2,664 research outputs found

    Some remarks on wheeled autonomous vehicles and the evolution of their control design

    Full text link
    Recent investigations on the longitudinal and lateral control of wheeled autonomous vehicles are reported. Flatness-based techniques are first introduced via a simplified model. It depends on some physical parameters, like cornering stiffness coefficients of the tires, friction coefficient of the road, ..., which are notoriously difficult to identify. Then a model-free control strategy, which exploits the flat outputs, is proposed. Those outputs also depend on physical parameters which are poorly known, i.e., the vehicle mass and inertia and the position of the center of gravity. A totally model-free control law is therefore adopted. It employs natural output variables, namely the longitudinal velocity and the lateral deviation of the vehicle. This last method, which is easily understandable and implementable, ensures a robust trajectory tracking problem in both longitudinal and lateral dynamics. Several convincing computer simulations are displayed.Comment: 9th IFAC Symposium on Intelligent Autonomous Vehicles (Leipzig, Germany, 29.06.2016 - 01.07.2016

    Torque vectoring based drive assistance system for turning an electric narrow tilting vehicle

    Get PDF
    The increasing number of cars leads to traffic congestion and limits parking issue in urban area. The narrow tilting vehicles therefore can potentially become the next generation of city cars due to its narrow width. However, due to the difficulty in leaning a narrow tilting vehicle, a drive assistance strategy is required to maintain its roll stability during a turn. This article presents an effective approach using torque vectoring method to assist the rider in balancing the narrow tilting vehicles, thus reducing the counter-steering requirements. The proposed approach is designed as the combination of two torque controllers: steer angle–based torque vectoring controller and tilting compensator–based torque vectoring controller. The steer angle–based torque vectoring controller reduces the counter-steering process via adjusting the vectoring torque based on the steering angle from the rider. Meanwhile, the tilting compensator–based torque vectoring controller develops the steer angle–based torque vectoring with an additional tilting compensator to help balancing the leaning behaviour of narrow tilting vehicles. Numerical simulations with a number of case studies have been carried out to verify the performance of designed controllers. The results imply that the counter-steering process can be eliminated and the roll stability performance can be improved with the usage of the presented approach

    A methodology for the design of robust rollover prevention controllers for automotive vehicles: Part 2-Active steering

    Get PDF
    In this paper we apply recent results from robust control to the problem of rollover prevention in automotive vehicles. Specifically, we exploit the results of Pancake, Corless and Brockman, which provide controllers to robustly guarantee that the peak magnitudes of the performance outputs of an uncertain system do not exceed certain values.We use the dynamic Load Transfer Ratio LTRd as a performance output for rollover prevention, and design active-steering based rollover controllers to keep the magnitude of this quantity below a certain level, while we use control input u as an additional performance output to limit the maximum amount of control effort. We present numerical simulations to demonstrate the efficacy of our controllers

    A Review of Active Yaw Control System for Vehicle Handling and Stability Enhancement

    Get PDF
    Yaw stability control systemplays a significant role in vehicle lateral dynamics in order to improve the vehicle handling and stability performances. However, not many researches have been focused on the transient performances improvement of vehicle yaw rate and sideslip tracking control. This paper reviews the vital elements for control system design of an active yaw stability control system; the vehicle dynamic models, control objectives, active chassis control, and control strategies with the focus on identifying suitable criteria for improved transient performances. Each element is discussed and compared in terms of their underlying theory, strengths, weaknesses, and applicability. Based on this, we conclude that the sliding mode control with nonlinear sliding surface based on composite nonlinear feedback is a potential control strategy for improving the transient performances of yaw rate and sideslip tracking control
    • …
    corecore