29 research outputs found

    Joint RRH Activation and Robust Coordinated Beamforming for Massive MIMO Heterogeneous Cloud Radio Access Networks

    Get PDF

    Beamformer Design with Smooth Constraint-Free Approximation in Downlink Cloud Radio Access Networks

    Full text link
    It is known that data rates in standard cellular networks are limited due to inter-cell interference. An effective solution of this problem is to use the multi-cell cooperation idea. In Cloud Radio Access Network, which is a candidate solution in 5G and beyond, cooperation is applied by means of central processors (CPs) connected to simple remote radio heads with finite capacity fronthaul links. In this study, we consider a downlink scenario and aim to minimize total power spent by designing beamformers. We consider the case where perfect channel state information is not available in the CP. The original problem includes discontinuous terms with many constraints. We propose a novel method which transforms the problem into a smooth constraint-free form and a solution is found by the gradient descent approach. As a comparison, we consider the optimal method solving an extensive number of convex sub-problems, a known heuristic search algorithm and some sparse solution techniques. Heuristic search methods find a solution by solving a subset of all possible convex sub-problems. Sparse techniques apply some norm approximation (â„“0/â„“1,â„“0/â„“2\ell_0/\ell_1, \ell_0/\ell_2) or convex approximation to make the objective function more tractable. We also derive a theoretical performance bound in order to observe how far the proposed method performs off the optimal method when running the optimal method is prohibitive due to computational complexity. Detailed simulations show that the performance of the proposed method is close to the optimal one, and it outperforms other methods analyzed.Comment: 18 pages, 12 figures, submitted to IEEE Access in Feb. 03, 2021. It is a revised version of the paper submitted to IEEE Access in Nov. 23, 2020. Revisions were made according to the reviewer comment

    A Theoretical Performance Bound for Joint Beamformer Design of Wireless Fronthaul and Access Links in Downlink C-RAN

    Get PDF
    It is known that data rates in standard cellular networks are limited due to inter-cell interference. An effective solution of this problem is to use the multi-cell cooperation idea. In Cloud Radio Access Network (C-RAN), which is a candidate solution in 5G and future communication networks, cooperation is applied by means of central processors (CPs) connected to simple remote radio heads with finite capacity fronthaul links. In this study, we consider a downlink C-RAN with a wireless fronthaul and aim to minimize total power spent by jointly designing beamformers for fronthaul and access links. We consider the case where perfect channel state information is not available in the CP. We first derive a novel theoretical performance bound for the problem defined. Then we propose four algorithms with different complexities to show the tightness of the bound. The first two algorithms apply successive convex optimizations with semi-definite relaxation idea where other two are adapted from well-known beamforming design methods. The detailed simulations under realistic channel conditions show that as the complexity of the algorithm increases, the corresponding performance becomes closer to the bound.Comment: 30 pages, single column, 11 figures, submitted to Transactions on Wireless Communications in Oct. 20, 2020. Major Revision decision was made in Jan. 16, 2021. After the revision, it will be resubmitted to the same journal until the end of February, 202

    Energy-efficient resource allocation in limited fronthaul capacity cloud-radio access networks

    Get PDF
    In recent years, cloud radio access networks (C-RANs) have demonstrated their role as a formidable technology candidate to address the challenging issues from the advent of Fifth Generation (5G) mobile networks. In C-RANs, the modules which are capable of processing data and handling radio signals are physically separated in two main functional groups: the baseband unit (BBU) pool consisting of multiple BBUs on the cloud, and the radio access networks (RANs) consisting of several low-power remote radio heads (RRH) whose functionality are simplified with radio transmission/reception. Thanks to the centralized computation capability of cloud computing, C-RANs enable the coordination between RRHs to significantly improve the achievable spectral efficiency to satisfy the explosive traffic demand from users. More importantly, this enhanced performance can be attained at its power-saving mode, which results in the energy-efficient C-RAN perspective. Note that such improvement can be achieved under an ideal fronthaul condition of very high and stable capacity. However, in practice, dedicated fronthaul links must remarkably be divided to connect a large amount of RRHs to the cloud, leading to a scenario of non-ideal limited fronthaul capacity for each RRH. This imposes a certain upper-bound on each user’s spectral efficiency, which limits the promising achievement of C-RANs. To fully harness the energy-efficient C-RANs while respecting their stringent limited fronthaul capacity characteristics, a more appropriate and efficient network design is essential. The main scope of this thesis aims at optimizing the green performance of C-RANs in terms of energy-efficiency under the non-ideal fronthaul capacity condition, namely energy-efficient design in limited fronthaul capacity C-RANs. Our study, via jointly determining the transmit beamforming, RRH selection, and RRH–user association, targets the following three vital design issues: the optimal trade-off between maximizing achievable sum rate and minimizing total power consumption, the maximum energy-efficiency under adaptive rate-dependent power model, the optimal joint energy-efficient design of virtual computing along with the radio resource allocation in virtualized C-RANs. The significant contributions and novelties of this work can be elaborated in the followings. Firstly, the joint design of transmit beamforming, RRH selection, and RRH–user association to optimize the trade-off between user sum rate maximization and total power consumption minimization in the downlink transmissions of C-RANs is presented in Chapter 3. We develop one powerful with high-complexity and two novel efficient low-complexity algorithms to respectively solve for a global optimal and high-quality sub-optimal solutions. The findings in this chapter show that the proposed algorithms, besides overcoming the burden to solve difficult non-convex problems within a polynomial time, also outperform the techniques in the literature in terms of convergence and achieved network performance. Secondly, Chapter 4 proposes a novel model reflecting the dependence of consumed power on the user data rate and highlights its impact through various energy-efficiency metrics in CRANs. The dominant performance of the results form Chapter 4, compared to the conventional work without adaptive rate-dependent power model, corroborates the importance of the newly proposed model in appropriately conserving the system power to achieve the most energy efficient C-RAN performance. Finally, we propose a novel model on the cloud center which enables the virtualization and adaptive allocation of computing resources according to the data traffic demand to conserve more power in Chapter 5. A problem of jointly designing the virtual computing resource together with the beamforming, RRH selection, and RRH–user association which maximizes the virtualized C-RAN energy-efficiency is considered. To cope with the huge size of the formulated optimization problem, a novel efficient with much lower-complexity algorithm compared to previous work is developed to achieve the solution. The achieved results from different evaluations demonstrate the superiority of the proposed designs compared to the conventional work

    A Comprehensive Survey on Resource Allocation for CRAN in 5G and Beyond Networks

    Get PDF
    The diverse service requirements coming with the advent of sophisticated applications as well as a large number of connected devices demand for revolutionary changes in the traditional distributed radio access network (RAN). To this end, Cloud-RAN (CRAN) is considered as an important paradigm to enhance the performance of the upcoming fifth generation (5G) and beyond wireless networks in terms of capacity, latency, and connectivity to a large number of devices. Out of several potential enablers, efficient resource allocation can mitigate various challenges related to user assignment, power allocation, and spectrum management in a CRAN, and is the focus of this paper. Herein, we provide a comprehensive review of resource allocation schemes in a CRAN along with a detailed optimization taxonomy on various aspects of resource allocation. More importantly, we identity and discuss the key elements for efficient resource allocation and management in CRAN, namely: user assignment, remote radio heads (RRH) selection, throughput maximization, spectrum management, network utility, and power allocation. Furthermore, we present emerging use-cases including heterogeneous CRAN, millimeter-wave CRAN, virtualized CRAN, Non- Orthogonal Multiple Access (NoMA)-based CRAN and fullduplex enabled CRAN to illustrate how their performance can be enhanced by adopting CRAN technology. We then classify and discuss objectives and constraints involved in CRAN-based 5G and beyond networks. Moreover, a detailed taxonomy of optimization methods and solution approaches with different objectives is presented and discussed. Finally, we conclude the paper with several open research issues and future directions

    Optimizing Resource Allocation with Energy Efficiency and Backhaul Challenges

    Get PDF
    To meet the requirements of future wireless mobile communication which aims to increase the data rates, coverage and reliability while reducing energy consumption and latency, and also deal with the explosive mobile traffic growth which imposes high demands on backhaul for massive content delivery, developing green communication and reducing the backhaul requirements have become two significant trends. One of the promising techniques to provide green communication is wireless power transfer (WPT) which facilitates energy-efficient architectures, e.g. simultaneous wireless information and power transfer (SWIPT). Edge caching, on the other side, brings content closer to the users by storing popular content in caches installed at the network edge to reduce peak-time traffic, backhaul cost and latency. In this thesis, we focus on the resource allocation technology for emerging network architectures, i.e. the SWIPT-enabled multiple-antenna systems and cache-enabled cellular systems, to tackle the challenges of limited resources such as insufficient energy supply and backhaul capacity. We start with the joint design of beamforming and power transfer ratios for SWIPT in MISO broadcast channels and MIMO relay systems, respectively, aiming for maximizing the energy efficiency subject to both the Quality of Service (QoS) constraints and energy harvesting constraints. Then move to the content placement optimization for cache-enabled heterogeneous small cell networks so as to minimize the backhaul requirements. In particular, we enable multicast content delivery and cooperative content sharing utilizing maximum distance separable (MDS) codes to provide further caching gains. Both analysis and simulation results are provided throughout the thesis to demonstrate the benefits of the proposed algorithms over the state-of-the-art methods

    QoS-aware Adaptive Resource Management in OFDMA Networks

    Get PDF
    PhDOne important feature of the future communication network is that users in the network are required to experience a guaranteed high quality of service (QoS) due to the popularity of multimedia applications. This thesis studies QoS-aware radio resource management schemes in different OFDMA network scenarios. Motivated by the fact that in current 4G networks, the QoS provisioning is severely constrained by the availability of radio resources, especially the scarce spectrum as well as the unbalanced traffic distribution from cell to cell, a joint antenna and subcarrier management scheme is proposed to maximise user satisfaction with load balancing. Antenna pattern update mechanism is further investigated with moving users. Combining network densi fication with cloud computing technologies, cloud radio access network (C-RAN) has been proposed as the emerging 5G network architecture consisting of baseband unit (BBU) pool, remote radio heads (RRHs) and fronthaul links. With cloud based information sharing through the BBU pool, a joint resource block and power allocation scheme is proposed to maximise the number of satisfi ed users whose required QoS is achieved. In this scenario, users are served by high power nodes only. With spatial reuse of system bandwidth by network densi fication, users' QoS provisioning can be ensured but it introduces energy and operating effciency issue. Therefore two network energy optimisation schemes with QoS guarantee are further studied for C-RANs: an energy-effective network deployment scheme is designed for C-RAN based small cells; a joint RRH selection and user association scheme is investigated in heterogeneous C-RAN. Thorough theoretical analysis is conducted in the development of all proposed algorithms, and the effectiveness of all proposed algorithms is validated via comprehensive simulations.China Scholarship Counci
    corecore