for this case.

The solution to the constrained minimization problem in (3.5) may be te­
dious for some cases, and in turn, the computation of the projection at each 
iteration may be numerically costly. However, in the case of hyperplanes the 
solution can be found using the method of Lagrange multipliers [46], and the 
projection operator onto the hyperplane (3.9) is given by [46]

(Vα6  7г )̂ P k ( a ) = a  +
^  b  k i ^  k ^

b  k- (3.12)

The projection onto hyperslabs and closed half-spaces are also based on 
Equation (3.12).

In the case of inverse halftoning, we exploit the information that is available 
to describe the solution in space, frequency, and space-scale domains. We model 
the space-domain information about the original image using hyperslabs. We 
also assume that the original image is band-limited in the frequency domain 
and use the set C  / ,  and in space-scale domain, the Wavelet Transform (WT) 
extrema information is modeled as a convex set.

In our work, we assume that the halftoning process is performed with error 
diffusion technique, and the error diffusion filter kernel is known. For recov­
ering the contone image from the halftone image, we alternate between space- 
domain projections, a space-scale domain projection, and a frequency-domain 
projection.

In [36], the method of POCS is also used for restoration of the original image 
from error diffused images, however exploiting only the space and frequency- 
domain projections. Furthermore, their space-domain projection is different 
from ours. In this thesis, we introduce a new space-domain projection for 
inverse halftoning based on projection onto hyperplanes. Our space-domain 
projections are computationally much simpler than that of [36].

A POCS method, based on projections onto hyperplanes, is developed in 
[47], for signal recovery from Discrete Wavelet Transform (DWT) extrema. It 
is shown that W T extrema information in space-scale domain of a signal or an

48



image can be modeled as a hyperplaiie and by performing successive projections 
onto these hyperplanes, the original signal can be recovered for some cases. In 
[37], an inverse halftoning method using W T extrema information is developed. 
This noniterative method is based on estimating the edges of the original image 
from the halftoned image. In this method, the edges are represented using 
the W T extrema. Therefore, this method can be considered as a step of our 
iterative algorithm.

3.2 Method

In our inverse halftoning algorithm, we define three kinds of sets describing the 
prior information that we have. The set C  1,5 contains all contone images that 
result in an observed error diffused pixel at the index s. The set (7 1 =  Q  C

S

is the set of all contone images x  producing the observed error diffused image 
y . The set C  2 contains all band-limited contone images. Finally, the set C  3 

contains all the images having the same significant W T local extrema as the 
original image. These sets are shown to be convex in Appendix A.

The POCS based iterative algorithm starts with an initial estimate x  0, 
which is successively projected onto the sets C  C  2 and C  3,  as follows

X(+i = (Pi,o o ... ° Pi,L ° P2 o Pa)  ̂t, ( = 0,1,2,... (3.13)

where represents the spatial projection which will be described in the 
next subsection, {L is the total number of pixels in the image), P2 represents 
lowpass filtering which is the frequency-domain projection, and P3 represents 
the wavelet-domain method by Xiong, Orchard, and Ramchandran [37] which 
is the space-scale domain projection. All three projections, or any two can 
be used alternately. The order of the projections is immaterial [46]. The 
iterations are stopped when the difference between the signals at successive 
iterations become insignificant.
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3.2.1 Space-Domain Projection

The block diagram of error diffusion encoder is given in Figure 3.2  for conve­
nience. The inverse halftoning problem can be stated as follows: Given the 
halftoned image y  and the 2-D FIR error diffusion filter kernel h , we want to 
estimate the original image x . The variable u , which is the input to the quan­
tizer plays a significant role because the hard quantizer operator Q  determines 
the bounds on u for each output pixel y  (s).

Rewriting the equations for the error diffusion system in Figure 3 .2 , we get,

e = u - y (3.14)

u = X + h * e (3.15)

u =  x + h * { u —y ) (3.16)

( /  — h)  * u = X — h * y . (3.17)

be expressed in terms of images x  and y  as

u =  { I - /i * [x — h * y ]. (3.18)

Here * denotes the convolution operation, and x  is the estimate obtained at 
each iteration. The kernels for the FIR filters h and I  — h are given in 
Figure 3.3.

For convenience, we define

X =  X — h * y . (3.19)
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Figure 3.3; Kernels for the filters h and I  — h .

The 2-D HR inverse filter w = {I — h can be approximated by a 
2-D FIR filter using a method described in [41] for inverse filtering for image 
restoration. The size of the filter w is chosen as mi x m2 ·

The pixel u (s) =  {w * ic)(s) can be represented as u (s) =
^ ® (^)i where v is the mask corresponding to the filter w , and Fy

is the support of the mask v . For convenience, 1 -D indexing is used, although 
the blocks x  in and the mask v are 2-D signals. If the output sample y (s) 
is 0 then it means that u (s) is between 0 and 127 for 8 bits/sample contone 
images. Otherwise, u (s) is between 128 and 255. We use this information to 
form a constraint on the image x  . In other words,

if (y (s) =  0 and u (s) > Sg) or (y (s) =  255 and u (s) < Sg) 
then

V {k, s) X (k) =  6g (3.20)
keF„

where 5g is 128 in the case of the binary quantizer. Equation (3.20) is a hyper­
plane, therefore it is a convex set.

The projection onto the set Ci ŝ can be carried out as follows. Let x  p be the 
current iterate. The next iterate x  p+i is obtained by solving the optimization 
problem:

min ||iCp+i —iCpIl  ̂ subject to (3.20). (3.21)

Using Lagrange multipliers method for this constrained minimization problem, 
we obtain

X p+i -  X p f  V {k, s)x  p+i (k) -  6g) (3.22)
keFv

dC
dx p+i(j)

= 2{xp+ı{J)-Xp{J))+^iv{J,s) j = 1,2, . . . ,M (3.23)
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dC
—  =  V {k,s)xp+i{k) -  5̂

keFy
(3.24)

(M  =  mi X m2, the size of the inverse filter w ). Equating (3.23) and (3.24) 
to 0, and rewriting them gives:

iCp+i(j) =  iCp(j) +  I  n (;,s·)
M
Y v { k , s ) { x p { k )  +  {k,s))
k = i  ^

From (3.26)

Putting ¡j, into (3.25),

^k  ̂ (^) s)x p{k) 
2 ■  Ekv(k,s)^

” I ^ , v { k , s r  )

(3.25)

(3.26)

(3.27)

(3.28)

where A is a relaxation parameter and if it remains between 0 and 2 , the 
convergence of the POCS procedure is assured [46].

The projection given in (3.28) is performed pixel by pixel involving the 
block defined by the causal mask v in the image x  . Block size is equal to the 
support size of the inverse filter w .

Once we obtain the corrected image x  , we get the new estimate x  by the 
equation

X = X + h * y  . (3.29)

This scheme can be easily extended to the case of multi-level error-diffusion 
in which the quantizer is not binary. In this case, the image u is quantized to 
K  gray levels by error-diffusion coding, and we want to obtain full gray-scale 
image. Here,

A  (s) < u(s) < B  (s)

A ( s )  < Zk€F,  ̂ s)x (k) < B ( s )
(3.30)

\ / — /—//cti V \ ’ / \ / — \ /

where the matrices A  and B  define the quantizer bounds corresponding to 
the sample u (s). For the binary quantizer, A  (s) =  u i,ow{s) — 0, and B  (s) =  
w high(s) — 128 — € for the output 0, and A {s )  =  u iow{s) =  128, and B  (s) =
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Uhigh{s) =  255 for the output 255. For a multi-level uniform quantizer, uiow{s) 
and u high(s) are determined according to the quantizer bounds. Depending 
on the error-diffusion encoding type, i.e., either binary or multilevel encoding, 
the matrices A  and B  are determined from the halftoned image beforehand. 
Inherently, A  (s) < B  (s) at every pixel s. If the sample u (s) does not satisfy 
the bounds in (3.30) then the current iterate x  p is updated so that the next 
iterate x  p+i satisfies it using Equation (3.28). In the multi-level case, 6q is 
chosen as follows

if Y^v (k,s)xp{k) < u

if V (/u, Ŝ X p{k) > U high{ )̂ ---  ̂ ‘

(3.31)

(3.32)

Once X p+i is determined the corresponding image x  p+i is determined using 
Equation (3.29).

Since there are many solutions to the restoration problem, one has to use 
as much information as possible to find the original image.

3.2.2 Frequency-Domain Projection

An important property of most natural images is smoothness compared to 
artificial images. This information can be imposed into the restoration process 
in the form of lowpass filtering.

Therefore, the frequency-domain projection consists of bandlimiting the ob­
served signal in some way. The simplest approach is lowpass filtering the image 
in order to remove the high-frequency components of the image, which contain 
mostly halftoning noise. It should be noted that error-diffusion coding delib­
erately forces the halftoning error to high-frequency components to which the 
human visual system is less sensitive. Simple lowpass filtering can be carried 
out by Gaussian lowpass filtering, or halfband lowpass filtering [33]. Another 
lowpass filtering approach, is based on singular value decomposition(SVD) [36].

In this thesis, for the frequency-domain projection, we use either a simple 
Gaussian lowpass filter, or a lowpass filter with a specific passband region.
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The passbands of the lowpass filters we use are [—7t/2, 7t/2] x  [—tt/2, tt/2], 

[—27t/3, 27t/3] X  [—27t/3, 27t/3], or [—37t/4, 37t/4] x  [—37t/ 4, 37r/4].

3.2.3 Space-Scale Domain Projection

The edges in an image produce local W T extrema in the space-scale domain 
[48]. It is proved that the wavelet extrema information correspond to convex 
sets in C\ which is the set of square summable images [47-49]. Therefore, 
the edge information can be used in the reconstruction algorithm by properly 
defining a set corresponding to the significant local extrema in the wavelet 
domain. Let the set C s, contain all the images having the same significant WT 
local extrema as the original image. It is well-known that the wavelet domain 
extrema information correspond to the edges of the original image. The key 
idea is to estimate the edges of the original image from the halftoned image by 
selecting the significant W T extrema of the halftoned image, and the restored 
image is forced to have the same extrema in the wavelet space-scale domain. 
This provides the sharpness to the restored image by protecting the significant 
high frequency components of the image, whereas a simple lowpass filtering 
characterized by set C  2 will smooth out all of the sharp edges of the original 
image. The projection onto this set can be carried out as described in [37], 
which is a wavelet-based single step inverse halftoning method. Important 
high frequency information describing the signal, particularly information in 
edge regions, are retained by choosing the W T extrema locations selectively 
from each subband resulting from the wavelet decomposition of the halftoned 
image. Wavelet space-scale method of Xiong, Orchard, and Ramchandran [37] 
is not an orthogonal projection onto a convex set due to cross-scale correlation 
operation which will be explained next. However, we can incorporate their 
method as an initial step in our iterative restoration method.

We briefly review the wavelet-based inverse halftoning method of [37]. The 
block diagram is given in Figure 3.4. First, a one scale discrete dyadic wavelet 
decomposition of the halftoned image is performed. The lowpass wavelet image 
5 iy, a horizontal highpass image and a vertical highpass image W^tj, all
of the same size as the input y  are formed. The noise in highpass wavelet images
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are suppressed by a simple Gaussian lowpass filter. The remaining significant 
extrema are used in the edge information.

Figure 3.4: Block diagram of the wavelet-based inverse halftoning scheme in 
[37].

For the edge-preserving noise removal from the lowpass wavelet image Siy, 
the idea in [50] is employed by this scheme. Edges can be located effec­
tively based on the direct spatial correlation of the wavelet transform at sev­
eral adjacent scales [50]. By directly multiplying cross-scale highpa.ss wavelet 
coefficients at scales 2 and 3, two edge maps, one vertical and one horizon­
tal, are generated as E°{rii,n2 ) — W2 y{ni,n2 ) W.^y{ni,n2 ), (o e {H,V}) .  
Edge extraction is done by thresholding the sum of the two edge maps 
E{rii,n2 ) — E^(ni ,n2 ) +  E^{ni,n2 ). The pixel values where the overall edge 
map is higher than the threshold are identified as edge pixel, while the remain­
ing are identified as background noise. The highpass wavelet images W^y,  and 
W^y  are set to zero at pixel locations corresponding to background regions. 
Then, the lowpass wavelet image Siy is reconstructed from 5 '2y, and the mod­
ified W^y  and W^y  images. Finally, as shown in Figure 3.4, the contone 
image estimate is obtained through the reconstruction by an inverse wavelet 
transform.
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3.3 Simulation Results

The simulations are carried out using 8 bits/pixel Lena and Peppers images of 
size 512 X 512 to test the performance of our POCS based inverse halftoning 
method. For the space-domain projection, we use our spatial projection ex­
plained in Section 3 .2 .1 , for the frequency projection, we use either Gaussian 
lowpass filtering (GLPF) or lowpass filtering (LPF) with various passbands, 
and for the space-scale projection, we use wavelet-based method in [37]. For 
the space-domain projection, the block size, i.e. the size of the inverse filter 
mask V , is set to 50 x 51. We compare the results of our proposed method 
with inverse halftoning methods in [33,36,37].

The Peak-Signal-to-Noise-Ratio (PSNR) between two N x N  images x  and 
X is defined as

2552
PSNR 10log ^  ^  (ni, « 2) -  X (ni, ri2)]2 (3.33)

We will compare the PSNR’s between the resulting estimates for the con­
tone image and the original contone image.

3.3.1 Restoration of Grayscale Images

In the first group of simulations, we use space-domain and frequency-domain

projections. We use the simple Gaussian lowpass filter g{ni,n2 ) =  k e , 
for —3 < ni,ri2 < 3, where k is a scaling factor used to make the DG gain of 
the filter unity. The cr̂  controls the bandwidth of the lowpass filter. Using a 
larger a results in a more blurred image because the passband of the lowpass 
filter is narrow, while using a smaller a results in a more grainy-looking image 
because the passband is wider. Therefore, we vary the a value during the 
alternating projections. We start with a higher a value and decrease it in 
the following set of iterations. We also use lowpass filters with passbands of 
[ - 7t/ 2 , 7r /2] x [ - 7r /2 , 7t/ 2], [-27t/ 3, 27r/3]x[-27r/3, 27t/ 3], or [ - 37t/ 4 , 37t/ 4] x 
[ - 37i / 4 , 37t/ 4]. The first estimate of the contone image, x  1 is obtained by 
lowpass filtering the input halftone image, Xo with ^(ni,ri2). Then we perform
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our spatial projection. After that, we again use lowpass filtering, and go on in 
an alternating fashion.

The original 512 x 512 8 bits/pixel Peppers image is shown in Figure 3.6. 
The Peppers image halftoned to 1 bit/pixel by error diffusion method is shown 
in Figure 3.7. The first estimate x  i, which is the Gaussian filtered halftone 
image is shown in Figure 3.8. In large magnification, the halftoning patterns are 
observed, and the image quality is low. The results for successive projections 
are shown in Table 3.1. The first column shows iteration numbers by the type 
of projection. The PSNR between the halftoned 1 bit Peppers image and the 
original 8 bits Peppers image is 6.92 dB.

We stop the iterations when we can not obtain any further improvement 
in the PSNR value. The resulting PSNR value is 29.21 dB. Compared to 
lowpass filtering, 0.8 dB improvement is achieved after spatial projections. 
The resulting estimate image is given in Figure 3.9. The image quality is 
improved, and much of the halftoning noise existing in the first estimate is 
removed. A zoomed section from the dark gray pepper in the right is given 
for both the result of the first iteration and the result for the last iteration 
in Figure 3.10. The noise is removed as can be observed from this section of 
the peppers. Sequential Gaussian filtering, and lowpass filtering without any 
space-domain corrections can not achieve this PSNR value, and smooths out 
the image without retaining its detail information.

For the spatial projections, we make several iterations on the image succes­
sively. In other words, we perform a multi-pass spatial projection with varying 
relaxation parameters at each pass. The performance of the proposed POCS 
based inverse halftoning method is not very sensitive to the relaxation param­
eter A, and the number of spatial projections. To verify this observation, we 
carried out simulations. In Table 3.2, we do two spatial projections instead of 
four as in Table 3.1, with varying relaxation parameters between 1 and 0.1. 
Resulting PSNR value of the restored image is 29.11 dB which is slightly less 
than the PSNR obtained in the previous simulation study. The restored image 
quality after three set of iterations is good and much of the halftoning noise is 
removed while the sharpness of the image is not affected.
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We carried out another simulation study to check whether using relaxation 
parameter in the range 0 <  A < 2 instead of 0 < A < 1 affects the results of the 
POCS method. The results are shown in Table 3.3 where the PSNR achieved 
is 29.19 dB after the third frequency projection. The image quality is similar 
to the ones obtained in the previous two simulations. Similar results can be 
obtained for other images as well. We conclude that the values of the relaxation 
parameter A, and the number of spatial iterations can be chosen arbitrarily, 
and the specific choices do not constitute a problem for this method.

Similar simulations for the 512 x 512 1 bit/pixel error diffused Lena image 
is carried out, and the results are given Table 3.4, and Table 3.5, respectively. 
The PSNR between the halftoned 1 bit Lena image and the original 8 bits/pixel 
Lena image is 6.70 dB. The estimate after three set of iterations (after S3-2) 
has an improvement of 0.5 dB over the first estimate after the first frequency 
projection (after FI) in both simulations. The original Lena image is given in 
Figure 3.11, its halftoned version in Figure 3.12. The initial estimate, the final 
estimate having a PSNR of 31.17 dB in Table 3.5, and the estimate having 
a PSNR of 31.23 dB in Table 3.4 are given in Figure 3.13, Figure 3.14, and 
Figure 3.15, respectively. The resulting image is quite sharp, and visually 
pleasing. The details of the Lena image are retained while the halftoning noise 
is removed. This can be observed in the feathers around the hat, and the eye 
region. The zoomed sections from the shoulder region is given in Figure 3.16. 
The removal of the halftoning noise is again observed.

We compare our results with those in [36] where a similar POCS based 
inverse halftoning method is proposed assuming the error diffusion kernel is 
known. The PSNR comparisons are given in Table 3.6 for the Lena image, 
since only the PSNR values for Lena image are given in [36]. Their space- 
domain projection is different from ours. For the frequency-domain projection, 
they use SVD, or GLPF with a varying a as the bandlimitation. The PSNR 
achieved by the proposed method is about 0.8 dB higher than the ones in [36].

Apart from the binary error diffusion coding, we carried out simulation 
studies for an image quantized io K  — i  levels, i.e. 2 bits instead of 1 bit, 
by error diffusion. The 2 bit error-diffused Peppers image is shown in Fig­
ure 3.17. The PSNR between the halftoned 2 bit Peppers image and the 
original 8 bits/pixel Peppers image is 18.18 dB. We use our method tailored
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for the multi-level case as explained in Section 3.2.1. When we start with a 
Gaussian lowpass filter with a narrow passband and then use a lowpass filter 
with a wider passband, and perform the spatial projections in between, the 
results are given in Table 3.7. The first estimate Peppers image, i.e. after 
Gaussian filtering, is shown in Figure 3.18. The final estimate obtained after 
two set of iterations is given Figure 3.19. The PSNR improvement is more 
than 1 dB with our POCS based method after two set of iterations.

Lena image error-diffused to 2 bits/pixel is shown in Figure 3.20. The 
PSNR between the halftoned 2 bit Lena image and the original 8 bits/pixel 
Lena image is 17.29 dB. Using our method for the multilevel error diffusion 
case, we obtain the results in Table 3.8. The Gaussian filtered version of the 
halftoned Lena image is shown in Figure 3 .2 1 , and the the result of the two 
set of iterations in Table 3.8 is shown in Figure 3.22. We want to emphasize 
the details around the feathers of the hat from the first estimate which is the 
Gaussian lowpass filtered version of the halftone image, and the estimate after 
two set of iterations. The latter is sharper than the former, and the details of 
feather are recovered more faithfully. Also, the eye region is a good example 
in recovery of the details from the original image by our spatial projection. 
The iris of the eye, and the eyelashes can be easily observed as result of our 
inverse halftoning method. Starting with a halfband filter, i.e. the passband 
PB=[—7t/2, 7t/2] X  [—7t/2, 7t/2], we carrried out another simulation study which 
is shown in Table 3.9. The PSNR obtained in this case is 32.91 dB which is 
higher than the previous study. The final continuous tone image is shown in 
Figure 3.23. Without the smoothing effect of the Gaussian lowpass filtering, 
although this image has a higher PSNR value, it has some ringing artifacts 
which can be more easily observed in uniform intensity regions. However, as 
in the previous study, the quality of our restoration method can be verified by 
the recovery of the details around the feathers and the eye.

In the next group of simulation studies, we use wavelet-based space-scale 
domain projection in [37] as shown in Figure 3.5. The results are given in 
Table 3.10 for the Lena image. Even after a single set of iteration, that is by 
applying our space-domain projections following the wavelet-based projection 
in [37], our space-domain projections achieve more than 0.6 dB improvement. 
The resulting image is shown in Figure 3.24. We change relaxation parameter
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A to see whether we can get further improvement. Another set of relaxation 
parameters gives the results in Table 3.11. As can be observed, the result is 
approximately the same as the previous one.

Figure 3.5: Inverse halftoning using the method in [37] with our method.

Similar results are obtained for the Peppers image where the PSNR values 
at each iteration are given in Table 3 .1 2 . The table shows that our proposed 
space-domain projection achieves 0.5 dB improvement after the space-scale 
projection. The resulting image after one set of iteration is given in Figure 3.26.

We also use frequency-domain projection together with space-scale domain 
projection and a set of space-domain projections as shown in Table 3.13. The 
resulting image shown in Figure 3.25 has a PSNR improvement of 0.7 dB.

Comparison of the POCS based method with other existing methods are 
given in Table 3.14 for the Lena and Peppers images. Method in [33] consists 
of spatial and frequency-domain projections as disccussed in Chapter 1 . The 
method in [37] is the single space-scale projection as discussed in Section 3.2.3. 
Our method results in a higher PSNR than the other two methods in [33,37] 
for both of the Lena and Peppers images.

We also test the performance of the proposed inverse halftoning method 
on images which are not error diffused by Floyd-Steinberg’s method for which 
the spatial projection is developed. We do inverse halftoning on the images 
error diffused adaptively as described in Chapter 2 . The simulation results are 
summarized in Table 3.15 for the Lena image which is error diffused by QR- 
RLS adaptation to binary form. The corresponding halftone image results in a 
visually pleasing binary image as shown in Figure 3.27. The initial estimate and 
the image with PSNR 30.79 dB restored by our POCS based inverse halftoning 
method are shown in Figure 3.28, and Figure 3.29, respectively. Although 
our spatial projection method is developed for inverse halftoning of images 
error diffused by Floyd-Steinberg’s method, it provides improvement in the 
restoration of a contone image from an image error diffused adaptively.
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3.3.2 Simulation Studies for Color Images

We also consider the restoration of halftoned color images. The spatial pro­
jection we present in Section 3 .2 .1  for the multilevel halftoning case is suitable 
for color images where each color pixel takes values from the color palette of 
limited size such as 8, 16, or more. By using the constraint in (3.20) for each 
color pixel, we find the two closest colors from the palette, i.e. the current color 
vector is between these two color vectors with the metric being the distance be­
tween the vectors. After that, we project each color vector to the closest color 
by simply scaling its each color component red. Green, and Blue. The origi­
nal color Peppers image, and its halftoned version to 4 bits/pixel are shown 
in Figure 2.17 and Figure 2.19 respectively. The iterations are summarized 
in Table 3.16. We use both Gaussian lowpass filter and lowpass filters with 
passbands [—7r/2,7r/2] x  [—7r/2,7r/2] and [—37t/4, 37t/4] x  [—37t/4, 37t/4]. The 
distances between the neighboring colors in the palette are very large since the 
palette contains only 16 color levels for thousands of colors existing in the orig­
inal Peppers image. Therefore, the spatial projection after one pass does not 
make any improvement, and the number of corrected color pixels remains very 
low which does not contribute to the result. The image after the first iteration, 
and the final restored image are given in Figure 3.30, and Figure 3.31 respec­
tively. The resulting image shows improvement with respect to the halftoned 
image. The continuous tones on the peppers are successfully restored, the color 
impulses are almost totally removed although the PSNR improvement seems 
very low. This is because the edge regions of the halftoned image are smeared 
to each other on both of the peppers in the front. These edges can not be 
restored as in the original image. The palette size of 16 is very low to allow 
faithful restoration of this image because the halftoned color image is disturbed 
very much in these edge regions. If the halftoning is done with more number 
of bits for each color pixel, this artifact would not be seen.

The same simulations are also done for the Minnesota color image whose 
original and halftoned version to 4 bits/pixel by error diffusion are shown in 
Figures 2.27 and 2.29 respectively. The iterations are given in Table 3.17. There 
is about 0.5 dB improvement on the average of PSNR’s of each color component 
compared to the initial estimate. The image after the first iteration, and the 
final restored image are given in Figure 3.34, and Figure 3.35, respectively. The
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sky region is restored in a pleasing manner by providing the smooth transitions, 
and eliminating the color impulses. However, the small details of the buildings, 
and lights are not restored well.

As a second method to color image inverse halftoning, we do inverse halfton­
ing oidy on the luminance component of the color image as discussed through­
out this Chapter. Then the inverse halftoned image is obtained together with 
the lowpass filtered versions of the chrominance components. The color Pep­
pers image after the first iteration, and the final restored image are given in 
Figure 3.32, and Figure 3.33, respectively. The iteration results are shown in 
Table 3.18. The chrominance components are lowpass filtered with a halfband 
lowpass filter. Similar to the results of the color inverse halftoning done on 
color components red, green, blue, the continuous tones are recovered, color 
impulses are eliminated although the PSNR improvement is negligible. The 
low PSNR is mostly due to the edge regions that can not be recovered as in the 
continuous tone original image. The restoration from only the luminance com­
ponent does not give satisfactory results as it does in restoration of grayscale 
images. This result is expected since forward color error diffusion is performed 
simultaneously with red, green, and blue color components of the image. Par­
ticularly, the quantization operation in error diffusion system is performed in 
RGB color space, rather than the color space with one luminance component 
and two chrominance components.

The results of the same simulations for color inverse halftoning with restor­
ing the luminance component for the Minnesota image is given in Table 3.19. 
Images obtained after the first set of iteration and the final iteration are shown 
in Figure 3.36, and Figure 3.37 respectively. Similarly, the smooth transitions 
in the sky are restored whereas some details are lost.

We can not compare our results for the inverse halftoning of color images 
with any other method, because such a study for color images does not exist 
in the literature.
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Figure 3.6: Original Peppers Image.

Figure 3.7: Peppers Image error diiTused to 1 bit/pixel by Floyd-Steingberg’s 

Method.
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Figure 3.8: Result of the first iteration in Table 3.1.

Figure 3.9: Result of three set of iterations in Table 3.1.
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Figure 3.10: Zoomed sections from the first and last estimates in Table 3.1.
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Iteration Type PSNR
FI GLPF =  1.5) 28.47

S l - 1 Spatial (A =  1 ) 28.25
S l -2 Spatial (A =  0.5) 28.78
Sl-3 Spatial (A =  0 .1 ) 28.59
Sl-4 Spatial (A =  1 ) 28.86
F2 GLPF (c7̂  =  0.5) 28.75

S2 -1 Spatial (A =  1 ) 28.72
S2 -2 Spatial (A =  0.5) 28.98
S2-3 Spatial (A =  0 .1 ) 28.90
S2-4 Spatial (A =  1 ) 29.06
F3 LPF (PB=37t/4 ) 29.16

S3-1 Spatial (A =  1 ) 28.74
S3-2 Spatial (A =  0.5) 29.21
S3-3 Spatial (A =  0 .1 ) 28.93
S3-4 Spatial (A =  1 ) 29.21

Table 3 .1 ; The PSNR values after each iteration for the halftoned 1 bit Peppers 
image. F (S) letter in the first column corresponds to the Frequency (Space) 
projection, (e.g. S l -2  means 2” ^̂ iteration in the spatial projection) Type 
denotes the type of the projection.
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Iteration Type PSNR
FI GLPF (a  ̂ =  1.5) 28.47

S l - 1 Spatial (A =  1) 28.25
S l -2 Spatial (A =  0.5) 28.78
F2 GLPF (a  ̂ =  0.5) 28.66

S2 -1 Spatial (A =  1 ) 28.52
S2 -2 Spatial (A =  0.5) 28.93
F3 LPF (PB=37t/4 ) 28.97

S3-1 Spatial (A =  1 ) 28.45
S3-2 Spatial (A =  0.5) 29.11

Table 3 .2 : The PSNR values after each iteration for the halftoned 1 bit Peppers 
image. F (S) letter in the first column corresponds to the Frequency (Space) 
projection, (e.g. S l -2  means 2” ^̂ iteration in the spatial projection) Type 
denotes the type of the projection.

Figure 3.11: Original Lena Image.
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Iteration Type PSNR
FI GLPF (a  ̂ =  1.5) 28.47

S l - 1 Spatial (A =  2 ) 28.25
S l -2 Spatial (A =  1 ) 28.80
Sl-3 Spatial (A =  0.5) 28.54
Sl-4 Spatial (A =  1.5) 28.88
F2 GLPF (a" =  0.5) 28.85

S2 -1 Spatial (A =  2 ) 28.70
S2 -2 Spatial (A == 1 ) 29.05
S2-3 Spatial (A =  0.5) 28.86
S2-4 Spatial (A =  1.5) 29.10
F3 LPF (PB=37t/4 ) 29.19

S3-1 Spatial (A =  2 ) 28.62
S3-2 Spatial (A =  1 ) 29.17
S3-3 Spatial (A =  0.5) 28.70
S3-4 Spatial (A =  1.5) 29.13

Table 3.3: The PSNR values after each iteration for the halftoned 1 bit Peppers 
image. F (S) letter in the first column corresponds to the Frequency (Space) 
projection, (e.g. S l -2  means 2” *̂ iteration in the P* spatial projection) Type 
denotes the type of the projection.

Figure 3 .1 2 : Lena Image error diffused to 1 bit/pixel by Floyd-Steingberg’s 
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Figure 3.13: Result of the first iteration in Table 3.4.

Figure 3.14: Result of three set of iterations in Table 3.4.
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Figure 3.15: Result of three set of iterations in Table 3 .5 .

Figure 3.16: Zoomed sections from the first and last estimates in Table 3.4.
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Iteration Type PSNR
FI GLPF =  1.5) 30.71

S l- 1 Spatial (A =  1 ) 30.34
Sl-2 Spatial (A =  0.5) 30.99
Sl-3 Spatial (A =  0.1) 30.64
Sl-4 Spatial (A =  1 ) 31.02
F2 GLPF (cr̂  =  0.5) 30.79

S2 -1 Spatial (A =  1 ) 30.72
S2 -2 Spatial (A =  0.5) 31.05
S2-3 Spatial (A =  0.1) 30.87
S2-4 Spatial (A =  1 ) 31.08
F3 LPF (PB=37t/4 ) 31.21

S3-1 Spatial (A =  1 ) 30.59
S3-2 Spatial (A =  0.5) 31.23
S3-3 Spatial (A =  0.1) 30.82
S3-4 Spatial (A =  1 ) 31.17

Table 3.4: The PSNR values after each iteration for the halftoned 1 bit Lena 
image. F (S) letter in the first column corresponds to the Frequency (Space) 
projection, (e.g. S l -2  means 2” ^̂ iteration in the spatial projection) Type 
denotes the type of the projection.
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Iteration Type PSNR
FI GLPF =  1.5) 30.71

Sl- 1 Spatial (A =  1 ) 30.34
S l-2 Spatial (A =  0.5) 30.99
F2 GLPF ((7̂  =  0.5) 30.70

S2 -1 Spatial(A =  1 ) 30.47
S2 -2 Spatial (A =  0.5) 31.04
F3 LPF (PB=37t/4 ) 31.03

S3-1 Spatial (A =  1 ) 30.27
S3-2 Spatial (A =  0.5) 31.17

Table 3.5: The PSNR values after each iteration for the halftoned 1 bit Lena 
image. F (S) letter in the first column corresponds to the Frequency (Space) 
projection, (e.g. S l-2  means iteration in the spatial projection) Type 
denotes the type of the projection.

Figure 3.17: Peppers Image error diflfused to 2 bits/pixel by Floyd-Steingberg’s 

Method.
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Method in [36] (GLPF) | Method in [36] (SVD) | Proposed Method (GLPF, LPF)
29.4 30.4 31.23

Table 3.6: Comparison of inverse halftoning methods in [36], and our method 
for the Lena Image. The (GLPF, LPF, SVD) denotes the type of frequency- 
domain projection

Figure 3.18; Result of the first iteration in Table 3.7.
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Figure 3.19: Result of two set of iterations in Table 3.7.
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Iteration Type PSNR
FI GLPF (ct" =  1.5) 30.39

S l - 1 Spatial (A — 1 ) 30.23
S l -2 Spatial (A =  0.5) 31.03
Sl-3 Spatial (A =  0.1) 30.70
Sl-4 Spatial A =  1 ) 31.24
F2 LPF(PB=37t/4 ) 31.26

S2 -1 Spatial (A =  1) 30.54
S2 -2 Spatial (A =  0.5) 31.38
S2-3 Spatial (A =  0 .1 ) 30.88
S2-4 Spatial (A =  1 ) 31.42

Table 3.7: The PSNR values after each iteration for the halftoned 2 bit Peppers 
image. F (S) letter in the first column corresponds to the Frequency (Space) 
projection, (e.g. Sl-2 means 2" “̂ iteration in the P* spatial projection) Type 
denotes the type of the projection.
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Iteration Type PSNR
FI GLPF ((7̂  =  1.5) 31.27

S l - 1 Spatial (A =  1 ) 31.13
S l -2 Spatial (A =  0.5) .32.02
Sl-3 Spatial (A =  0 .1 ) 31.53
Sl-4 Spatial A =  1 ) 32.23
F2 LPF(PB=37t/4 ) 32.25

S2 -1 Spatial (A =  1 ) 31.30
S2 -2 Spatial (A =  0.5) 32.44
S2-3 Spatial (A =  0 .1 ) 31.67
S2-4 Spatial (A =  1 ) 32.51

Table 3.8; The PSNR values after each iteration for the halftoned 2 bit Lena 
image. F (S) letter in the first column corresponds to the Frequency (Space) 
projection, (e.g. S l -2  means 2”^̂ iteration in the 1 ®* spatial projection) Type 
denotes the type of the projection.
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Iteration Type PSNR
FI LPF (PB=7t/2 ) 32.64

S l - 1 Spatial (A =  1) 32.15
S l -2 Spatial (A =  0.5) 32.64
F2 LPF(PB:37t/4 ) 32.70

S2 -1 Spatial (A =  1 ) 31.67
S2 -2 Spatial (A =  0.5) 32.73
F3 GLPF =  0.25) 32.87

S3-1 Spatial(A =  1 ) 31.98
S3-2 Spatial (A =  0.5) 32.91

Table 3.9; The PSNR values after each iteration for the halftoned 2 bit Lena 
image. F (S) letter in the first column corresponds to the Frequency (Space) 
projection, (e.g. S l-2  means 2"“̂ iteration in the P* spatial projection) Type 
denotes the type of the projection.

Figure 3.20: Lena Image error diffused to 2 bits/pixel by Floyd-Steingberg’s 

Method.

77



Figure 3 .2 1 : Result of the first iteration in Table 3.8.

Figure 3 .2 2 : Result of two set of iterations in Table 3.8.

78



Figure 3.23: Result of three set of iterations in Table 3.9.

Iteration Type PSNR
SS-1 Wavelet 31.47
S l - 1 Spatial (A =  1 ) 30.36
S l -2 Spatial (A =  0.5) 31.90
Sl-3 Spatial (A =  0.1 ) 31.02
Sl-4 Spatial (A =  1 ) 32.11

Table 3.10: The PSNR values after each iteration for the Lena image. SS (S) 
letter in the first column corresponds to the Space-Scale (Space) projection, 
(e.g. S l-2  means 2"*̂  iteration in the spatial projection) Type denotes the 
type of the projection.
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Iteration Type PSNR
SS- 1 Wavelet 31.47
S l - 1 Spatial (A =  1 ) 30.36
S l-2 Spatial (A =  0.5) 31.90
Si-3 Spatial (A =  0.4) 30.77
Sl-4 Spatial (A =  0.1) 32.09

Table 3 .1 1 : The PSNR values after each iteration for the Lena image. SS (S) 
letter in the first column corresponds to the Space-Scale (Space) projection, 
(e.g. S l -2  means 2" “̂ iteration in the 1 ®‘ spatial projection) Type denotes the 
type of the projection.

Figure 3.24: Result of the one set of iteration in Table 3.10.
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Figure 3.25: Result of the two sets of iterations in Table. 3.13.

81



Iteration Type PSNR
SS- 1 Wavelet 30.40
S l- 1 Spatial (A =  1 ) 29.46
S l -2 Spatial (A =  0.5) 30.76
Sl-3 Spatial (A =  0.1) 30.07
Sl-4 Spatial (A =  1 ) 30.90

Table 3 .1 2 : The PSNR values after each iteration for the Peppers image. SS 
(S) tetter in the first column corresponds to the Space-Scale (Space) projection, 
(e.g. S T 2 means 2'“  ̂ iteration in the 1'’* spatial projection) Type denotes the 
type of the projection.

Figure 3.26: Result of the one set of iteration in Table 3 .1 2 .
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Iteration Type PSNR
SS- 1 Wavelet 31.47
S l - 1 Spatial (A =  1) 30.36
S l -2 Spatial (A =  0.5) 31.90
Sl-3 Spatial (A =  0.4) 30.77
Sl-4 Spatial (A =  0.1) 32.10
FI GLPF =  0.25) 32.09

S2 -1 Spatial (A =  1 ) 31.25
S2-2 Spatial (A =  0.5) 32.17

Table 3.13: The PSNR values after each iteration for the Lena image. SS (S) 
letter in the first column corresponds to the Space-Scale (Space) projection, 
(e.g. Sl-2 means 2" “̂ iteration in the spatial projection) Type denotes the 
type of the projection.

Figure 3.27: Lena Image error diffused to 1 bit/pixel by QR-RLS adaptation.
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Method in [33] Method in [37] Proposed Method
Lena (PSNR) 32.00 31.67 32.17

Peppers (PSNR) 30.30 30.69 30.90

Table 3.14: Comparison of inverse halftoning methods. All methods assume 
the error diffusion kernel is known.

Figure 3.28: Result of the first iteration in Table 3.15.
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Iteration Type PSNR
FI GLPF (cr̂  =  1.5) 30.44

S l - 1 Spatial (A =  1 ) 29.88
S l -2 Spatial (A =  0.5) 30.51
Sl-3 Spatial (A =  0 .1 ) 30.26
Sl-4 Spatial (A =  1 ) 30.56
F2 GLPF ((j2 =  0.5) 30.46

S2 -1 Spatial (A =  1 ) 30.34
S2 -2 Spatial (A =  0.5) 30.63
S2-3 Spatial (A =  0.1) 30.47
S2-4 Spatial (A =  1 ) 30.62
F3 LPF (PB=27t/3 ) 30.21

S3-1 Spatial (A =  1 ) 30.79
S3-2 Spatial (A =  0.5) 30.47
S3-3 Spatial (A =  0.1) 30.67
S3-4 Spatial (A =  1 ) 30.55

Table 3.15; The PSNR values after each iteration for the Lena image error 
diffused with QR-RLS adaptation to 1 bit/pixel. F (S) letter in the first column 
corresponds to the Frequency (Space) projection, (e.g. S l -2  means 2"*̂  iteration 
in the spatial projection) Type denotes the type of the projection.

Figure 3.29: Result of three set of iterations in Table 3.15.
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Iteration Type PSNR (Red) PSNR (Green) PSNR (Blue)
FI LPF (P B = 7 t/ 2 ) 20.70 21.90 24.68

S l - 1 Spatial (A =  1 ) 20.57 21.78 24.52
S l -2 Spatial (A =  0.5) 20.57 21.78 24.52
F2 GLPF(a" =  0.5) 20.83 2 2 .0 1 24.97

S2 -1 Spatial(A =  1) 20.82 22 .0 1 24.94
S2 -2 Spatial (A =  0.5) 20.81 22 .0 1 24.92
F3 LPF (PB=37t/4 ) 20.78 21.99 24.99

S3-1 Spatial (A =  1 ) 20.43 21.69 24.43
S3-2 Spatial (A =  0.5) 20.43 21.69 24.43

Table 3.16: The PSNR values after each iteration for the color Peppers image 
error diffused to 4 bits/pixel. F (S) letter in the first column corresponds to 
the Frequency (Space) projection, (e.g. S l -2  means 2” *̂ iteration in the 1 ®* 
spatial projection) Type denotes the type of the projection.

Iteration Type PSNR (Red) PSNR (Green) PSNR (Blue)
FI LPF (PB=7t/2 ) 19.53 20.03 20.51

S l - 1 Spatial (A =  1 ) 19.82 20.50 20.87
S l -2 Spatial (A =  0.5) 19.82 20.50 20.87
F2 GLPF(o·" =  0.5) 19.99 20.47 20.86

S2 -1 Spatial(A =  1 ) 19.97 20.52 20.90
S2 -2 Spatial (A =  0.5) 19.96 20.52 20.90

Table 3.17: The PSNR values after each iteration for the color Minnesota image 
error diffused to 4 bits/pixel. F (S) letter in the first column corresponds to 
the Frequency (Space) projection, (e.g. S l -2  means 2 '̂  ̂ iteration in the 1 *' 
spatial projection) Type denotes the type of the projection.
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Iteration Type PSNR (Y)
FI LPF (PB=7t/2) 23.95

S l - 1 Spatial (A =  1 ) 23.89
S l -2 Spatial (A =  0.5) 23.86
F2 GLPF(ij'' =  0.5) 23.99

S2 -1 Spatial(A =  1) 23.94
S2 -2 Spatial (A =  0.5) 23.92
F3 LPF (PB:37t/4 ) 23.94

Table 3.18: The PSNR values after each iteration for the luminance component 
(Y) of the color Peppers image halftoned to 4 bits/pixel. F (S) letter in the first 
column corresponds to the Frequency (Space) projection, (e.g. S l -2  means 2” ^̂ 
iteration in the 1*̂  spatial projection) Type denotes the type of the projection.

Figure 3.30: Result of the first iteration in Table 3.16.

87



Iteration Type PSNR (Y)
F I L P F  (P B = 7 t/ 2 ) 20.14

Sl- 1 Spatial (A =  1) 2 0 .11
Sl-2 Spatial (A =  0.5) 20.06
F 2 G L P F ( c7'̂  =  0.5) 20.17

S2 -1 Spatial(A =  1 ) 20.18
S2-2 Spatial (A =  0.5) 20.15
F 3 L P F  (P B :3 7 r /4 ) 20.16

Table 3.19: The PSNR values after each iteration for the luminance component 
(Y) of the color Minnesota image error diffused to 4 bits/pixel. F (S) letter in 
the first column corresponds to the Frequency (Space) projection, (e.g. S l-2  
means 2"*̂  iteration in the 1®* spatial projection) Type denotes the type of the 
projection.

Figure 3.31: Result of two set of iterations in Table 3.16.
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Figure 3.32: Result of the first iteration in Table 3.18.

Figure 3.33: Result of two set of iterations in Table 3.18.
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Figure 3.34; Result of the first iteration in Table 3.17.
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Figure 3.35: Result of two set of iterations in Table 3.17.
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Figure 3.36: Result of the first set of iteration in Table 3.19.

Figure 3.37; Result of two set of iterations in Table 3.19.

91



Chapter 4

CONCLUSIONS AN D  

FUTURE W O R K

In this thesis, novel methods for halftoning of color images, and inverse halfton­
ing of both grayscale and color images are presented.

In the first part of the thesis, a new adaptive error diffusion method for color 
images is introduced. Representing a natural image which contains thousands 
or millions of colors on a printing or a display device that allows only a limited 
number of bits for each pixel, causes a large reduction in the number of colors 
of images. This reduction results into a highly degraded image quality when 
direct quantization is used. As a solution to this problem, error diffusion 
method is widely used. The proposed adaptive error diffusion method employs 
a rotation based RLS adaptation for the prediction problem in the update of 
the error diffusion filter coefficients. This high quality prediction achieved by 
the QR-RLS algorithm results in high quality output images. Furthermore, 
a diagonal scanning strategy is used to take advantage of the human visual 
system properties, which exploits the relative insensitivity of the human visual 
system to diagonal orientations. Both scalar and vector implementations of 
the proposed method is developed. The scalar implementation processes each 
color component (red, green, and blue) of the color image separately whereas
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the vector implementation uses all three color components in the prediction of 
each color component.

The performance of the proposed method is empirically compared with 
Floyd-Steinberg’s [7] deterministic error diffusion method, and error diffusion 
with LMS adaptation [8,13]. The resulting image quality of the proposed 
error diffusion with QR-RLS adaptation highly outperforms these methods. 
The contouring effect which is a problem of direct quantization, is almost 
totally eliminated, and the smooth transitions in slowly varying color regions 
are truly reproduced even with a very limited number of colors in the palette 
such as 16. Color impulses which occur in Floyd-Steinberg’s error diffusion 
method, are greatly eliminated. To quantify this superior performance, we 
compare the error power spectra of the three methods. The new adaptive error 
diffusion method gives the flattest response with the least energy, implying that 
it produces the whitest error spectrum which is the least disturbing for the eye 
among the three algorithms. This gain in visual quality is achieved at the 
expense of higher computational complexity of the QR-RLS adaptation than 
deterministic and LMS adaptation methods.

In the second part of the thesis, a new inverse halftoning method, to restore 
a continuous tone image from the given halftoned image, is introduced. With 
the assumptions that the halftoning is performed with error diffusion, and the 
error diffusion Alter kernel is known a priori, a new space-domain projection 
is introduced, frequency-domain, and space-scale domain projections are used 
alternately with the proposed space-domain projection in the context of the 
method of POCS.

The performance of the new method is compared with those of the state- 
of-the-art inverse halftoning methods in the literature based on their PSNR’s. 
Two of these methods employ spatial and frequency-domain projections alter­
nately which are different from ours. Third method employs a single space- 
scale domain projection in the wavelet domain. The new POCS based inverse 
halftoning method achieves greater PSNR’s than those other three algorithms. 
The resulting images are good quality images in which the halftoning arti­
facts are removed. During the removal of the halftoning noise which is inher­
ently concentrated in high-frequency regions, the proposed inverse halftoning 
method retains the important high-frequency information such as the edges
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of the image, so the details of the image are not smoothed out. Our method 
outperforms other state-of-the-art inverse halftoning techniques both in terms 
of visual quality and PSNR.

The new space-domain projection is extended for the multi-level error dif­
fusion encoding, and the restoration of color images. Inverse halftoning of color 
images are carried out in two ways. In the first case, the projections are per­
formed separately on red, green, and blue components of the color image. In 
the second case, the luminance component of the color image is restored as 
in the grayscale restoration, and the two lowpass filtered chrominance compo­
nents are added to it. Both methods resulted in reasonable quality restored 
color output images, although the number of colors in the palette of the ini­
tial halftone color image is very low. Our study on inverse halftoning of color 
images can be considered as a first attempt on this topic in the literature.

A possible future research direction for the halftoning of color images is the 
faster implementation of the proposed error diffusion with QR-RLS adaptation 
for use with real-time video on frame buffer displays.

A possible future research direction for the inverse halftoning of color images 
is to define a vectorized space-domain projection for a color pixel instead of 
projecting its color components separately for each pixel, and also, to introduce 
a new space-scale domain projection for color images using the color edge 
information, that is to retain the useful high-frequency edge information from 
each subband considering the color edge characteristics.
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AP P EN D IX A

C O N V E X IT Y  OF THE SETS 

USED IN SET THEORETIC  

INVERSE H ALFTONING

Let the set C  1,4. be the set of images, x  producing the pixel y  (s) after error 
diffusion, and the set C  1 =  f lC  1,4 is the set of images, x  , producing the 
halftoned image y . Let a and b be contone images in C  1 whose range is in 
[0,255], and a and b produce a specific error diffused or simply the quantized 
image c . For the binary quantization, the samples c (s) take values 0 or 255 
by the hard quantizer operation;

if a (s) < 128 

if a (s) > 128

c (s) = 0 
c(s) = 255

Let a i n 0 < o ; < l b e a  real number. If a and b are quantized to c by 
error diffusion, then the image {aa +  (1 -  a )6 ) is also quantized to c . That is

if 0 < o  (s), b (s) < 128 

then c (s) =  0 ,

0 < (aa (s) +  (1 — a)b (s)) < 128,
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if 128 < a{s) ,  b{s) < 255 

then c (s) =  255,

128 < (a o  (s) +  (1 -  a)b (s)) < 255,

for all the indices s. Therefore, c also belong to C  i. The same holds for the 
multilevel quantizer case. This completes the proof of the convexity of the set 
C l .

Let the set C  2 contain all band-limited contone images as

C 2 ^ { a  e jCl\{yu e n ) J ^ [ a ] { u ) = 0  if |t/1 > £> } (A .l)

where J [̂a] denotes the Fourier transform of a . Let a , and b be in (7 2 · Then 
the linear combination of bandlimited signals; {aT[a]{u 
is still in C  2, since aJ [̂a ] ( i / ) =  0 for |i/ | > £>, and (1 — a)J^[b ]{v') = 0  

ioi \u \ > D  . That is, the convexity imposes a weighted averaging constraint 
which only affects the amplitude. This completes the proof of the convexity of 
the set C  2 -

Let the set C  3 contain all the images having the same W T local extrema in 
the space-scale domain. The convexity of the set C  3 can be proved similarly 
as in convexity of the set C  2 consisting of all the bandlimited signals. Let 
the Fourier transforms of the signals a and b be !F[a ] and !F[b ] respectively 
which have the same local extrema points, i.e they both belong to the same set 
C  3. The signal a^[a]{ i / ) has the same local extrema as the signal 7^[a ] ( i / ), 
and similarly, the signal (1 — a)J^[b]{u) has the same local extrema as the 
signal J^[b]{i'), since only scaling is performed on the amplitude of the signal. 
Therefore, the resulting signal J^[c\{v) =  aJ^[a]{u) -I- (1 — a)T[b]{u ) produce 
the same local extrema, and belong to the set C  z- This completes the proof 
of the convexity of the set C 3.
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