233 research outputs found

    Adaptive multiple-surface sliding mode control of nonholonomic systems with matched and unmatched uncertainties

    Get PDF
    The problem of stabilizing a class of nonholonomic systems in chained form affected by both matched and unmatched uncertainties is addressed in this paper. The proposed design methodology is based on a discontinuous transformation of the perturbed nonholonomic system to which an adaptive multiple-surface sliding mode technique is applied. The generation of a sliding mode allows to eliminate the effect of matched uncertainties, while a suitable function approximation technique enables to deal with the residual uncertainties, which are unmatched. The control problem is solved by choosing a particular sliding manifold upon which a second order sliding mode is enforced via a continuous control with discontinuous derivative. A positive feature of the present proposal, apart from the fact of being capable of dealing with the presence of both matched and unmatched uncertainties, is that no knowledge of the bounds of the unmatched uncertainty terms is required. Moreover, the fact of producing a continuous control makes the proposed approach particularly appropriate in nonholonomic applications, such as those of mechanical nature

    Distributed formation tracking control of multiple car-like robots

    Get PDF
    In this thesis, distributed formation tracking control of multiple car-like robots is studied. Each vehicle can communicate and send or receive states information to or from a portion of other vehicles. The communication topology is characterized by a graph. Each vehicle is considered as a vertex in the graph and each communication link is considered as an edge in the graph. The unicycles are modeled firstly by both kinematic systems. Distributed controllers for vehicle kinematics are designed with the aid of graph theory. Two control algorithms are designed based on the chained-form system and its transformation respectively. Both algorithms achieve exponential convergence to the desired reference states. Then vehicle dynamics is considered and dynamic controllers are designed with the aid of two types of kinematic-based controllers proposed in the first section. Finally, a special case of switching graph is addressed considering the probability of vehicle disability and links breakage

    Automatic Control and Routing of Marine Vessels

    Get PDF
    Due to the intensive development of the global economy, many problems are constantly emerging connected to the safety of ships’ motion in the context of increasing marine traffic. These problems seem to be especially significant for the further development of marine transportation services, with the need to considerably increase their efficiency and reliability. One of the most commonly used approaches to ensuring safety and efficiency is the wide implementation of various automated systems for guidance and control, including such popular systems as marine autopilots, dynamic positioning systems, speed control systems, automatic routing installations, etc. This Special Issue focuses on various problems related to the analysis, design, modelling, and operation of the aforementioned systems. It covers such actual problems as tracking control, path following control, ship weather routing, course keeping control, control of autonomous underwater vehicles, ship collision avoidance. These problems are investigated using methods such as neural networks, sliding mode control, genetic algorithms, L2-gain approach, optimal damping concept, fuzzy logic and others. This Special Issue is intended to present and discuss significant contemporary problems in the areas of automatic control and the routing of marine vessels

    Stabilization of cascaded nonlinear systems under sampling and delays

    Get PDF
    Over the last decades, the methodologies of dynamical systems and control theory have been playing an increasingly relevant role in a lot of situations of practical interest. Though, a lot of theoretical problem still remain unsolved. Among all, the ones concerning stability and stabilization are of paramount importance. In order to stabilize a physical (or not) system, it is necessary to acquire and interpret heterogeneous information on its behavior in order to correctly intervene on it. In general, those information are not available through a continuous flow but are provided in a synchronous or asynchronous way. This issue has to be unavoidably taken into account for the design of the control action. In a very natural way, all those heterogeneities define an hybrid system characterized by both continuous and discrete dynamics. This thesis is contextualized in this framework and aimed at proposing new methodologies for the stabilization of sampled-data nonlinear systems with focus toward the stabilization of cascade dynamics. In doing so, we shall propose a small number of tools for constructing sampled-data feedback laws stabilizing the origin of sampled-data nonlinear systems admitting cascade interconnection representations. To this end, we shall investigate on the effect of sampling on the properties of the continuous-time system while enhancing design procedures requiring no extra assumptions over the sampled-data equivalent model. Finally, we shall show the way sampling positively affects nonlinear retarded dynamics affected by a fixed and known time-delay over the input signal by enforcing on the implicit cascade representation the sampling process induces onto the retarded system

    Kinematics and Robot Design I, KaRD2018

    Get PDF
    This volume collects the papers published on the Special Issue “Kinematics and Robot Design I, KaRD2018” (https://www.mdpi.com/journal/robotics/special_issues/KARD), which is the first issue of the KaRD Special Issue series, hosted by the open access journal “MDPI Robotics”. The KaRD series aims at creating an open environment where researchers can present their works and discuss all the topics focused on the many aspects that involve kinematics in the design of robotic/automatic systems. Kinematics is so intimately related to the design of robotic/automatic systems that the admitted topics of the KaRD series practically cover all the subjects normally present in well-established international conferences on “mechanisms and robotics”. KaRD2018 received 22 papers and, after the peer-review process, accepted only 14 papers. The accepted papers cover some theoretical and many design/applicative aspects

    New Approaches in Automation and Robotics

    Get PDF
    The book New Approaches in Automation and Robotics offers in 22 chapters a collection of recent developments in automation, robotics as well as control theory. It is dedicated to researchers in science and industry, students, and practicing engineers, who wish to update and enhance their knowledge on modern methods and innovative applications. The authors and editor of this book wish to motivate people, especially under-graduate students, to get involved with the interesting field of robotics and mechatronics. We hope that the ideas and concepts presented in this book are useful for your own work and could contribute to problem solving in similar applications as well. It is clear, however, that the wide area of automation and robotics can only be highlighted at several spots but not completely covered by a single book

    Parameter estimation, model reduction and quantum filtering

    Get PDF
    This thesis explores the topics of parameter estimation and model reduction in the context of quantum filtering. The last is a mathematically rigorous formulation of continuous quantum measurement, in which a stream of auxiliary quantum systems is used to infer the state of a target quantum system. Fundamental quantum uncertainties appear as noise which corrupts the probe observations and therefore must be filtered in order to extract information about the target system. This is analogous to the classical filtering problem in which techniques of inference are used to process noisy observations of a system in order to estimate its state. Given the clear similarities between the two filtering problems, I devote the beginning of this thesis to a review of classical and quantum probability theory, stochastic calculus and filtering. This allows for a mathematically rigorous and technically adroit presentation of the quantum filtering problem and solution. Given this foundation, I next consider the related problem of quantum parameter estimation, in which one seeks to infer the strength of a parameter that drives the evolution of a probe quantum system. By embedding this problem in the state estimation problem solved by the quantum filter, I present the optimal Bayesian estimator for a parameter when given continuous measurements of the probe system to which it couples. For cases when the probe takes on a finite number of values, I review a set of sufficient conditions for asymptotic convergence of the estimator. For a continuous-valued parameter, I present a computational method called quantum particle filtering for practical estimation of the parameter. Using these methods, I then study the particular problem of atomic magnetometry and review an experimental method for potentially reducing the uncertainty in the estimate of the magnetic field beyond the standard quantum limit. The technique involves double-passing a probe laser field through the atomic system, giving rise to effective non-linearities which enhance the effect of Larmor precession allowing for improved magnetic field estimation. I then turn to the topic of model reduction, which is the search for a reduced computational model of a dynamical system. This is a particularly important task for quantum mechanical systems, whose state grows exponentially in the number of subsystems. In the quantum filtering setting, I study the use of model reduction in developing a feedback controller for continuous-time quantum error correction. By studying the propagation of errors in a noisy quantum memory, I present a computation model which scales polynomially, rather than exponentially, in the number of physical qubits of the system. Although inexact, a feedback controller using this model performs almost indistinguishably from one using the full model. I finally review an exact but polynomial model of collective qubit systems undergoing arbitrary symmetric dynamics which allows for the efficient simulation of spontaneous-emission and related open quantum system phenomenon

    Scaling Quantum Computers with Long Chains of Trapped Ions

    Get PDF
    Quantum computers promise to solve models of important physical processes, optimize complex cost functions, and challenge cryptography in ways that are intractable using current computers. In order to achieve these promises, quantum computers must both increase in size and decrease error rates. To increase the system size, we report on the design, construction, and operation of an integrated trapped ion quantum computer consisting of a chain of 15 171Yb+ ions with all-to-all connectivity and high-fidelity gate operations. In the process, we identify a physical mechanism that adversely affects gate fidelity in long ion chains. Residual heating of the ions from noisy electric fields creates decoherence due to the weak confinement of the ions transverse to a focused addressing laser. We demonstrate this effect in chains of up to 25 ions and present a model that accurately describes the observed decoherence. To mitigate this noise source, we first propose a new sympathetic cooling scheme to periodically re-cool the ions throughout a quantum circuit, and then demonstrate its capability in a proof-of-concept experiment. One path to suppress error rates in quantum computers is through quantum error correction schemes that combine multiple physical qubits into logical qubits that robustly store information within an entangled state. These extra degrees of freedom enable the detection and correction of errors. Fault-tolerant circuits contain the spread of errors while operating the logical qubit and are essential for realizing error suppression in practice. We demonstrate fault-tolerant preparation, measurement, rotation, and stabilizer measurement of a distance-3 Bacon-Shor logical qubit in our quantum computer. The result is an encoded logical qubit with error rates lower than the error of the entangling operations required to operate it
    • …
    corecore