845 research outputs found

    Data-Driven Architecture to Increase Resilience In Multi-Agent Coordinated Missions

    Get PDF
    The rise in the use of Multi-Agent Systems (MASs) in unpredictable and changing environments has created the need for intelligent algorithms to increase their autonomy, safety and performance in the event of disturbances and threats. MASs are attractive for their flexibility, which also makes them prone to threats that may result from hardware failures (actuators, sensors, onboard computer, power source) and operational abnormal conditions (weather, GPS denied location, cyber-attacks). This dissertation presents research on a bio-inspired approach for resilience augmentation in MASs in the presence of disturbances and threats such as communication link and stealthy zero-dynamics attacks. An adaptive bio-inspired architecture is developed for distributed consensus algorithms to increase fault-tolerance in a network of multiple high-order nonlinear systems under directed fixed topologies. In similarity with the natural organisms’ ability to recognize and remember specific pathogens to generate its immunity, the immunity-based architecture consists of a Distributed Model-Reference Adaptive Control (DMRAC) with an Artificial Immune System (AIS) adaptation law integrated within a consensus protocol. Feedback linearization is used to modify the high-order nonlinear model into four decoupled linear subsystems. A stability proof of the adaptation law is conducted using Lyapunov methods and Jordan decomposition. The DMRAC is proven to be stable in the presence of external time-varying bounded disturbances and the tracking error trajectories are shown to be bounded. The effectiveness of the proposed architecture is examined through numerical simulations. The proposed controller successfully ensures that consensus is achieved among all agents while the adaptive law v simultaneously rejects the disturbances in the agent and its neighbors. The architecture also includes a health management system to detect faulty agents within the global network. Further numerical simulations successfully test and show that the Global Health Monitoring (GHM) does effectively detect faults within the network

    Neural Network Observer-Based Prescribed-Time Fault-Tolerant Tracking Control for Heterogeneous Multiagent Systems With a Leader of Unknown Disturbances

    Get PDF
    This study investigates the prescribed-time leader-follower formation strategy for heterogeneous multiagent sys-tems including unmanned aerial vehicles and unmanned ground vehicles under time-varying actuator faults and unknown dis-turbances based on adaptive neural network observers and backstepping method. Compared with the relevant works, the matching and mismatched disturbances of the leader agent are further taken into account in this study. A distributed fixed-time observer is developed for follower agents in order to timely obtain the position and velocity states of the leader, in which neural networks are employed to approximate the unknown disturbances. Furthermore, the actual sensor limitations make each follower only affected by local information and measurable local states. As a result, another fixed-time neural network observer is proposed to obtain the unknown states and the complex uncertainties. Then, a backstepping prescribed-time fault-tolerant formation controller is constructed by utilizing the estimations, which not only guarantees that the multiagent systems realize the desired formation configuration in a user-assignable finite time, but also ensures that the control action can be smooth everywhere. Finally, simulation examples are designed to testify the validity of the developed theoretical method

    Event-triggering architectures for adaptive control of uncertain dynamical systems

    Get PDF
    In this dissertation, new approaches are presented for the design and implementation of networked adaptive control systems to reduce the wireless network utilization while guaranteeing system stability in the presence of system uncertainties. Specifically, the design and analysis of state feedback adaptive control systems over wireless networks using event-triggering control theory is first presented. The state feedback adaptive control results are then generalized to the output feedback case for dynamical systems with unmeasurable state vectors. This event-triggering approach is then adopted for large-scale uncertain dynamical systems. In particular, decentralized and distributed adaptive control methodologies are proposed with reduced wireless network utilization with stability guarantees. In addition, for systems in the absence of uncertainties, a new observer-free output feedback cooperative control architecture is developed. Specifically, the proposed architecture is predicated on a nonminimal state-space realization that generates an expanded set of states only using the filtered input and filtered output and their derivatives for each vehicle, without the need for designing an observer for each vehicle. Building on the results of this new observer-free output feedback cooperative control architecture, an event-triggering methodology is next proposed for the output feedback cooperative control to schedule the exchanged output measurements information between the agents in order to reduce wireless network utilization. Finally, the output feedback cooperative control architecture is generalized to adaptive control for handling exogenous disturbances in the follower vehicles. For each methodology, the closed-loop system stability properties are rigorously analyzed, the effect of the user-defined event-triggering thresholds and the controller design parameters on the overall system performance are characterized, and Zeno behavior is shown not to occur with the proposed algorithms --Abstract, page iv

    Reactive Trajectory Generation in an Unknown Environment

    Full text link
    Autonomous trajectory generation for unmanned aerial vehicles (UAVs) in unknown environments continues to be an important research area as UAVs become more prolific. We define a trajectory generation algorithm for a vehicle in an unknown environment with wind disturbances, that relies only on the vehicle's on-board distance sensors and communication with other vehicles within a finite region to generate a smooth, collision-free trajectory up to the fourth derivative. The proposed trajectory generation algorithm can be used in conjunction with high-level planners and low-level motion controllers. The algorithm provides guarantees that the trajectory does not violate the vehicle's thrust limitation, sensor constraints, or a user-defined clearance radius around other vehicles and obstacles. Simulation results of a quadrotor moving through an unknown environment with a moving obstacle demonstrates the trajectory generation performance.Comment: Revised version with minor text updates and more representative simulation results for IROS 2017 conferenc

    Distributed Robust Consensus Control of Multi-agent Systems with Heterogeneous Matching Uncertainties

    Full text link
    This paper considers the distributed consensus problem of linear multi-agent systems subject to different matching uncertainties for both the cases without and with a leader of bounded unknown control input. Due to the existence of nonidentical uncertainties, the multi-agent systems discussed in this paper are essentially heterogeneous. For the case where the communication graph is undirected and connected, a distributed continuous static consensus protocol based on the relative state information is first designed, under which the consensus error is uniformly ultimately bounded and exponentially converges to a small adjustable residual set. A fully distributed adaptive consensus protocol is then designed, which, contrary to the static protocol, relies on neither the eigenvalues of the Laplacian matrix nor the upper bounds of the uncertainties. For the case where there exists a leader whose control input is unknown and bounded, distributed static and adaptive consensus protocols are proposed to ensure the boundedness of the consensus error. It is also shown that the proposed protocols can be redesigned so as to ensure the boundedness of the consensus error in the presence of bounded external disturbances which do not satisfy the matching condition. A sufficient condition for the existence of the proposed protocols is that each agent is stabilizable.Comment: 16 page, 10 figures. This manuscript is an extended version of our paper accepted for publication by Automatic

    Observer-based fuzzy tracking control for an unmanned aerial vehicle with communication constraints

    Get PDF
    We investigate the trajectory tracking problem of underactuated aerial vehicles with unknown mass in the presence of unknown non-vanishing disturbances using an event-triggered approach, while considering the constraint that the derivative of the reference trajectory is not available. In contrast to existing references where the derivative of the reference trajectory is needed, here we first introduce a high-gain observer to estimate the unknown derivative solely from the reference trajectory. A disturbance observer is designed to compensate for non-vanishing disturbances, such as wind, etc. Fuzzy logic systems are used to approximate the model uncertainty arising from the unknown mass of the vehicle, and then we derive a thrust command law that follows from a desired stabilizing force. Additionally, unlike traditional fixed and relative threshold strategies that rely solely on control signals, we develop a new time-varying eventtriggered mechanism linked to the performance of the controlled system, taking into account factors such as tracking errors, to develop angular velocity commands, enhancing tracking accuracy while efficiently conserving communication resources, especially in the absence of Zeno behavior. We present simulation results to demonstrate the efficacy of the proposed approach and validate the theoretical findings.</p
    • …
    corecore