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Abstract—This study investigates the prescribed-time leader-
follower formation strategy for heterogeneous multiagent sys-
tems including unmanned aerial vehicles and unmanned ground
vehicles under time-varying actuator faults and unknown dis-
turbances based on adaptive neural network observers and
backstepping method. Compared with the relevant works, the
matching and mismatched disturbances of the leader agent are
further taken into account in this study. A distributed fixed-
time observer is developed for follower agents in order to timely
obtain the position and velocity states of the leader, in which
neural networks are employed to approximate the unknown
disturbances. Furthermore, the actual sensor limitations make
each follower only affected by local information and measurable
local states. As a result, another fixed-time neural network
observer is proposed to obtain the unknown states and the
complex uncertainties. Then, a backstepping prescribed-time
fault-tolerant formation controller is constructed by utilizing
the estimations, which not only guarantees that the multiagent
systems realize the desired formation configuration in a user-
assignable finite time, but also ensures that the control action can
be smooth everywhere. Finally, simulation examples are designed
to testify the validity of the developed theoretical method.

Index Terms—heterogeneous multiagent systems, air-ground
cooperation, formation tracking, prescribed-time control, neural
network observers, actuator faults.

I. INTRODUCTION

IN RECENT years, formation control, as one of the im-
portant research area in cooperative tracking of multia-

gent systems (MASs), has drawn great attention because of
its feasible and extensive applications, such as autonomous
underwater vehicles, unmanned aerial vehicles, and mobile
robots [1], [2]. Usually, the central algorithms rely on perfect
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communication and prone to fail due to connection failure
or occurring fault in the central controller, it is significant
to develop a distributed formation strategy. The target of
a distributed formation protocol is that the followers not
only achieve the specified geometric configuration based on
the local information but also accomplish the path tracking
according to the leader signal [3]. In practice, the agents
often have nonidentical dynamics and even dimensions in
real applications, heterogeneous MASs have been increasingly
explored in the last decades [4], [5]. As a typical scenario
of heterogeneous MASs, the distributed air-ground formation
of unmanned aerial vehicles (UAVs) and unmanned ground
vehicles (UGVs) has many potential advantages over single-
robot systems by improving efficiency, reliability and flexibil-
ity to achieve complex tasks, such as exploration and rescue
in large-scale environments [6]–[8]. Enhancing the visibility
zone by cooperating the UAVs with the UGVs is an important
application of it. Specifically, the aerial platform provides a
wide field of vision, which makes up for the disadvantage of
limited observation distance of the ground platform. Mean-
while, the high target localization accuracy of UAV perfectly
solves the problem of unsatisfactory accuracy produced by
the uncertainty of sensor measurement in UAV positioning
performance [9]. Hence, the research of cooperative formation
problem for air-ground systems has important theoretical and
practical significance. However, due to the heterogeneity, high
nonlinearity and coupling dynamics of UAVs and UGVs, the
existing results of realizing formation configuration through
air-ground coordination are still lacked [10]–[12].

In the study of formation tracking of MASs, improving
tracking speed is a significant issue and the above-mentioned
results only guarantee asymptotic stability. Different from the
above, finite-time tracking can ensure satisfactory convergence
rate and provide strong robustness against uncertainties [13].
Thus, extensive research has been conducted on finite-time
tracking of MASs [14]–[17]. Unfortunately, the obtained set-
tling time in the above-mentioned works always depend on
initial conditions, which means that the convergence time can
be sufficiently large while increasing in initial conditions. To
solve this problem, fixed-time conception was introduced in
[18], in which the settling time is uniformly bounded and not
rely on the initial conditions of the system. This property is
extremely appealing and many fixed-time tracking protocols
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for MASs were reported [19]–[22]. It is worth emphasizing
that the upper bound of the settling time in fixed-time control
is subjected to certain restrictions and cannot be arbitrarily pre-
assigned, which constrains the widespread application of this
method in the aerospace field. Furthermore, the finite/fixed-
time control can not always provide continuous and smooth
control input due to the utilizing of the signum function.
However, it is critical for air-ground formation systems that
the constructed tracking strategy can not only guarantee that
the control system approach to the desired performance within
a preassigned time, but also generate smooth control action
everywhere, which is challenging. Recently, prescribed-time
tracking has gained significant research because it provides
the solution of the aforementioned problems [23]–[26]. The
convergence time can be set in advance irrespective of any
controller gains, the initial states of the MASs and the net-
work algebraic connectivity. Moreover, by utilizing the regular
feedback control approach, the prescribed-time method can
offer both chattering elimination and satisfactory tracking
performance, which is more preferable in practice. However,
the above results are devoted to homogeneous MASs and
studying more general heterogeneous MAS is interesting and
meaningful. Specifically, because of the existing heterogeneity
between UAVs and UGVs, prescribed-time observer and con-
troller should be redeveloped, which represents a key point of
this article.

Due to the increasing number of the equipped actuators
and other system components, the reliability and stability
requirements of MASs are rapidly enhanced. Specifically,
actuators may undergo faults during operation. In a safety-
critical system, such as UAVs-UGVs cooperative systems,
reliability is particularly important because a minor actua-
tor fault in any subsystem can result in significant system
degradation or even a complete collapse [27], [28]. There-
fore, it is important to design fault-tolerant control scheme
for MASs to ensure the safe operation. As a result, many
fault-tolerant control strategies are developed for MASs, for
example, adaptive fault-tolerant control [29]–[32], sliding-
mode fault-tolerant control [33], [34], observer-based fault
estimation and fault-tolerant control [35], [36], event-triggered
fault-tolerant control [37], [38]. Generally, in passive fault-
tolerant strategies, the system fault can be considered as an
additional uncertain nonlinear function [39]. In addition, since
the most practical systems, such as UAVs, have strong coupled
nonlinearity and uncertainty, thus, by using the universal
approximation capability of Fuzzy Logic Systems (FLSs) or
Neural Networks (NNs), adaptive FLS or NN strategies are
constructed to MASs to estimate complex nonlinear terms or
uncertainties [40]–[44]. However, the existing results focus on
homogeneous MASs, not on heterogeneous MASs, especially
in air-ground heterogeneous formation systems with actuator
faults. Therefore, the crucial challenge in this paper is how
to guarantee the performance of intelligent estimation, while
achieving prescribed-time formation tracking.

In view of the above status, this study proposes an adaptive
prescribed-time fault-tolerant tracking protocol combined with
adaptive fixed-time NN observers and prescribed-time tracking
controller through backstepping technique to deal with uncer-

tain air-ground heterogeneous MASs under actuator faults and
disturbances. The chief features of this study are as below.

1) This study first presents a fixed-time NN observer-
based prescribed-time control method of air-ground heteroge-
neous MASs under time-varying actuator faults, disturbances
and unknown parameter uncertainties. The developed control
framework not only ensures that all the followers realize the
desired formation configuration in prescribed finite time under
undirected connected topology containing a spanning tree, but
also guarantees that the control input signals of all follower
agents are smooth, which has more practical application value.
Compared with the traditional finite-time [14]–[17] and fixed-
time [19]–[22] methods, the obtained formation realizing time
of this strategy is not determined by initial states or other
designed parameters, thus it can be uniformly prespecified.

2) The new distributed fixed-time NN observers are con-
structed in this paper to estimate the unknown position or
velocity states based on the local information of each agent
system, which effectively reduces the burden of information
exchange in the topology network. Moreover, the obtained
settling time is explicitly linked with several observer gains,
which facilitates the adjustment of the convergence time under
different operation environments.

3) In this paper, the adaptive NN mechanism is designed to
effectively estimate the effects of the unknown disturbances
and the time-varying actuator faults. Then, by using these
estimations, a new prescribed-time backstepping formation
tracking algorithm is developed for each follower, which guar-
antees bounded formation tracking under unmeasured states
and actuator faults within a preassignable finite time. Fur-
thermore, the designed approach can avoid excessively large
driving force due to the use of regular feedback control, which
is beneficial for the promotion of this method on air-ground
formation applications under multiobjective constraints.

Notations: In this article, define the set of real num-
bers and n-dimensional real vectors as R and Rn, re-
spectively. Denote sigk(x) = sign(x)|x|k, where k >
0, x ∈ R, and sign(.) is the standard signum func-
tion and |.| is the absolute value operation. For a vec-
tor x = [x1, x2, ..., xn]

T ∈ Rn, define sigk(x) =[
sign(x1)|x1|k, sign(x2)|x2|k, ..., sign(xn)|xn|k

]T
.

II. PROBELM FORMULATIONS AND PRELIMINARIES

A. Graph Theory

Let’s define the studied heterogeneous MASs including of
N follower agents and a leader agent. The leader is mark
as 0 and the followers are indicated as i = 1, 2, ..., N . By
utilizing an undirected graph G = (V,E,A) to denote the
network topology between the follower agent, where V is the
follower set, E ∈ {(i, j) ∈ V × V } is the edge set, and
A = [aij ] ∈ RN×N is the weighted adjacency matrix of the
graph. The element aij > 0 if there is an edge from the jth
follower to the ith follower, and aij = 0 otherwise. Define the
in-degree matrix of graph G is D = diag{d1,d2...,dN} with
di =

∑N
j=1 aij for i = 1, 2, ..., N . Then, the Laplacian matrix

is defined as L = D−A. The communication weights between
the followers and the leader are described by the diagonal
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matrix B= diag(b1, b2..., bN ), where bi > 0 if the information
of the leader is obtainable to the ith follower, and bi = 0
otherwise. In this study, H = L+B is designed.

Assumption 1: There is at least one feasible way from the
leader to each follower, and the connected network without
leader is undirected connected.

Remark 1: For the communication topology of N+1 agents,
Assumption 1 is a prerequisite to guarantee that the follower
get access to the information of the leader. It is also the
prerequisite to solve the cooperative formation tracking issue.
If the leader is isolated from other followers, the considered
distributed formation cannot be completed due to a lack of
reference signals.

B. System Description

In this study, since the UGV can provide a larger payload
capability and get a better target localization performance than
UAV in complex unknown environments, it is selected as the
leader to study cooperative formation tracking protocol. Its
dynamics can be described by the following expression:

ẋ0 = v0 cos θ0

ẏ0 = v0 sin θ0

θ̇0 = ω0

(1)

where (x0, y0) ∈ R2 represents the position, v0 ∈ R denotes
the velocity, θ0 ∈ R denotes the angular orientation, ω0 ∈ R
is the angular velocity of the leader. Based on the modeling
results in [45], we further take the disturbances and model
uncertainties into consideration, and the dynamic system of
Eq. (1) can be reformulated as the following system. ẋp0 = vp0 + ∆01

v̇p0 = up0 + ∆02

yp0 = xp0

(2)

where xp0 ∈ R2, vp0 ∈ R2, and up0 ∈ R2 are the position,
velocity and control signal of the leader agent, respectively,
yp0 denotes the output of the controlled system, ∆01 is the
so-called mismatched disturbance and ∆02 represents the
lumped uncertainty composed of the nonlinear function and
the matching disturbance.

Consider the team of N followers consisting of N1

UGVs and N2 UAVs. For convenience, X1= {1, 2, ..., N1},
X2= {N1 + 1, N1 + 2, ..., N1 +N2}, and X= {1, 2, ..., N}
are defined. Then, similar to Eq. (2), the follower i(i ∈ X1)
is described as the following dynamic model:{

ẋpi = vpi + ∆p
i1

v̇pi = upi + ∆p
i2.

(3)

The dynamics of the ith (i ∈ X2) follower is represented
by the following nonlinear system [45]:

ẍqi = (cosφi sin θi cosψi + sinφi sinψi)ui1/mi − ẋqi
ξxi
mi

ÿqi = (cosφi sin θi sinψi − sinφi sinψi)ui1/mi − ẏqi
ξyi
mi

z̈qi = (cos θi cosφi)ui1/mi − g − żqi
ξzi
mi

φ̈i = θ̇iψ̇i
Iyi−Izi
Ixi

− Iri
Ixi
θ̇iw̄i + 1

Ixi
ui2 − ξφi

Ixi
φ̇i

θ̈i = φ̇iψ̇i
Izi−Ixi
Iyi

− Iri
Iyi
φ̇iw̄i + 1

Iyi
ui3 − ξθi

Iyi
θ̇i

ψ̈i = φ̇iθ̇i
Ixi−Iyi
Izi

+ 1
Izi
ui4 − ξψi

Izi
ψ̇i

(4)

where (xqi , y
q
i , z

q
i ) ∈ R3 and (φi, θi, ψi) ∈ R3 are the

inertial position and Eular angles, respectively; Ixi, Iyi, and
Izi represent the moments of inertia; ξxi, ξyi, ξzi and ξϕi, ξθi
and ξψi denote the aerodynamic damping coefficients; Iri is
the inertia of the rotor; w̄i = wi4+wi3−wi2−wi1. The control
inputs include control thrust ui1 and three control torques ui2,
ui3 and ui4, which are related by the relations of Eq. (5)

ui1 = ri(w
2
i1 + w2

i2 + w2
i3 + w2

i4)
ui2 = rili(w

2
i4 − w2

i2)
ui3 = rili(w

2
i3 − w2

i1)
ui4 = ti(w

2
i2 + w2

i4 − w2
i1 − w2

i3)

(5)

where li denotes the distance between the rotor axis and
the center of mass, ri and ti denote the different moment
parameters.

In this study, the core mission of the UAV followers is to
make the trajectory of the position subsystem to track and
maintain the desired formation configuration. As a result, the
system model of the ith UAV can be expressed as: ẍqi = uxi/mi + fxi

ÿqi = uyi/mi + fyi
z̈qi = uzi/mi + fzi

(6)

where uxi, uyi, and uzi, represented in Eq. (7), denote the
virtual control inputs for the X, Y, and Z axis, respectively: uxi = (cosφi sin θi cosψi + sinφi sinψi)ui1

uyi = (cosφi sin θi sinψi − sinφi sinψi)ui1
uzi = (cos θi cosφi)ui1

(7)

and fxi, fyi, and fzi are given in Eq. (8): fxi = −ξxiẋi/mi

fyi = −ξyiẏi/mi

fzi = −ξziżi/mi + g.
(8)

C. Transformed System and Problem Formulation

According to the definition of actuator faults in [31] and
[34], the fault model for the agent i (i ∈ X) is described as:

uoi = ui + (Λi(t)− Ini)ui + δi(t) = ui + uFi (9)

where ui, uFi , and uoi denote the actuator desired input, faulty
input, and actual output, respectively. Let ni represent the state
dimension of the ith agent. Λi(t) = diag{ρi1, ..., ρini} denote
the actuator effectiveness parameter and 0 ≤ ρij < 1 denotes
the fault indicator for the jth (j = 1, ..., ni) actuator of the ith
agent. δi(t) denotes the bias fault, which is time-varying and
bounded, i.e., there is a positive constant δ̄ such that ‖δi(t)‖ ≤
δ̄.

Next, in order to construct the distributed formation tracking
protocol, we transform the follower agents of Eqs. (3) and (4)
into an uniform form under disturbances and actuator faults.
Specifically, the follower i (i ∈ X) is modeled as: ẋi = vi + ∆i1

v̇i = ui + Ωi
yi = xi

(10)

where Ωi = ∆i2 + uFi , xi, vi, yi ∈ Rni denote the position
state, velocity state, and output state, respectively, ∆i1 is the
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mismatched disturbance, ∆i2 is the lumped uncertainty and ui
denote the control signal.

Assumption 2: The disturbance ∆i1 is bounded by an
unknown positive constant ∆̄1, i.e., ‖∆i1‖ ≤ ∆̄1.

Assumption 3: The time-varying unknown uncertainty ∆i2

is bounded, i.e., there is a positive scalar ∆̄2, such that
‖∆i2‖ ≤ ∆̄2.

Assumption 4: It is assumed that the uncertain fault uFi
satisfies

∥∥uFi ∥∥ ≤ ūF , in which ūF is a positive constant.
Remark 2: Note that Assumptions 2-4 are required to

guarantee the fault-tolerant tracking for MASs under the effect
of disturbances. These assumptions are general controllability
conditions, which can be found, e.g. in [34], [39].

By using the approximation characteristics of the NNs, the
unknown nonlinear terms ∆i1 and Ωi can be estimated with
arbitrary accuracy as follows:{

∆i1 = ω∗Ti1 si1(xi) + δi1(xi, vi)
Ωi = ω∗Ti2 si2(xi, vi) + δi2(xi, vi)

(11)

where ω∗i1 and ω∗i2 denote the ideal weight vectors, δi1 and
δi2 are the approximation errors, and sij (j = 1, 2) is the
following Gaussian function:

sij(.) = exp

(
− (Zi − µi)T (Zi − µi)

ν2
i

)
(12)

where Zi denotes the NN input vector, µi and νi denote the
center and width of the NN, respectively. It is reasonable that
ω∗ij and δij satisfy

∥∥ω∗ij∥∥ ≤ ωm, ‖δij‖ ≤ δm with ωm and δm
being the unknown positive constants.

To better describe the formation configuration, a time-
varying vector hi(t) ∈ Rni is designed to represent the
predefined formation between the follower i (i ∈ X) and the
leader. Next, the definition of the prescribed-time formation
control for the studied UAVs-UGVs heterogeneous MASs is
given.

Definition 1: For the heterogeneous MASs described by Eqs.
(2) and (10), the prescribed-time fault-tolerant formation is
said to be realized, if for arbitrarily given initial states xi(0),
the following equation can be achieved:

lim
t→Tc

(xi(t)− x0(t)− hi(t)) = 0, i ∈ X. (13)

in which Tc > 0 denotes the prescribed convergence time,
which can be preassigned arbitrarily by the user without
dependence on the initial conditions.

D. Further Definitions and Lemmas

Consider the following dynamic system

ẋ(t) = g(t, x(t)), x(0) = x0 (14)

in which x ∈ Rn and g (·) ∈ Rn denotes a time-varying
unknown function. Suppose that the equilibrium point for the
system of Eq. (14) is the origin.

Definition 2: [18] The origin of the dynamic system of Eq.
(14) realizes the global fixed-time stability when it achieves
finite-time stability and the settling time T (x) satisfies that,
for ∃Tm > 0, T (x) ≤ Tm,∀x0 ∈ Rn.

Definition 3 [26]: The equilibrium point of the system
of Eq. (14) achieves the globally prescribed-time stability
when it accomplishes globally finite-time stability and the
convergence time T (x) is an user-assignable positive con-
stant, i.e., ∀0 <Tc ≤ Tm, T (x) can be prescribed such that
Tc ≤ T (x) ≤ Tm.

Lemma 1: [18] For the system of Eq. (14), if the following
inequality can be satisfied

V̇ (x) ≤ −aV e(x)− bV f (x) (15)

in which V (x) is a continuous radially unbounded function,
a > 0, b > 0, 0 < e < 1, and f > 1. Then, the system
achieves the globally fixed-time stability of Eq. (14) and the
convergence time T (x) is upper bounded by:

T (x) ≤ Tm :=
1

b (f − 1)
+

1

a (1− e)
. (16)

Lemma 2( [18]): For the system of Eq. (14), if the following
inequality can be satisfied

V̇ (x) ≤ −cV g(x)− dV h(x)+ϑ (17)

for some g, h, c, d > 0, 0 < g < 1, h > 1, and 0 < ϑ < ∞.
Then, the system of Eq. (14) achieves the practical fixed-time
stability. Moreover, the convergence threshold is expressed as:

Ω =

{
x|V (x) ≤ min

{[
ϑ

c (1− o)

] 1
g

,

[
ϑ

d (1− o)

] 1
h

}}
(18)

where 0 < o < 1. The fixed time required to reach the residual
set is T ≤ Tmax := 1

cχ(1−p) + 1
dχ(q−1) .

Lemma 3 [26]: For the system of Eq. (14), if the following
inequality holds

V̇ (x) ≤ −λV (x)− 2
µ̇ (t0, T )

µ (t0, T )
V (x), t ∈ [t0, t0 + T ) (19)

with:

µ (t0, T ) =

{ (
T

t0+T−t

)l
, t ∈ [t0, t0 + T )

1, t ∈ [t0 + T,∞)
(20)

where λ is a designed constant, l > 2 and T is the duration
of the time-varying period of the function of Eq. (20). Then,
the equilibrium point of the system of Eq. (14) is globally
prescribed-time stability within the needed prescribed time T .

Lemma 4( [22]): Let ς1, ς2, ..., ςN ≥ 0 and 0 < r ≤ 1.
Then,

N∑
i=1

ςri ≥
(
N∑
i=1

ςi

)r
;

Lemma 5( [22]): Let ς1, ς2, ..., ςN ≥ 0 and r > 1. Then,
N∑
i=1

ςri ≥ N1−r
(
N∑
i=1

ςi

)r
.

Remark 3: Many existing results of formation control for
air-ground systems only achieve asymptotical tracking without
considering external disturbances and unknown actuator faults
[10]–[12], which is unsatisfactory to engineering realizing of
UAVs-UGVs real-time formation systems. Different from the
above results, the disturbances of the leader and the lumped
uncertainties for each follower are further considered in this
paper, which is closer to the real engineering application
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environment. Moreover, this study proposes an observer-based
prescribed-time formation tracking algorithm, the control error
can approach to a small enough region of origin within a
prespecified time. The settling time completely not relies
on the initial states and any controller parameters, which
facilitates the implementation in an unknown environment by
the new users.

III. THEORETICAL RESULTS

A distributed adaptive NN observer is firstly constructed
to evaluate the leader state within a fixed convergence time.
Next, to address the unknown faults and external disturbances,
another decentralized fixed-time NN observer is constructed in
the presence of partial unmeasured states of followers. Finally,
a backstepping-based prescribed-time formation tracking con-
troller is designed for each follower.

A. Adaptive Distributed Fixed-Time NN Observer for Leader
For leader, the unknown functions ∆01 and ∆02 can be

approximated by NNs as:{
∆01 = ω̂Ti01si01(x̂0) + δi01(x0, v̂0)
∆02 = ω̂Ti02si02(x̂0, v̂0) + δi02(x0, v0, x̂0, v̂0)

(21)

where ω̂Ti01 and ω̂Ti02 denote the estimations of the optimal
weight matrix, δi01 and δi02 denote the approximate errors,
and satisfy ‖δi01‖ ≤ δm1, ‖δi02‖ ≤ δm2 with δm1 and δm2

being the unknown positive constants.
Let x̂i0 and v̂i0 denote the estimated states held at agent

i (i ∈ X) for states xp0 and vp0 , respectively. A distributed
fixed-time NN observer has the form:

˙̂xi0(t) = v̂i0(t) + ∆̂i01(t)

+ ki01

N∑
j=1

aij (x̂i0 − x̂j0) + bi (x0 − x̂i0)

+ ϑ1sigα

(
N∑
j=1

aij (x̂i0 − x̂j0) + bi (x0 − x̂i0)

)

+ ϑ2sigβ

(
N∑
j=1

aij (x̂i0 − x̂j0) + bi (x0 − x̂i0)

)
˙̂vi0(t) = ui0(t) + ∆̂i02(t)

+ ki02

N∑
j=1

aij (x̂i0 − x̂j0) + bi (x0 − x̂i0)

+ ϑ1sigα

(
N∑
j=1

aij (x̂i0 − x̂j0) + bi (x0 − x̂i0)

)

+ ϑ2sigβ

(
N∑
j=1

aij (x̂i0 − x̂j0) + bi (x0 − x̂i0)

)
(22)

where ki01, ki02, ϑ1, ϑ2 are positive observer design parame-
ters, and 0 < α < 1, β > 1.

Let ei0 =
[
eTi01, e

T
i02

]T
, ei01 = yp0 − ŷi, and ei02 = vp0 − v̂i.

Next, the following dynamics can be derived:

ėi0 = (Ai0 ⊗ I2) ei0 +
2∑
j=1

(
Fij ⊗

(
∆ij − ∆̂ij

))
− ϑ1sigα [(Ci0H ⊗ I2) ei0]− ϑ2sigβ [(Ci0H ⊗ I2) ei0]

= (Ai0 ⊗ I2) ei0 + δi0
− ϑ1sigα [(Ci0H ⊗ I2) ei0]− ϑ2sigβ [(Ci0H ⊗ I2) ei0]

(23)

where Ai0 =

[
−ki01H 1
−ki02H 0

]
, satisfying ATi0Θi + ΘiAi0 =

−2Qi0, with Θi = Ci0HPi0, Ci0 =

[
1 0
1 0

]
, Pi0 and Qi0

being positive definite matrixes, δi0 =
[
δTi01, δ

T
i02

]T
, Fi1 =

[1, 0]
T and Fi2 = [0, 1]

T .
Theorem 1: Under Assumption 1, consider the hetero-

geneous MASs of Eqs. (2) and (10), while disturbances,
uncertainties and actuator faults satisfy Assumptions 2-4. By
the fixed-time NN observer of Eq. (22), if the adaptive law
can be constructed according to the relation:

˙̂ωi0m = Γim
[
ei0mC

T
i0A
−1
i0 si0m − σimω̂i0m

]
(24)

where m = 1, 2, Γim = ΓTim > 0, and σim >
1
2

∥∥CTi0A−1
i0

∥∥2‖si0m‖2, the error ei is ensured to practical
fixed-time stability, and the adaptive parameter ω̂i0m will be
uniformly ultimately bounded.

Proof: The following Lyapunov function is constructed:

V0 =
1

2

N∑
i=1

eTi0 (Θi ⊗ I2) ei0+
1

2

N∑
i=1

2∑
m=1

tr
[
ω̃Ti0mΓ−1

imω̃i0m
]

(25)
where ω̃i0m = ω∗i0m − ω̂i0m. For convenience,

let’s define Ve = 1
2

N∑
i=1

eTi0 (Θi ⊗ I2) ei0 and

Vω = 1
2

N∑
i=1

2∑
m=1

tr
[
ω̃Ti0mΓ−1

imω̃i0m
]
.

The time derivative of Ve along Eq. (23) has the following
form:

V̇e = 1
2

N∑
i=1

[
eTi0
(
ATi0Θi ⊗ I2

)
ei0 + eTi0 (ΘiAi0 ⊗ I2) ei0

]
+

N∑
i=1

eTi0 (Θi ⊗ I2) δi0

− ϑ1

N∑
i=1

eTi0 (Θi ⊗ I2) sigα [(Ci0H ⊗ I2) ei0]

− ϑ2

N∑
i=1

eTi0 (Θi ⊗ I2) sigβ [(Ci0H ⊗ I2) ei0]

≤ 1
2

N∑
i=1

[
eTi0
(
ATi0Θi ⊗ I2

)
ei0 + eTi0 (ΘiAi0 ⊗ I2) ei0

]
+

N∑
i=1

(
1
2‖ei0‖

2
+ 1

2‖Θi ⊗ I2‖2δ̄2
i

)
−ϑ1

N∑
i=1

eTi0 (Θi ⊗ I2) sigα [(Ci0H ⊗ I2) ei0]

−ϑ2

N∑
i=1

eTi0 (Θi ⊗ I2) sigβ [(Ci0H ⊗ I2) ei0]

(26)
Taking the derivative of Vω , we have:

V̇ω = −
N∑
i=1

2∑
m=1

tr
[
ω̃Ti0mΓ−1

im
˙̂ωi0m

]
(27)

Substituting the adaptive law of Eq. (24) into Eq. (27), it
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follows that:

V̇ω = −
N∑
i=1

2∑
m=1

tr
[
ω̃Ti0mei0mC

T
i0A
−1
i0 si0m − ω̃Ti0mσimω̂i0m

]
≤

N∑
i=1

2‖ei0‖2 + 1
2

N∑
i=1

2∑
m=1

[
1
2

∥∥CTi0A−1
i0

∥∥2∥∥ω̃Ti0m∥∥2‖si0m‖2

+σim‖ω∗i0m‖
2 − σim‖ω̃i0m‖2

]
(28)

Combining Eq. (26) with the inequality of Eq. (28), it yields
to:

V̇0 ≤ −
N∑
i=1

[
eTi0
((
Qi0 − 5

2I2
)
⊗ I2

)
ei0
]

+ ϕ0

− ϑ1

N∑
i=1

eTi0 (Θi ⊗ I2) sigα [(Ci0H ⊗ I2) ei0]

− ϑ2

N∑
i=1

eTi0 (Θi ⊗ I2) sigβ [(Ci0H ⊗ I2) ei0]

− 1
2

N∑
i=1

2∑
m=1

[(
σim − 1

2

∥∥CTi0A−1
i0

∥∥2‖si0m‖2
)
∗

Γim
(
ω̃Ti0mΓ−1

imω̃i0m
)]

(29)

where ϕ0 =
N∑
i=1

(
1
2‖Θi ⊗ I2‖2δ̄2

i

)
+

N∑
i=1

2∑
m=1

σim‖ω∗i0m‖
2.

Then, Eq. (29) can be converted into the following expres-
sion:

V̇0 ≤ − 1
2

N∑
i=1

[
2λmin(Qi0− 5

2 I2)
λmax(Θi)

eTi0 (Θi ⊗ I2) ei0

]
+ ϕ0

− 1
2

N∑
i=1

2∑
m=1

[(
2σim−‖CTi0A−1

i0 ‖2‖si0m‖2
2λmax(Γim)

)
∗

tr
[
ω̃Ti0mΓ−1

imω̃i0m
]

≤ −η0V0 + ϕ0

(30)
where λmin

(
Qi0 − 5

2I2
)

is the minimum eigenvalue of Qi0−
5
2I2 > 0, λmax(Θi) and λmax(Γim) are the maximal eigen-
values of Θi and Γim, respectively.

Based on Eq. (30), we have that the error system can achieve
asymptotical stability, and ei0 and ω̃i0m are all bounded at any
finite time interval. Next, the practical fixed-time stability of
the estimation error ei0 will be proved.

The time derivative of Ve in Eq. (26) can be represented as:

V̇e ≤ −
N∑
i=1

[
eTi0
((
Qi0 − 1

2I2
)
⊗ I2

)
ei0
]

− ϑ1

N∑
i=1

eTi0 (Θi ⊗ I2) sigα [(Ci0H ⊗ I2) ei]

− ϑ2

N∑
i=1

eTi0 (Θi ⊗ I2) sigβ [(Ci0H ⊗ I2) ei0]

+ 1
2

N∑
i=1

‖Θi ⊗ I2‖2δ̄2
i

≤ −ϑ1λmin (Pi0) ‖Ci0H ⊗ I2‖α+1
eTi0sigα (ei0)

− ϑ2λmin (Pi0) ‖Ci0H ⊗ I2‖β+1
eTi0sigβ (ei0)

+ 1
2‖Θi ⊗ I2‖2δ̄2

i

≤ −χ1V
α+1
2

1 − χ2V
β+1
2

1 + γ0

(31)

where
χ1 = ϑ1λmin (Pi0) ‖Ci0H ⊗ I2‖α+1 λmin(Θ2

i )
λmax(Θi)

,

χ2 = ϑ2λmin (Pi0) ‖Ci0H ⊗ I2‖β+1 λmin(Θ2
i )

λmax(Θi)
(2N)

β+1
2 ,

and

γ0 = 1
2

N∑
i=1

‖Θi ⊗ I2‖2δ̄2
i .

According to Lemma 2 and the above analysis, we have that
the trajectories of observer errors ei0 (i ∈ X) can be practical
fixed-time stability within Te, and this concludes the proof.

Remark 4: As seen in the proof, the practical fixed-time
convergence property is used to avoid the excessive con-
vergence time in NN observer design. By introducing the
adaptive law of Eq. (24), the parameters ωi0m and ωim can be
estimated effectively. Moreover, the convergence time is fixed
and independent of initial conditions. The convergence rate
can be adjusted by turning the observer parameters α, β, ϑ1

and ϑ2 for different followers to cater to the requirement of
different tasks, which can further improve conservative and is
more reasonable.

B. Adaptive Decentralized Fixed-Time NN Observer for Fol-
lowers

This section is focused on the derivation of a decentralized
NN-based observer to estimate the unmeasured state vi within
a fixed time, the unknown mismatched disturbance ∆i1, and
the lumped uncertainty Ωi.

Theorem 2: Consider the faulty system represented by
(10), and consider that the terms ∆i1, ∆i2 and uFi satisfy
Assumptions 2-4. If the intelligent NN observer adopt the
following form:

˙̂xi(t) = v̂i(t) + ∆̂i1(t) + ki1 (yi − ŷi)
+ µ1sigχ (yi − ŷi) + µ2sigε (yi − ŷi)

˙̂vi(t) = ui(t) + Ω̂i(t) + ki2 (yi − ŷi)
+ µ1sigχ (yi − ŷi) + µ2sigε (yi − ŷi)

ŷi(t) = x̂i(t)

(32)

and updated by the law:

˙̂ωim = Υim

[
eimC

T
i A
−1
i sim − θimω̂im

]
(33)

under the condition

ATi Ri +RiAi = −2Qi (34)

where Ai =

[
−ki1 1
−ki2 0

]
, Ri = CiPi, Pi and Qi

are positive definite matrixes, Ci =

[
1 0
1 0

]
, θim >

1
2

∥∥CTi A−1
i

∥∥2‖sim‖2, ki1, ki2, µ1, and µ2 are design positive
constants, Υim = ΥT

im > 0, 0 < χ < 1 and ε > 1. Then,
the trajectories of the observer errors ∆̃i1 = ∆i1 − ∆̂i1 and
Ω̃i = Ωi − Ω̂i are guaranteed to be uniformly ultimately
bounded, and the state observer errors ei1 = yi − ŷi and
ei2 = vi − v̂i are guaranteed to be practical stable in fixed
time T̄e.

Similar to the proof procedure of Theorem
1, the error vector ei =

[
eTi1, e

T
i2

]T
can be

constructed and define the Lyapunov function

V̄0 = 1
2

N∑
i=1

eTi (Ri ⊗ I2) ei+
1
2

N∑
i=1

2∑
m=1

tr
[
ω̃TimΥ−1

imω̃im
]

for the observer of Eq. (32). By following the procedure of
Eqs. (26)-(31), the proof can be obtained in the same way.
To save space, more details have been omitted here.
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Remark 5: The effect produced by actuator fault is estimated
and compensated by utilizing Radial Basis Function NN
(RBFNN) similar to the results represented in [15], [42], [43].
Different information of the unknown terms ∆i1 and Ωi in
different subsystem is completely embodied in the ideal weight
vectors ω∗i and Gaussian function sij . Then, compared with the
existing asymptotical fault-tolerant methods [33]–[35] where
the estimation errors can be eliminated with time goes to
infinity, we further improve the convergence performance of
RBFNN-based observer by utilizing the practical fixed-time
stability [18], which is more useful and effective.

Remark 6: In practical fault-tolerant formation applications,
the dynamics of unmanned vehicles are usually subject to
external inputs, such as the actuator faults and unknown dis-
turbances. Usually, if the tracking error is ultimately uniformly
bounded by a sufficiently small boundary, then the MASs
is said to achieve the formation missions. Therefore, after
the practical fixed-time stability of the proposed observers,
the estimated states x̂i0, v̂i0, x̂i, and v̂i can be used for the
controller design.

Remark 7: So far, the common fixed-time observer, for ex-
ample, the proposed in [20], [21], is usually used to reconstruct
the unknown leader state without the effect of disturbances.
Compared with the relevant observer, a fixed-time observer
of Eq. (22) is developed to estimate the leader state based
on a distributed strategy under matching and mismatched
disturbances by using the intelligent compensation technique.
Moreover, in [42], an asymptotical adaptive NN observer is
constructed for second-order MASs to obtain the unknown
follower states. Inspired by the above theoretical achievement,
we further derive a decentralized fixed-time follower state
observer under the effects of actuator faults and unknown
disturbances. Furthermore, the obtained settling time is ex-
plicitly linked with several parameters of the adaptive laws.
Since the observers are designed by using fixed-time theorem,
the obtained settling time of the observers can be arbitrarily
set according to the designer requirement, which provides the
possibility of perfect integration with subsequent prescribed-
time tracking controller.

Remark 8: Although the convergence time of fixed-time
control can be intervened by humans, one-sided pursuit of
fast convergence can inevitably lead to excessive control input
signals, which may cause that the amplitude of the control
input to exceed the maximum acceptable value of the actuator
device. Therefore, a key issue for fixed-time control is that
the users need to find a compromise between time complexity
and control speed in practical engineering. In contrast, be-
cause the use of regular feedback control in the proposed
prescribed-time control method, the chattering problem will
not be caused, and the amplitude of the control input can be
effectively regulated.

C. Prescribed-Time Fault-Tolerant Formation Controller De-
sign

By using the estimations of the proposed fixed-time ob-
servers in Section III-A, novel prescribed-time fault-tolerant

formation strategies are designed to achieve leader-follower
tracking. Firstly, let the tracking error be:

zi(t) = xi(t)− x0(t)− hi(t). (35)

To possess the prescribed-time formation performance, a
virtual velocity v∗i (t) is designed in the velocity channel, and
the following error expression can be obtained:

ξi(t) = vi(t)− v∗i (t) (36)

Then, based on the results of Theorems 1-2, the following
relations hold:

x0(t) = x̂0(t)− ki01Hei01 + ei02 + ∆̃i01

− ϑ1sigα [(H ⊗ I2) ei01]− ϑ2sigβ [(H ⊗ I2) ei01]

v0(t) = v̂0(t)− ki02Hei02 + ∆̃i02

− ϑ1sigα [(H ⊗ I2) ei02]− ϑ2sigβ [(H ⊗ I2) ei02]
(37)

and
xi(t) = x̂i(t)− ki1ei1 + ei2 + ∆̃i1

− µ1sigχ (ei1)− µ2sigε (ei1)

vi(t) = v̂i(t)− ki2ei2 + Ω̃i2 − µ1sigχ (ei1)− µ2sigε (ei1)
(38)

Then, since the terms ei01, ei02, ei1, ei2, ∆̃i01, ∆̃i02,
∆̃i1 and Ω̃i2 are uniformly ultimately bounded, the following
system can be designed involving coordination of (x̂i, ζi)
based on Remark 6.

ζi(t) = v̂i(t)− v∗i (t)
˙̂xi(t)=ζi(t) + v∗i (t) + ∆̂i1(t) + ki1 (yi − ŷi)

+ µ1sigχ (yi − ŷi) + µ2sigε (yi − ŷi)
ζ̇i(t) = u∗i (t) + Ω̂i(t) + ki2 (yi − ŷi)

+ µ1sigχ (yi − ŷi) + µ2sigε (yi − ŷi)

(39)

where u∗i (t) is considered as the virtual control input.
To stabilize the system of Eq. (37) within a prescribed time,

we construct the following virtual input signals:

u∗i (t) = −
(
$i + ς̇i1

ςi1

)
ζi − Ω̂i(t)− ki2 (yi − ŷi)

− µ1sigχ (yi − ŷi)− µ2sigε (yi − ŷi)
(40)

and

v∗i (t) = −
(
φi + ς̇i2

ςi2

)
zi − ∆̂i1(t)− ki1 (yi − ŷi) + ˙̂x0 + ḣi

− µ1sigχ (yi − ŷi)− µ2sigε (yi − ŷi)
(41)

where ςi1, and ςi2 are defined as µ in Lemma 3, $i, φi > 0.
Besides, the closed-loop control protocol for the system of Eq.
(10) is:

ui(t) = u∗i (t) + v̇∗i (t). (42)

Theorem 3: Under Assumptions 1-4, with the fixed-time
observers of Eqs. (22) and (32), and the virtual control protocol
designed in Eqs. (38)-(40), the heterogeneous MASs of Eqs.
(2) and (10) can achieve the desired formation tracking in a
preassignable finite time.

Proof: To analyze the prescribed-time stability of the closed-
loop system of Eq. (37), the velocity tracking error ζi(t) should
finish the prescribed-time convergence first. The corresponding
Lyapunov function is expressed as:

Vζ =
1

2

N∑
i=1

ζTi ζi (43)
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Computing the derivate of Vζ along the trajectory of Eq.
(36) with the input of Eq. (42), it yields to:

V̇ζ =
N∑
i=1

ζTi ζ̇

≤
N∑
i=1

ζTi

[
˙̂vi(t)− v̇∗i (t)

]
≤

N∑
i=1

ζTi

[
u∗i (t) + Ω̂i(t) + ki2 (yi − ŷi)

+µ1sigχ (yi − ŷi) + µ2sigε (yi − ŷi)]

≤ −
N∑
i=1

ζTi

(
$i + ς̇i1

ςi1

)
ζi

≤ −2$iVζ − 2 ς̇i1ςi1Vζ

(44)

According to Lemma 3, there is a finite time constant Tζ ,
such that v̂i(t) = v∗i (t) when t ≥ Tζ .

The second Lyapunov function is selected with the form:

Vz =
1

2

N∑
i=1

zTi zi (45)

Then, taking into account Eqs. (35, (36) and (37), we obtain:

zi = xi(t)− x0(t)

= x̂i(t)− x̂0(t)− ki1ei1 + ei2 + ∆̃i1 − µ1sigχ (ei1)

−µ2sigε (ei1) + ki01Hei01 − ei02 − ∆̃i01 − hi(t)
+ ϑ1sigα [(H ⊗ I2) ei01] + ϑ2sigβ [(H ⊗ I2) ei01]

≤ x̂i(t)− x̂0(t) + ∆̄i

(46)
where ∆̄i is the upper bound of the lumped estimation error.

Then, based on Remark 6, we can observe that the following
inequality is feasible.

V̇z =
N∑
i=1

zTi żi

≤
N∑
i=1

zTi

[
ζi(t) + v∗i (t) + ∆̂i1(t) + ki1 (yi − ŷi)

+µ1sigχ (yi − ŷi) + µ2sigε (yi − ŷi)− ˙̂x0(t)− ḣi(t)
]

≤ −
N∑
i=1

zTi

(
φi + ς̇i2

ςi2

)
zi

≤ − 2φiVz − 2 ς̇i2ςi2Vz
(47)

Based on Lemma 3, one has that the formation error zi
can comply with the prescribed convergence time. Then, by
using Theorems 1-3, we can conclude that the developed NN
observer-based fault-tolerant formation controller can achieve
the desired tracking tasks in a finite time Te + T̄e + Tζ + Tz .
This completes the proof.

Remark 9: In some fixed-time formation results, it is com-
plicated to establish the relationship between the controller
parameters and the theoretical value of the convergence time,
since the obtained theoretic convergence time usually depends
on many parameters. Different from the existing finite-time
tracking [14]–[17], and fixed-time tracking [19]–[22], the
upper bound of convergence time in this article is not related
to any controller parameters, which is convenient for the new
users to adjust the convergence time under different operating
scenarios. This represents an inherent characteristic stating that
the settling time is finite and can be preassignable based on
the user requirement.

1

0

34

2

Fig.1 Topology network.

Remark 10: Different from the existing formation results
for homogeneous MASs, more practical heterogeneous UAVs-
UGVs systems are considered in this study. Furthermore,
the actuator faults occurring in the model of each follower
agent and the matching and mismatched disturbances are dealt
with the proposed NN-based prescribed-time compensator and
controller, which represents a new fault-tolerant control frame-
work for leader-follower formation tracking of heterogeneous
MASs. Technically, adaptive fixed-time NN observer is first
constructed to estimate the unknown states and time-varying
actuator faults in air-ground formation scenario. Then, based
on the estimations, a backstepping controller is designed to
achieve trajectory tracking. Compared with other finite-time
controller schemes, the proposed prescribed-time algorithm
is able to effectively address the distributed fault-tolerant
formation tracking issue with simplified computation.

IV. SIMULATION EXAMPLE

To confirm the availability of the constructed techniques,
simulations are conducted for a heterogeneous MAS involv-
ing one leader (i = 0), two UGV followers (i = 1, 4),
and two UAV followers (i = 2, 3). The communication
network is described in Fig. 1. The model parameters of
agents are derived from [45]. The control input for the
leader agent is up0 = [0.5, 0.7 sin t]

T . The initial condi-
tions of the formation system have been set to x0 =
[0, 0]

T , x1 = [−0.26,−0.37]
T , x2 = [3, 2, 2]

T , x3 =
[−3.2,−4.8,−1]

T , and x4 = [−6,−5]
T , respectively. The

four followers need to realize a predesigned formation configu-
ration, and the desired formation configurations for followers
are h1 = [3, 3]

T , h2 = [5, 5, t]
T , h3 = [−3,−3, 2t]

T , and
h4 = [−5,−5]

T . Moreover, the vehicles are subject to the
following heterogeneous mismatched disturbances: ∆01 =
[0.1 sin t, 0.1 cos t]

T , ∆11 = [0.13 cos t, 0.2 cos (0.6t)]
T ,

∆21 = [0.23 sin t,−0.12 cos t, 0.1 sin(0.5t)]
T , ∆31 =

[0.13 sin (3t) , 0.13 cos (1.2t) , 0.08 sin(0.75t)]
T , and ∆41 =

[0.08 cos t, 0.03 sin t]
T . The followers 2 and 3 are assumed to

suffer from time-varying uncertainty (20% variation) in rotary
inertia and aerodynamic damping parameters.

To further illustrate the fault-tolerant performance, the actu-
ator fault variables of each follower are designed as follows:

ρ1x =

{
0, t ≤ 3s
0.2, t > 3s

, ρ1y =

{
0, t ≤ 3s
0.18, t > 3s

,

ρ2x =

{
0, t ≤ 5s
0.15, t > 5s

, ρ2y =

{
0, t ≤ 5s
0.1, t > 5s

,
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ρ2z =

{
0, t ≤ 5s
0.15, t > 5s

, ρ3x =

{
0, t ≤ 7s
0.2, t > 7s

,

ρ3y =

{
0, t ≤ 7s
0.25, t > 7s

, ρ3z =

{
0, t ≤ 7s
0.3, t > 7s

,

ρ4x =

{
0, t ≤ 10s
0.14, t > 10s

, ρ4y =

{
0, t ≤ 10s
0.3, t > 10s

.

and
δ1 = [−0.1 sin(t),−0.3 cos(0.5t)]

T ,
δ2 = [0.15 cos(0.3t), 0.35 cos(2t), 0.2 cos(3t)]

T ,
δ3 = [0.1 sin(0.6t),−0.2 cos(1.5t), 0.12 sin(2t)]

T ,
δ4 = [0.15 cos(t), 0.2 cos(t)]

T .
Some relevant parameters of the designed observers are α =

0.1, β = 1.1, ϑ1 = 0.5, ϑ2 = 0.7, ki01 = 50, ki02 = 47,
σi1 = 4, σi2 = 10, Γim = diag {3, 3}. By using Theorem
3, relevant controller parameters are designed as $i = 10,
φi = 15, and T = 5.
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Fig.2 Formation configuration of agents in the X axis.
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Fig.3 Formation configuration of agents in the Y axis.

The time responses of the formation control process in XY
axis are described in Figs. 2-3. We can note how the designed
NN observer-based formation approach realizes the desired
tracking mission with faster transient and steady responses.
At the same time, this also proves that the designed fixed-
time NN observers can effectively finish the estimations of
the leader’s state, the unknown state of followers and the
lumped uncertainties, respectively. Figs. 4-6 highlight that the
tracking errors in XYZ three-dimensional space converge to
a small neighborhood of zero within finite time. Figs. 7-8
show the trajectories of ωim, which proves that the parameters
can achieve fast adaptive adjustment and ultimately achieve
uniformly bounded convergence.

Because of the effective estimation capability of proposed
fixed-time observer for various unknown uncertainties, the
constructed observer-based controller has good robustness and
fault tolerance in practical implementation. On the other hand,
the actual settling time of tracking error is still less than the

predesigned settling value 5s. Therefore, the actual settling
time must be smaller than the sum of the observer settling
time and controller settling time, which proves the availability
of the constructed prescribed-time fault-tolerant strategy. Due
to the use of observers, the convergence process of tracking
error relatively lagged. Moreover, the fixed/prescribed-time
theorem can not obtain the exact realized time, but only a
theoretical maximum. As a result, the theoretical value of
the finite convergence time is conservative compared with
the actual value. In order to improve the reference value
of theoretical values, designers should adjust the controller
parameters appropriately based on the initial state of the
system and the difficulty of the task.
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Fig.4 Tracking errors of agents in the X axis.
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Fig.5 Tracking errors of agents in the Y axis.
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V. CONCLUSION

This paper studied the adaptive neural network observer-
based prescribed-time fault-tolerant tracking problem for air-
ground heterogeneous MASs. Firstly, the estimation of state
information of the leader was obtained by designing a fixed-
time neural network observer under the effects of mismatched
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and matching disturbances. Then, another decentralized fixed-
time neural network observer was constructed to estimate the
unknown velocity state and the lumped uncertainty. By using
the estimations, a backstepping prescribed-time fault-tolerant
formation tracking protocol was developed to achieve the
expected formation. Finally, the availability of the constructed
results was authenticated by a simulation experiment.

Future research direction will consider the analysis of the
achievable performance in terms of numerical metrics and in-
dices. Moreover, before applying the proposed solutions to real
scenarios, the presence of measurement errors, unstructured
uncertainty and disturbance effects has to be investigated in
more detail.
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