8 research outputs found

    Surface Modeling and Analysis Using Range Images: Smoothing, Registration, Integration, and Segmentation

    Get PDF
    This dissertation presents a framework for 3D reconstruction and scene analysis, using a set of range images. The motivation for developing this framework came from the needs to reconstruct the surfaces of small mechanical parts in reverse engineering tasks, build a virtual environment of indoor and outdoor scenes, and understand 3D images. The input of the framework is a set of range images of an object or a scene captured by range scanners. The output is a triangulated surface that can be segmented into meaningful parts. A textured surface can be reconstructed if color images are provided. The framework consists of surface smoothing, registration, integration, and segmentation. Surface smoothing eliminates the noise present in raw measurements from range scanners. This research proposes area-decreasing flow that is theoretically identical to the mean curvature flow. Using area-decreasing flow, there is no need to estimate the curvature value and an optimal step size of the flow can be obtained. Crease edges and sharp corners are preserved by an adaptive scheme. Surface registration aligns measurements from different viewpoints in a common coordinate system. This research proposes a new surface representation scheme named point fingerprint. Surfaces are registered by finding corresponding point pairs in an overlapping region based on fingerprint comparison. Surface integration merges registered surface patches into a whole surface. This research employs an implicit surface-based integration technique. The proposed algorithm can generate watertight models by space carving or filling the holes based on volumetric interpolation. Textures from different views are integrated inside a volumetric grid. Surface segmentation is useful to decompose CAD models in reverse engineering tasks and help object recognition in a 3D scene. This research proposes a watershed-based surface mesh segmentation approach. The new algorithm accurately segments the plateaus by geodesic erosion using fast marching method. The performance of the framework is presented using both synthetic and real world data from different range scanners. The dissertation concludes by summarizing the development of the framework and then suggests future research topics

    Robust Estimation of Curvature Information from Noisy 3D Data for Shape Description

    No full text
    We describe an effective and novel approach to infer sign and direction of principal curvatures at each input site from noisy 3D data. Unlike most previous approaches, no local surface fitting, partial derivative computation of any kind, nor oriented normal vector recovery is performed in our method. These approaches are noise-sensitive since accurate, local, partial derivative information is often required, which is usually unavailable from real data because of the unavoidable outlier noise inherent in manymeasurement phases. Also, we can handle points with zero Gaussian curvature uniformly (i.e., without the need to localize and handle them first as a separate process). Our approach is based on Tensor Voting, a unified, salient structure inference process. Both the sign and the direction of principal curvatures are inferred directly from the input. Each input is first transformed into a synthetic tensor. A novel and robust approach based on tensor voting is proposed for curvature inf..

    Digital video moving object segmentation using tensor voting: A non-causal, accurate approach

    Get PDF
    Motion based video segmentation is important in many video processing applications such as MPEG4. This thesis presents an exhaustive, non-causal method to estimate boundaries between moving objects in a video clip. It make use of tensor voting principles. The tensor voting is adapted to allow image structure to manifest in the tangential plane of the saliency map. The technique allows direct estimation of motion vectors from second-order tensor analysis. The tensors make maximal and direct use of the available information by encoding it into the dimensionality of the tensor. The tensor voting methodology introduces a non-symmetrical voting kernel to allow a measure of voting skewness to be inferred. Skewness is found in the third-order tensor in the direction of the tangential first eigenvector. This new concept is introduced as the Tensor Skewness Map or TS map. The TS map gives further information about whether an object is occluding or disoccluding another object. The information can be used to infer the layering order of the moving objects in the video clip. Matched filtering and detection are applied to reduce the TS map into occluding and disoccluding detections. The technique is computationally exhaustive, but may find use in off-line video object segmentation processes. The use of commercial-off-the-shelf Graphic Processor Units is demonstrated to scale well to the tensor voting framework, providing the computational speed improvement required to make the framework realisable on a larger scale and to handle tensor dimensionalities higher than before

    DĂ©tection de primitives par une approche discrĂšte et non linĂ©aire (application Ă  la dĂ©tection et la caractĂ©risation de points d'intĂ©rĂȘt dans les maillages 3D)

    Get PDF
    Ce manuscrit est dĂ©diĂ© Ă  la dĂ©tection et la caractĂ©risation de points d'intĂ©rĂȘt dans les maillages. Nous montrons tout d'abord les limitations de la mesure de courbure sur des contours francs, mesure habituellement utilisĂ©e dans le domaine de l'analyse de maillages. Nous prĂ©sentons ensuite une gĂ©nĂ©ralisation de l'opĂ©rateur SUSAN pour les maillages, nommĂ© SUSAN-3D. La mesure de saillance proposĂ©e quantifie les variations locales de la surface et classe directement les points analysĂ©s en cinq catĂ©gories : saillant, crĂȘte, plat, vallĂ©e et creux. Les maillages considĂ©rĂ©s sont Ă  variĂ©tĂ© uniforme avec ou sans bords et peuvent ĂȘtre rĂ©guliers ou irrĂ©guliers, denses ou non et bruitĂ©s ou non. Nous Ă©tudions ensuite les performances de SUSAN-3D en les comparant Ă  celles de deux opĂ©rateurs de courbure : l'opĂ©rateur de Meyer et l'opĂ©rateur de Stokely. Deux mĂ©thodes de comparaison des mesures de saillance et courbure sont proposĂ©es et utilisĂ©es sur deux types d objets : des sphĂšres et des cubes. Les sphĂšres permettent l'Ă©tude de la prĂ©cision sur des surfaces diffĂ©rentiables et les cubes sur deux types de contours non-diffĂ©rentiables : les arĂȘtes et les coins. Nous montrons au travers de ces Ă©tudes les avantages de notre mĂ©thode qui sont une forte rĂ©pĂ©tabilitĂ© de la mesure, une faible sensibilitĂ© au bruit et la capacitĂ© d'analyser les surfaces peu denses. Enfin, nous prĂ©sentons une extension multi-Ă©chelle et une automatisation de la dĂ©termination des Ă©chelles d'analyse qui font de SUSAN-3D un opĂ©rateur gĂ©nĂ©rique et autonome d analyse et de caractĂ©risation pour les maillagesThis manuscript is dedicated to the detection and caracterization of interest points for 3D meshes. First of all, we show the limitations of the curvature measure on sharp edges, the measure usually used for the analysis of meshes. Then, we present a generalization of the SUSAN operator for meshes, named SUSAN-3D. The saliency measure proposed quantify the local variation of the surface and classify directly the analysed vertices in five classes: salient, crest, flat, valley and cavity. The meshes under consideration are manifolds and can be closed or non-closed, regulars or irregulars, dense or not and noised or not. The accuracy of the SUSAN-3D operator is compared to two curvature operators: the Meyer's operator and the Stokely's operator. Two comparison methods of saliency and curvature measures are described and used on two types of objects: spheres and cubes. The spheres allow the study of the accuracy for differentiable surfaces and the cubes for two types of sharp edges: crests and corners. Through these studies, we show the benefits of our method that are a strong repeatability of the measure, high robustness to noise and capacity to analyse non dense meshes. Finally, we present a multi-scale scheme and automation of the determination of the analysis scales that allow SUSAN-3D to be a general and autonomous operator for the analysis and caracterization of meshesDIJON-BU Doc.Ă©lectronique (212319901) / SudocSudocFranceF

    Calculating the curvature shape characteristics of the human body from 3D scanner data.

    Get PDF
    In the recent years, there have been significant advances in the development and manufacturing of 3D scanners capable of capturing detailed (external) images of whole human bodies. Such hardware offers the opportunity to collect information that could be used to describe, interpret and analyse the shape of the human body for a variety of applications where shape information plays a vital role (e.g. apparel sizing and customisation; medical research in fields such as nutrition, obesity/anorexia and perceptive psychology; ergonomics for vehicle and furniture design). However, the representations delivered by such hardware typically consist of unstructured or partially structured point clouds, whereas it would be desirable to have models that allow shape-related information to be more immediately accessible. This thesis describes a method of extracting the differential geometry properties of the body surface from unorganized point cloud datasets. In effect, this is a way of constructing curvature maps that allows the detection on the surface of features that are deformable (such as ridges) rather than reformable under certain transformations. Such features could subsequently be used to interpret the topology of a human body and to enable classification according to its shape, rather than its size (as is currently the standard practice for many of the applications concemed). The background, motivation and significance of this research are presented in chapter one. Chapter two is a literature review describing the previous and current attempts to model 3D objects in general and human bodies in particular, as well as the mathematical and technical issues associated with the modelling. Chapter three presents an overview of: the methodology employed throughout the research; the assumptions regarding the data to be processed; and the strategy for evaluating the results for each stage of the methodology. Chapter four describes an algorithm (and some variations) for approximating the local surface geometry around a given point of the input data set by means of a least-squares minimization. The output of such an algorithm is a surface patch described in an analytic (implicit) form. This is necessary for the next step described below. The case is made for using implicit surfaces rather than more popular 3D surface representations such as parametric forms or height functions. Chapter five describes the processing needed for calculating curvature-related characteristics for each point of the input surface. This utilises the implicit surface patches generated by the algorithm described in the previous chapter, and enables the construction of a "curvature map" of the original surface, which incorporates rich information such as the principal curvatures, shape indices and curvature directions. Chapter six describes a family of algorithms for calculating features such as ridges and umbilic points on the surface from the curvature map, in a manner that bypasses the problem of separating a vector field (i.e. the principal curvature directions) across the entire surface of an object. An alternative approach, using the focal surface information, is also considered briefly in comparison. The concluding chapter summarises the results from all steps of the processing and evaluates them in relation to the requirements set in chapter one. Directions for further research are also proposed

    Optimal design of morphing structures

    No full text
    Morphing structures change their geometric configuration to achieve a wide range of performance goals. For morphing aircraft these include alleviating drag, or altering aerofoil lift. The design of structures capable of realising these goals is a highly multidisciplinary problem. Optimally morphing a compliant structure involves finding the distribution of actuation which best achieves a desired configuration change. In this work, the location and magnitude of discrete actuators are optimised, to minimise both aerodynamic and geometric objective functions. A range of optimisation methods, including differential and stochastic techniques, has been implemented to search optimally the large, nonlinear, and often discontinuous design spaces associated with such problems. The optimal design of morphing systems is investigated through consideration of a morphing shock control bump and an adaptive leading edge. CFD is implemented to evaluate the aerodynamic performance of optimiser-controlled morphing structures. A bespoke grid-generation algorithm is developed, capable of producing a mesh for all possible geometries, with low levels of cell skewness and orthogonality at the fluid-structure boundaries. Structural compliance – a prerequisite for morphing – allows significant displacement of the structure to occur, but simultaneously enables the possibility of detrimental aeroelastic effects. Static aeroelasticity is catered for, at significant computational expense, via coupling of the structural and aerodynamic models within individual optimisation function evaluations. Morphing geometry is investigated to reduce computational design requirements, and provide an objective starting point for an aeroelastic optimisation. The requirements of morphing between aerodynamic shapes are evaluated using geometry-based objective functions. Displacements and curvatures are compared between an optimiser-controlled structure and the target morph, and the differences minimised to effect the required shape change. In addition to enabling optimal problem definition, these geometric objective functions allow conclusions on the feasibility of a morph to be drawn a priori
    corecore