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Abstract

This dissertation presents a framework for 3D reconstruction and scene analysis,

using a set of range images. The motivation for developing this framework came from

the needs to reconstruct the surfaces of small mechanical parts in reverse engineering

tasks, build a virtual environment of indoor and outdoor scenes, and understand 3D

images.

The input of the framework is a set of range images of an object or a scene cap-

tured by range scanners. The output is a triangulated surface that can be segmented

into meaningful parts. A textured surface can be reconstructed if color images are

provided. The framework consists of surface smoothing, registration, integration, and

segmentation.

Surface smoothing eliminates the noise present in raw measurements from range

scanners. This research proposes area-decreasing flow that is theoretically identical to

the mean curvature flow. Using area-decreasing flow, there is no need to estimate the

curvature value and an optimal step size of the flow can be obtained. Crease edges and

sharp corners are preserved by an adaptive scheme.

Surface registration aligns measurements from different viewpoints in a common

coordinate system. This research proposes a new surface representation scheme named

point fingerprint. Surfaces are registered by finding corresponding point pairs in an

overlapping region based on fingerprint comparison.

Surface integration merges registered surface patches into a whole surface. This re-
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search employs an implicit surface-based integration technique. The proposed algorithm

can generate watertight models by space carving or filling the holes based on volumetric

interpolation. Textures from different views are integrated inside a volumetric grid.

Surface segmentation is useful to decompose CAD models in reverse engineering

tasks and help object recognition in a 3D scene. This research proposes a watershed-

based surface mesh segmentation approach. The new algorithm accurately segments

the plateaus by geodesic erosion using fast marching method.

The performance of the framework is presented using both synthetic and real world

data from different range scanners. The dissertation concludes by summarizing the

development of the framework and then suggests future research topics.
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Chapter 1

Introduction

This introductory chapter first presents the motivation for the research and then intro-

duces the proposed framework and its key components. The challenges in developing

this framework are discussed, and the original contributions of this research are pre-

sented. Finally, the organization of the remainder of this dissertation is outlined at the

end of the chapter to guide the reader to explore the details of the complete research.

1.1 Research Motivation

3D image modeling and analysis has important applications in many areas. In robotic

vision, it can help a robot to function in a hazardous environment more precisely by

providing an accurate 3D mapping of the surrounding scene. By seeing 3D geometry

instead of 2D images, the robot is able to plan paths, grab objects, and avoid obstacles.

In virtual reality, generating an accurate 3D environment is essential for a human walk-
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through. For example, a real world 3D mapping looks more realistic than a synthetic

scene in a driving simulator. In reverse engineering, 3D reconstruction is able to generate

a CAD model from a real object. By using 3D FAX, a digitized model can be transferred

to another location where a new model is quickly replicated. In image guided surgery, 3D

models reconstructed from CTs and MRIs can help a doctor see the patient’s anatomic

structure, and 3D analysis such as segmentation will help make an accurate diagnosis.

3D models are reconstructed from a set of measurements in 3D space. Laser range

sensing and stereo vision are two popular methods for 3D measurement. Although stereo

vision devices are much cheaper than laser range scanners, they are limited by measure-

ment accuracy and range. Stereo vision relies on finding the corresponding points on

two spatially separated images and using triangulation to get the 3D measurement. This

process is sensitive to illumination, and it is difficult to get dense measurements. The

requirement of a large base line for long range measurements is impractical in many

cases. This research uses laser range scanners to digitize the 3D space. Scanners based

on time-of-flight are used to capture long range 3D information. Scanners based on

laser triangulations are used to measure small objects.

The motivation of this research is to build a framework for surface modeling and

analysis using the range data captured by range scanners. This dissertation makes

contributions to solving several difficult problems in building such a framework.

2
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Figure 1.1: A framework for 3D reconstruction and analysis.

1.2 A Framework for 3D Reconstruction and Analysis

Several steps are involved in reconstructing a 3D model and further scene analysis using

range images. The framework used in this research is illustrated in Fig. 1.1. After a set

of range images are acquired by the range scanners, they are preprocessed to eliminate

the sampling noise. In the second step, the range images are registered into a global

coordinate system. Then the registered surfaces are integrated into a whole 3D model.

When color images are available, they are also integrated to get a textured model. In

3D scene analysis, the model is segmented into different meaningful parts. Each step is

essential for a complete framework of surface modeling and analysis. The framework,

proposed in [108], segments the point cloud before performing integration. However,

segmenting a surface is more robust than segmenting a cloud of points because a surface

carries more geometric information. In the following text, a more detailed description

of these steps and expected challenges is presented.

A range scanner acquires the distance between itself and an object. However, the
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range map is always contaminated with noise. The smoothing step can be considered

to be a restoration process accomplished by local deformation in 3D space. Many

techniques developed in 2D image processing cannot be applied to surface processing.

Common problems in surface smoothing are loss of details and shrinkage. A successful

surface smoothing algorithm should be able to efficiently suppress noise while making

the deformation faithful to the original measurement and preserving the features on the

surface.

A full 3D reconstruction requires scanning from different views. The surface mea-

sured from each scan is recorded in a local coordinate system centered at the scanner. In

order to integrate different views, all the surfaces must be registered into a global coor-

dinate system. Although the pose of the range scanner sometimes can be approximately

obtained from the servo system of a carrier such as a robot, an automatic registration

from the measurement is still crucial. A human is capable of understanding the environ-

ment without knowing the exact coordinate transformation when he is walking around.

It is still not clear how to simulate this human ability on the computer. However, efforts

in the field of computer vision are currently focusing on estimating the pose mathemat-

ically by matching the surfaces. The challenges in automatic registration are how to

efficiently find correspondences from two partially overlapped surfaces and robustly deal

with the noise and different surface sampling resolutions.

Integrating surfaces from different views is a fusion process that weaves a whole

surface from a set of overlapping surface patches. The integration process should be

4



robust to surface noise and registration error. It should also handle other modalities such

as color images which generate a textured model. Usually, it is impossible to scan the

whole object, so holes are left at regions where the laser cannot reach. These holes can

be filled by space carving during the integration or by an automatic hole filling process

after integration. Choosing space carving or leaving holes during the integration depends

on the completeness of the data. After the surface is reconstructed, post-processing is

necessary to further smooth the surface and remove the outliers. Sometimes geometric

compression is needed for a real time rendering of the reconstructed surface.

The reconstructed surface may contain a number of parts. In many cases, a seg-

mentation or decomposition of the surface gives a better interpretation of the surface.

Surface segmentation is a higher level of surface processing which partitions the surface

into different meaningful parts. Segmenting a surface is different from segmenting a 2D

image in that the segmentation is guided by geometric variation instead of gray level

variation and a surface is not defined on a regular grid. However, 2D image segmenta-

tion methods can be extended to surface segmentation. A good segmentation algorithm

should be efficient, robust to surface noise, and close to human perception.

1.3 Contributions

The contributions of this research are summarized as follows.

5



Area-Decreasing Flow for Surface Smoothing [86, 89, 91]

This research proposes to smooth the surface using area-decreasing flow, which is the-

oretically identical to the mean curvature flow. A popular smoothing method has been

local deformation of surfaces based on mean curvature flow. The problem with mean

curvature flow is that the curvature value is difficult to estimate on a discrete surface

and there is no way to explicitly compute the step size of the flow. Using the area-

decreasing flow to smooth a surface, there is no need to estimate the curvature value

and an optimal step size of the flow can be obtained. A rigidity term is included to

make the deformation faithful to the original measurements. Smoothing is designed to

be adaptive to preserve the crease edges and sharp corners. The proposed smoothing

algorithm is able to efficiently smooth large triangle meshes and preserve the geometric

details.

Point Fingerprint for Surface Matching [84, 90]

This research proposes a new surface representation scheme based on a signature of a

3D point, called point fingerprint. The fingerprint of a 3D point is defined as a set of

2D contours obtained by projecting the geodesic circles of different radii on the tangent

plane. Surfaces are registered by finding corresponding point pairs in the overlapping

region based on fingerprint comparison. Compared to other representation schemes in

previous works, point fingerprint uses the accurate geodesic distance that is intrinsic to

the surface. Fingerprint comparison is based on a set of 1D signal correlations, which are

6



more efficient than 2D image correlations. The fingerprint representation functions like

a one-to-one mapping and is able to carry other information such as color and curvature.

This research also proposes an alternative method for geodesic distance computation

on a triangle mesh and a fast approach based on irregularity of the point fingerprint to

extract feature points from a surface. The point fingerprint can be applied to surface

registration.

Implicit Surface-Based Integration [86, 88, 89]

This research extends previous work on implicit surface-based integration by combining

the textures fusion. Within a volumetric grid, each surface patch generates a signed

distance field. All signed distance fields are fused by weighted average. The whole sur-

face is extracted using a polygonization algorithm. The method can generate watertight

models using space carving. It can also work without space carving and fill the holes

by volumetric interpolation. The proposed algorithm is employed to reconstruct 3D

models using range images captured by various range scanners.

Geodesic Erosion in 3D Watershed Segmentation [87]

This research proposes a watershed-based surface mesh segmentation approach. Based

on eigen analysis of surface normals inside a geodesic neighborhood, the approach ro-

bustly estimates the edge strength of each vertex on the surface mesh on which the

watershed segmentation is applied. Compared with the previous works on watershed-

based mesh segmentation, this research first applies the geodesic erosion on a triangle

7



mesh to generate a lower complete image, which enables a more accurate segmentation

of the plateaus. The proposed algorithm is successfully applied to segmenting surfaces

reconstructed from real range images.

1.4 Document Organization

A thorough background of the related research is presented in Chapter 2. The back-

ground information includes the literature review in surface smoothing, registration,

integration, and segmentation.

Chapter 3 first presents the area-decreasing flow and its relationship with the mean

curvature flow. This chapter proceeds to describe the application of area-decreasing

flow to calibrated range image smoothing and the adaptive scheme based on 2D image

edge detection. The extension to arbitrary surface mesh smoothing and the adaptive

scheme based on tensor voting are then presented.

Chapter 4 begins with an introduction of the exponential map. A new method

to compute geodesic distance on a triangle mesh, the definition of point fingerprint, a

scheme to select candidate points, and the point matching approach are then introduced.

Application of point fingerprint to surface registration is discussed.

Chapter 5 introduces the surface integration approaches based on mesh zippering

and implicit surface fusion. Automatic hole filling and post-processing by mean cur-

vature flow are presented. Chapter 6 presents the watershed-based mesh segmentation

approach which includes minima detection, geodesic erosion, finding the swiftest de-

8



scending path, and region merging.

Literature reviews are included in each chapter. Experimental results for a variety

of synthetic and real data are presented in Chapter 7, followed by conclusions and

suggestions for future work in Chapter 8.

9



Chapter 2

Background

This work makes contributions in surface smoothing, registration, integration, and seg-

mentation. The literature reviews of the related research are presented in Section 2.1

to 2.4.

2.1 Surface Smoothing

As explained in the Appendix A, raw data acquired by range scanners are always cor-

rupted by noise. Smoothing the corrupted surfaces is essential to build a robust surface

modeling framework. The technique also applies to surfaces digitized using other tech-

niques such as stereo vision. Successful surface smoothing can greatly improve the visual

appearance of a 3D object, and at the same time, can feed improved data to successive

processes, such as matching, surface segmentation, and mesh simplification.

If a range value of a range image is considered equivalent to an intensity value of a
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two-dimensional (2D) image, 2D lowpass filtering can serve as a simple surface smooth-

ing method. For an arbitrary surface, 2D image processing algorithms such as spatial

or frequency domain lowpass filterings, however, cannot provide promising results be-

cause they do not take 3D parameters into consideration. For this reason, the surface

smoothing problem has been tackled in the literature using different approaches, in-

cluding regularization, surface fairing, and surface evolution using the level set method.

The approach proposed in this research is based on regularization.

Regularization has been used for surface interpolation from sparse range data and for

restoring noisy surfaces. Regularization performs smoothing operations by minimizing

an energy function

f(x) = g(x) + λh(x) x ∈ R3 (2.1)

that includes data compatibility term g(x) and smoothing term h(x). Minimization of

g(x) involves the compatibility of the solution to the original observation, and mini-

mization of h(x) incorporates prior knowledge. λ is called the regularization parameter

which determines the weight of minimization between g(x) and h(x). The result of min-

imization is a trade-off between remaining close to the given observed data and avoiding

a bumpy, coarse surface.

Most existing regularization works consider the surface as a height map. For a height
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map z(x, y) the energy function can be written as

f(z) = g(z) + λh(z) z ∈ R. (2.2)

Although this assumption is quite limited, the idea of treating smoothing as a regulariza-

tion process is the basis of the approach developed in this research. Different definitions

of the smoothing term have been proposed in the literature. Blake and Zissermen [10]

introduced the membrane and plate model. Using the membrane model, the smoothing

term for a height map z is

h =
∫∫
|∇z|2dxdy (2.3)

The membrane has intrinsic resistance to creasing. In order to fit to crease disconti-

nuities, a plate model should be used. The smoothing term for a plate model is the

Quadratic Variation

h =
∫∫

(z2
xx + 2z2

xy + z2
yy)dxdy (2.4)

or the Square Laplacian

h =
∫∫

(zxx + zyy)2dxdy (2.5)

Stevenson and Delp [83] chose h as the sum square integral of the two principal
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curvatures of points on a surface in the form of a height map.

h =
∫∫

(k2
1 + k2

2)dxdy (2.6)

where k1 and k2 are principal curvatures. Eq. (2.6) came from the analysis of a plate

of elastic material. Smoothly varying surface can be modeled as an ideal thin flexible

plate of elastic material. The potential energy density of a thin plate is given by

A(
k2

1 + k2
2

2
) +Bk1k2 (2.7)

where A and B are constants of the material. To simplify the equation, let A = 1 and

B = 0, and Eq. (2.6) is obtained. The equation still models a valid thin plate. Various

approximations to the stabilizing term were discussed to overcome the computational

complexity. A two-stage reconstruction algorithm that would form an approximately

invariant surface was proposed. The first stage forms a piecewise planar approximation

to the surface that is invariant to the coordinate system. The piecewise planar surface

is then used to construct an approximate parameterization of the reconstructed surface

that can be used to make a valid approximation to the invariant functional. The mini-

mization problem was solved using finite element methods. The experiment only showed

the reconstruction of surfaces with simple shapes. The method involves computing the

second order derivatives on the surface, which are sensitive to the surface noise.

Yi and Chelberg [107] proposed a simple first order smoothing term because first
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order models entail significantly less computational efforts than second order models.

The volume between two surfaces normalized by the surface area was used as an invari-

ant quantitative measure for comparing surface reconstruction results. This measure

is invariant with respect to rotations and translations of coordinate systems. The al-

gorithm for surface reconstruction consists of three steps: an initial reconstruction,

partial derivative estimates from the initial reconstruction result, and then a second

reconstruction which uses the estimated derivatives. The estimated derivatives are in-

serted as constants into an approximately invariant energy functional which make it

convex. In order to estimate the derivatives, the input surface is reconstructed using a

simple membrane regularization technique. The final reconstructed results depend on

the reasonable derivative estimates. The stabilizing term is defined as

h =
∫∫

(
√

1 + z2
x + z2

y − 1)dxdy (2.8)

where zx and zy are the partial derivatives of the height map. Then (2.8) is approximated

by a convex function. The reason for using (2.8) was not clearly stated, but as shown

by the analysis in Section 3.2.1, it is similar to minimizing the surface area of a height

map. The 3D objects used in the experiments have simple shapes.

Because the above methods assume that the surface is a height map, they cannot be

applied to smooth arbitrarily defined surfaces. Another category of surface smoothing

methods, which is known as discrete surface fairing, directly process the surface mesh

and are able to smooth arbitrary surfaces. Taubin [93] applied a weighted Laplacian
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smoothing on the surface mesh. Shrinkage is avoided by alternating the scale factors

of opposite signs. Vollmer et al. [99] proposed another modified Laplacian smooth-

ing. Ohtake et al. [60] showed that Laplacian smoothing tends to develop unnatural

deformations. They applied the mean curvature flow to smooth the surface and the

Laplacian flow to improve the mesh regularity. Page et al. [64] smooth and simplify a

triangle mesh simultaneously using the surface normal voting approach.

Mean curvature flow originated from generating minimal surfaces in mathemat-

ics and material sciences [77] and has been applied to implicit surface smoothing by

Whitaker [101], Zhao et al. [112], and Gomes and Faugeras [31]. The surface, rep-

resented by a zero crossing field in the volumetric grid, is deformed according to the

magnitude of the mean curvature using the level set methods.

Mean curvature flow is mathematically equivalent to surface area minimization, as

shown in Section 3.1. However, direct area-decreasing flow better fits the discrete surface

smoothing than mean curvature flow because the curvatures are not well defined on a

discrete surface [29, 62, 92] where the area can be explicitly computed.

In this research, a new regularized 3D image smoothing method based on locally

adaptive minimization of the surface area is proposed. The approach is first applied to

range image smoothing. Since range values are optimally estimated along the ray of

measurement, there is no overlapping data problem. The method is then extended to

surface fairing by processing arbitrary surfaces represented by the triangle mesh. The

position of each vertex is adjusted along the surface normal to minimize the simplex
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area. The optimal, unique magnitude of the adjustment can be obtained. Crease edges

are preserved by adaptive smoothing according to the edge strength of each vertex on a

triangle mesh, which is computed by fusing the tensor voting and the orientation check

of the normal vector field inside a geodesic window.

2.2 Surface Registration

Surface matching has two direct important applications in the area of computer vision.

The first is three-dimensional (3D) image registration [33, 45, 94, 105, 110], which is also

known as pose estimation. When 3D images are taken at different viewpoints and data

fusion is necessary, the rigid transformation between each view needs to be computed.

Horn [41] showed that, given three or more pairs of non-coplanar corresponding 3D

points, the rigid transformation between the point pairs has a closed form solution.

Thus the pose estimation problem becomes a surface point matching problem. The

other application is object recognition [16, 20, 25, 82, 109]. The model library stores

the surface features of each object, and the corresponding scene object is found by

comparing those features.

Discrete surface matching is difficult because two surfaces may have self occlusions,

different sampling resolutions, and are only partly overlapped, which makes statisti-

cally based features such as moments [67] difficult to apply. Because the local surface

geometry characteristic is insensitive to the sampling resolution, previous works in this

area tried to use this information in the encoded form for point matching, especially
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with different surface representation schemes which convert the problem of 3D point

matching into 1D or 2D feature matching [20, 45, 82, 105, 110].

More specifically, previous works encoded the point’s local surface geometry char-

acteristics using either a contour on the surface or a 2D image of neighborhood near

the encoded point. Stein and Medioni [82] used the notion of Splash to represent the

normals along a geodesic circle of a center point, which is the local Gauss map, for 3D

object recognition tasks. The geodesic circle is parameterized by the angle θ from 0

to 2π. On each point, a local orthogonal coordinate system is defined on the tangent

plane with the normal n as the z axis. Each point on the geodesic circle is encoded

by three angles θ, φθ and ψθ. For the point p on the geodesic circle, φθ and ψθ are

defined as φθ = arccos(n · nθ) and ψθ = arccos(x · nθ(z=0)), where x is a vector along

the x axis and nθ is the normal vector at p. In the coordinate system created by θ,

φθ and ψθ, the geodesic circle is encoded by another 3D curve and approximated by

polygons. For every polygonal approximation, a 3D super segment is computed. The

starting point of a 3D super segment is defined as the point with the maximal distance

from the θ axis. The 3D super segment is also encoded using various attributes. All 3D

super segments serve as keys into a database. Models containing similar codes as the

Splashes appearing in the scene are extracted.

Chua and Jarvis [20] proposed a point feature named Point Signature (PS) for 3D

object recognition. For a given point p, a sphere of radius r centered at p is intersected

with the surface and creates a 3D space curve C. The curve’s orientation is defined by
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an orthonormal frame formed by a normal vector n1, a reference vector n2 and their

cross product. n1 is defined as the unit normal vector of a plane P fitted through the

space curve C. The distance between C and P can be plotted as a function, which

serves as the feature of the center point and is called the Point Signature. Due to the

simple representation, matching Point Signatures is efficient.

Johnson and Hebert [45] proposed the Spin Image for surface registration. To create

a Spin Image, a local 2D basis is computed at an oriented point that is a 3D point

with surface normal. The coordinates of the other points on the surface with respect

to the basis are then used in a voting procedure to create the descriptive Spin Image

for the point. With the surface point p and its normal n, two coordinates α and β of a

given point x are computed. α represents the distance from x to the tangent plane at

p and β is the distance from x to n. Next, a bin is determined by discretizing (α, β)

and then used to match the corresponding points. The concept of Spin Images was

developed from Geometric Hashing [50], but Spin Images use the image to describe the

feature instead of performing lookup in a hash table. The term Spin Image came from

the cylindrical symmetry of the representation. The Spin Image was also applied to 3D

object recognition by Carmichael et al. [18].

Yamany and Farag [105] proposed a modified version of Spin Image, which is called

the Surface Point Signature (SPS), where α and β are differently defined from the Spin

Image. α represents the distance between the center point and every surface point, and

β is the angle between the normal of the center point and the segment created by the
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center point and every surface point. SPS was applied to 3D image registration [105]

and 3D object recognition [106].

Ashbrook and Fisher [4] proposed a histogram-based method to find corresponding

facets between two surfaces represented by a triangle mesh. A Pairwise Geometric

Histogram (PGH) is constructed for each triangle in a given mesh which describes its

pairwise relationship with other surrounding triangles within a prespecified distance.

For a pair of triangles ti and tj , the two parameters of the histogram are the angle

between the triangle normals and the range of perpendicular distances from the plane,

in which ti lies, to all points on tj . Corresponding triangles are found by comparing the

histograms.

An application of harmonic maps to surface registration was reported by Zhang and

Hebert [110]. A surface patch enclosed by the geodesic circle is mapped to a unit disk

by the harmonic map. Curvature values of the vertices are textured onto the harmonic

image to generate a Harmonic Shape Image (HSI). Corresponding points are found by

comparing the HSIs. In implementation, boundary mapping needs to be assigned in

order to compute the unit disk’s interior mapping. A method of boundary mapping is

proposed, which keeps the ratio of mapped angles. The method, however, makes the

mapping no longer strictly one-to-one since the angle along the geodesic circle does not

always change monotonically. A comparison between two HSIs is conducted by cross

correlation. This method was also applied to 3D object recognition [109].

Rather than using the local geometry, some representation schemes use the surface’s

19



global properties. Hebert and Ikeuchi [35] created a Spherical Attribute Image (SAI) by

mapping all the surface points to a sphere. A regular mesh is first created by deforming

an initial geodesic dome onto the object surface. Each node on the geodesic dome

stores the corresponding surface point’s curvature value. The surfaces are matched by

aligning the curvature map on the geodesic domes. SAI only works for objects with

spherical topology. Dorai and Jain [25] proposed the Curvedness Orientation Shape

Map On Sphere (COSMOS) by combining the local and global geometric information.

An object is characterized by a set of maximally sized surface patches of constant shape

index and their orientation-dependent mapping onto the unit sphere. Constant Shape

Maximal Patch (CSMP) is defined as a group of points with the same shape index. The

average normal of each CSMP is used to generate the Gauss map. The surface area and

the connectivity list of CSMPs are recorded. All these descriptors are used for object

recognition. Generally, the representations using global geometry are less flexible in

dealing with arbitrary topology and occlusion. A detailed survey of free-form object

representation can be found in [15].

In this research, a new surface representation scheme called 3D point fingerprint [84]

and its application to surface registration are proposed. The proposed point fingerprint

is a set of 2D contours that are the projections of geodesic circles onto the tangent

plane. Point fingerprint is so named because it looks like human fingerprints and can

be used as a discriminating feature for the surface point. It can carry more information

than the existing schemes using only one contour or 2D histogram. The computation
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Table 2.1: Comparison of different surface representation schemes

Features Mapping Type Measure Carries
Information

Splash [82] Gaussian map of surface nor-
mals along a geodesic circle

Local Geodesic No

SAI [35] Spherical mapping of surface
from deformation

Global Euclidean Yes

COSMOS [25] Spherical mapping of orienta-
tion of CSMPs

Global Euclidean No

Spin-Image
[45]

2D histogram of distance to
tangent plane and surface nor-
mal

Local Euclidean No

PS [20] Signed distance to a plane of a
contour

Local Euclidean No

PGH [4] 2D histogram of angle and dis-
tances between triangles

Local Euclidean No

SPS [105] 2D histogram of distance and
angle with surface normal

Local Euclidean No

HSI [110] Harmonic map of underlying
surface onto a unit disk

Local Geodesic Yes

Fingerprint
[84], the pro-
posed

Projected contours of geodesic
circles on the tangent plane

Local Geodesic Yes
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is cheaper than 2D image representation-based schemes. Since the projection on the

tangent plane is not a one-to-one mapping, some projections of geodesic circles are

possibly overlapped. Each geodesic circle projection can, however, be traced back to the

corresponding geodesic circle, and therefore, the method can have the same advantage of

the one-to-one mapping. The above mentioned representation schemes are summarized

in Table. 2.1 in chronological order, identifying whether the mapping is using local

geometry, computing geodesic distance and being able to carry features. This table is

an updated version of the summary published in [109].

2.3 Surface Integration

Surface reconstruction is a step that extracts a surface from 3D measurements. The

measurements are from multiple views of range images that have been registered to-

gether. For a calibrated range scanner, each range image can be converted to a surface

patch. The registered surface patches may overlap in the 3D space and may not cover

the whole object due to incomplete scans. The surface reconstruction algorithm has to

deal with the partly redundant and partly incomplete data, surface sampling noise, and

registration error.

Previous works in surface reconstruction from multi-view range images can be clas-

sified into three groups: reconstruction from unorganized points [2, 3, 6, 13, 28, 40],

mesh integration [66, 74, 75, 81, 85, 96], and implicit surface integration [21, 36, 101].
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Reconstruction from Unorganized Points

Surface Reconstruction algorithms using unorganized points are flexible because only

a cloud of points are needed. These approaches estimate the neighborhood relations

between points. The Euclidean distance between measurements is used as the basis for

establishing the adjacency on the surface. Neighborhood relations enable approximation

of surface topology and continuity. Boissonnat [13] describes a method for Delaunay

triangulation of a set of points in 3D space. Edelsbrunner and Mucke [28] proposed the

α-shape which is a parameterized construction that associates a polyhedral shape with

an organized set of points. For α =∞, the α-shape is identical to the convex hull. As α

decreases, the α-shape shrinks by gradually developing cavities. α-shapes were applied

for surface reconstruction.

Hoppe et al. [40] developed an algorithm to reconstruct surfaces from unorganized

points using the concept of the implicit surface. A signed distance field is estimated

from the point cloud. The isosurface is then extracted using a variation of the marching

cubes algorithm [1]. The key ingredient in defining the signed distance function is to

associate a tangent plane with each of the data points. These tangent planes serve as

local linear approximations to the surface and are used to define the signed distance

function to the surface.

Amenta et al. [2] proposed an algorithm that reconstructs surfaces with provable

guarantees. The output is guaranteed to be topologically correct and convergent to the

original surface as the sampling density increases. The algorithm is based on the 3D
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Voronoi diagram and Delaunay triangulation. It produces a set of triangles, called crust

of the sample points. All vertices of crust triangles are sample points.

Amenta et al. introduced the power crust in [3]. The power crust is a construction

which takes a sample of points from the surface of a three-dimensional object and

produces a surface mesh and an approximate medial axis. The approach is to first

approximate the medial axis transform (MAT) of the object, and then use an inverse

transform to produce the surface representation from the MAT.

Bernardini et al. [6] developed a system named ball-pivoting based on α-shapes while

avoiding the computation of the Voronoi diagram. The ball-pivoting algorithm computes

a triangle mesh interpolating a given point cloud. Three points form a triangle if a ball

of a user-specified radius ρ touches them without containing any other point. Starting

with a seed triangle, the ball pivots around an edge until it touches another point,

forming another triangle. The process continues until all reachable edges have been

tried, and then starts from another seed triangle, until all points have been considered.

The process can then be repeated with a ball of larger radius to handle uneven sampling

densities.

Zhao et al. [112] introduced a minimal surface like model and its variational and

partial differential equation formulation for surface reconstruction from an unorganized

data set. The data set can include points, curves, and surface patches. In the formu-

lation, only distance to the data set is used as the input. To find the final shape, they

continuously deform an initial surface following the gradient flow of an energy func-
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tional. An offset of the distance function to the data set is used as the initial surface.

The level set method [77] is used in the numerical computation.

Although the algorithms reconstructing surfaces from unorganized points are able to

compute a surface model using only point information, they discard useful information

such as surface normal and reliability estimates. These algorithms make three assump-

tions [81]. First, they assume that the K nearest surface neighbors of a point can be

estimated by finding its K nearest 3D neighbors. Second, these methods assume that

the density of data points is reasonably uniform over the surface to be modeled. Finally,

they assume that the points are measured with the same accuracy. These assumptions

are too restrictive for integrating multiple range images.

Mesh Integration

Surface reconstruction methods by merging the triangle meshes assume a surface mesh

can be easily obtained from a range image. This is true for most range scanners. Range

scanners usually acquire range images on a rectangular grid, where the triangulation

process is straightforward.

Turk and Levoy [96] integrate the surface by zippering triangle meshes from different

views. Merging begins by converting two meshes that may have considerable overlap

into a pair of meshes that just barely overlap along portions of their boundaries. This

is done by simultaneously eating back the boundaries of each mesh that lie directly on

top of the other mesh. Next, the meshes are zippered together. The triangles of one

mesh are clipped to the boundary of the other mesh, and the vertices on the boundary
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are shared. Once all the meshes have been combined, the final position of a vertex is

found by taking an average of nearby positions from each of the original range images.

Rutishauser et al. [74] described an algorithm to merge triangle meshes. They

consider the accuracy of the 3D position as defined by an anisotropic Gaussian error

model. Next they do a mutual approximation of the two meshes in an area where they

overlap. Finally a retriangulation is completed to merge the two meshes.

Soucy and Laurendeau [81] introduced an approach for measuring the level of redun-

dancy in a set of range images through the use of the Venn diagram. This diagram may

also be viewed as a multi-view connectivity graph. The Venn diagram allows a piecewise

estimation of the integrated model by a set of local surface triangulations modeling its

canonical subsets. The set of non-redundant triangulations is then connected in a final

step to yield a global integrated triangulation.

Pito [66] described a method of mesh integration based on co-measurements. All

of the triangles from either mesh which have sampled the same surface patch of the

object are identified as co-measurements, and only the most confidently acquired one

is kept. Co-measurement identification is based on the position and orientation of the

range scanner when each triangle was sampled. Once the redundant triangles have been

removed, what remains is a patchwork of unconnected non-intersecting meshes which

cover the sampled areas of the object. Neighborhood relationships established between

the edge points of each patch are used to seam them together.

Mesh integration-based algorithms use the information of surface normals and mea-

26



surement confidence. However, in order to detect the overlapping regions, back pro-

jection of 3D points to the image plane is needed. These algorithms are not robust to

registration error and may fail in areas of high curvature.

Implicit Surface Integration

Surface reconstruction by implicit surface integration is a volume-based approach. A

simple but coarse volume-based method to generate 3D models from range images is a

binary reconstruction based on space carving. The 3D space is partitioned into small

cubes, which are called voxels. A voxel is considered either empty or occupied. The

volume between the measured 3D points and the scanner is regarded as empty space

and carved out. The skin of the remaining volume after carving from different views

is the final result. Pulli et al. [69] used the octree to improve the space efficiency.

The binary reconstruction results in a blocky-looking surface. Thus the continuous

volumetric functions were introduced.

Whitaker [101] let the volumetric function be the surface likelihood. The strategy is

to use a maximum a posteriori approach: find a surface which is the most likely, given

the data and some prior knowledge about the application domain.

Curless and Levoy [21] used the cumulative weighted signed distance function. Work-

ing with one range image at a time, they first scan-convert it to an implicit surface based

on the distance from the voxel to the measured surface, then combine this with the data

already acquired using a simple additive scheme. The surface is extracted from the zero

crossing of the signed distance field using the marching cube algorithm. This scheme is
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able to generate a watertight surface. Run length encoding and resampling of the range

images are implemented to achieve space and time efficiency.

Instead of computing the signed distance along the measurement direction [21],

Hilton et al. [36] constructs the implicit surface using the true distance between the

voxel and the surface. Because this approach is not based on back projection, the holes

cannot be filled. Three techniques for nearest point computation are discussed. The

integrated surface is extracted using the marching triangle algorithm [37].

Implicit surface-based algorithms are robust to surface sampling noise and registra-

tion error. The quality of the extracted surface mesh is guaranteed. To have an accurate

reconstruction, a high resolution of the volumetric grid takes a large amount of memory.

A variation of the mesh integration-based algorithm is implemented in this research

[85], which is similar to [66]. The implicit surface-based algorithm used in this research is

a combination of [21] and [36], which computes the true signed distance field and is able

to generate watertight surfaces [89]. Beside the geometric fusion, texture integration is

introduced into both methods.

2.4 Surface Segmentation

Subdividing an image into its constituent parts or objects, segmentation is usually the

first step in image analysis. Autonomous segmentation is one of the most difficult tasks

in image processing [32].

In this research, the interest is in segmenting arbitrary surfaces represented by a
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triangle mesh. The triangle mesh is one of the most popular formats in representing

complex 3D objects. Most existing surface reconstruction algorithms [5, 6, 21, 36, 112]

export the result as a triangle mesh. Other polygon meshes can also be easily translated

into a triangle mesh. Triangle mesh segmentation can be used as a general tool for 3D

surface segmentation tasks.

Segmenting a 3D object can partition it into constituent parts, which may have

important applications in CAD and computer graphics. Segmentation of a 3D scene

can extract 3D objects from the scene, which may help scene understanding and 3D

object recognition.

Most work on 3D segmentation has been focused on segmenting range images [8, 39,

44, 111] obtained by different types of range scanners. 3D coordinates can be recovered

from the range image if the calibration of the scanner is known. However, a single

range image does not completely represent the scanned object due to occlusions. For

this reason, the range image is often called 2.5D image. Although this research is not

interested in segmenting range images, the proposed method can also be applied to

range image segmentation because a triangulated surface can be easily obtained from a

single range image.

Yu et al. [108] segmented a cloud of 3D points using a normalized cut algorithm

and then reconstructed the surfaces from each segmented cluster of points. In this

research, the surface is first reconstructed and then the segmentation is applied. The

segmentation is easier and more reliable when it is applied on a surface instead of a
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cloud of unorganized points.

Woo et al. [102] used a volume-based approach to segment a point cloud. Initial

grids containing the points are generated based on a bounding box. When the standard

deviation of point normals in a cell is larger than a threshold, the cell is subdivided.

When the size of 3D cells becomes very small, these cells correspond to the edges.

Removal of these cells separates the point cloud into several regions by leaving gaps

between different regions.

Huang and Menq [42] segmented a point cloud in three steps. In the first step, a

mesh surface domain is reconstructed to establish explicit topological relation among

the discrete points. In the second step, curvature-based border detection is applied

on the irregular mesh to extract both sharp borders with tangent discontinuity and

smooth borders with curvature discontinuity. Finally, the mesh patches separated by

the extracted borders are grouped together.

Li et al. [53] presented a mesh segmentation approach based on space sweeping.

The first step is the skeletonization of the 3D object. Skeletal edges are extracted

by mesh simplification. A skeleton tree is obtained to determine a traversal order by

adding virtual edges to connect disjointed skeletal edges. In the course of sweeping plane

movement along skeletal edges, the geometric and topological functions are computed

and analyzed. When a consecutive pair of critical points is found, the part of the polygon

mesh that is swept is extracted as a component.

Wu and Levine [103] introduced simulated electrical charge distributions for surface
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mesh segmentation based on the physical fact that electrical charge on the surface of a

conductor tends to accumulate at a sharp convexity and vanish at a sharp concavity.

From an initial triangle which is the local minimum of the charge density, the algorithm

proceeds to the neighbor with the lowest charge density. The tracing process detects the

object part boundaries denoted by the sharp concavity. This approach can be regarded

as edge-based segmentation. Similar to other 2D edge-based segmentation methods, the

segmentation fails when the boundary is not connected due to noise.

The mesh segmentation problem was first formally defined by Mangan and Whitaker

[55]. In their work, total curvature values at each vertex are estimated, and the surface

is segmented into patches based on the 3D watershed, where each patch has a relatively

consistent curvature throughout. This approach can be classified as region-based seg-

mentation. Although the watershed segmentation algorithm in Mangan’s work is the

first extension from a 2D image to a 3D surface, the extension is primitive. Some key

features that have been popular in 2D watershed-based segmentation, such as solving

the plateau problem, are ignored.

The watershed segmentation method can be classified as a region-based segmenta-

tion approach [72], which is more robust than an edge-based approach. The watershed

segmentation method is also chosen in this work. The fast marching watershed algo-

rithm proposed in this research solves the plateau problem, which has been ignored

in Mangan’s work, and is a more complete extension of watershed-based segmentation

from 2D image to 3D surface.
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Next a brief review of watershed-based segmentation algorithms for 2D images is

given. A detailed review can be found in [12, 72]. Watersheds for image segmentation

are described in the classic work of Serra [76] on mathematical morphology. 2D gray-

scale image can be segmented according to the watersheds of the image, where the

watersheds are the domains of attraction of rain falling over the region. A typical

watershed-based segmentation has three steps. First, regional minima are detected and

uniquely labeled. Then other pixels get the labels of regional minima that the swiftest

descending paths (SDP) lead to. The final segmentation is obtained by region merging.

The plateau problem means that the SDP is undefined for pixels on a plateau. The

usual solution is transforming the image to a lower complete image [12] so that no

plateau exists and the SDP is defined everywhere except at the regional minima. Lower

completion is accomplished by raising the plateau according to the geodesic distance

to the lower boundary of the plateau. Vincent and Soille [98] used a first-in-first-out

(FIFO) queue-based breadth-first algorithm [79] to propagate the label from the plateau

boundary to the inside. However, the breadth-first algorithm can only find the shortest

path on the unweighted graphs such as a 2D regular grid for an image. For the weighted

graphs such as a 3D triangle mesh, a priority queue-based algorithm is necessary. The

geodesic distance computed by Dijkstra’s algorithm [79], which is priority queue-based,

is not accurate because the shortest path is restricted on triangle edges. The proposed

fast marching watershed algorithm computes a more accurate geodesic distance using

Sethian’s fast marching method [77] and precisely partitions the plateaus.
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Rettmann et al. [70] proposed a mesh segmentation approach similar to this work.

It is applied to extract regions of cortical surface that surround sulci. Gyral and sulcal

regions are initially labeled based on its Euclidean distance to a shrink wrap surface that

is a deformable surface fitted to the original cortical surface. The height map is obtained

by computing the geodesic distance from sulcal regions to gyral regions. The watershed

segmentation for an accurate extraction of sulcal regions is an extension of [98] to the

3D surface mesh. The fast marching method is used to segment the plateaus. However,

when the geodesic distance is computed in a plateau, the fast marching is applied as

many times as the number of the surrounding regions. The method proposed in this

research is more efficient because there is only one marching process on the plateaus.
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Chapter 3

Surface Smoothing Based on

Area-Decreasing Flow

This chapter proposes a new surface smoothing method based on area-decreasing flow,

which can be used for preprocessing raw range data or postprocessing reconstructed

surfaces. Although surface area minimization is mathematically equivalent to the mean

curvature flow, area-decreasing flow is far more efficient for smoothing a discrete surface

on which the mean curvature is difficult to estimate. A general framework of regular-

ization based on area-decreasing flow is proposed and applied to smoothing range data

and arbitrary triangle meshes. Crease edges are preserved by adaptively changing the

regularization parameter. The edge strength of each vertex on a triangle mesh is com-

puted by fusing the tensor voting and the orientation check of the normal vector field

inside a geodesic window. Experimental results show the proposed algorithm provides
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successful smoothing for both raw range data and surface meshes.

The literature review of range image smoothing and surface smoothing is given in

Section 2.1. In Section 3.1, the regularized energy function is formulated for surface

smoothing based on area-decreasing flow. Section 3.2 derives the area-decreasing sta-

bilizer for calibrated range data and shows how to preserve the edges. The stabilizer

for the triangle mesh is introduced in Section 3.3 along with the discussion of edge

preservation based on the tensor voting approach. Experimental results are presented

in Section 7.1.

3.1 Regularization Based on Area-Decreasing Flow

The 3D image smoothing problem corresponds to a constrained optimization problem.

Regularization is the most widely used method to solve practical optimization prob-

lems with one or more constraints. Major advantages of regularization include: (i)

simple and intuitive formulation of the objective or energy function, and (ii) flexibility

in incorporating one or more constraints into the optimization process.

When regularization is applied to surface smoothing, x is replaced by X, a param-

eterized surface which represents a differentiable map from an open set U ⊂ R2 into

R3, that is X : U ⊂ R2 → R3. Given a bounded domain D ⊂ U and a differentiable

function l : D → R, where D represents the union of the domain D and its boundary,
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the variation of X(D) along normal n is given as

φ : D × (−ε, ε)→ R3, (3.1)

φ(u, v, t) = X(u, v) + t l(u, v)n(u, v), (3.2)

where (u, v) ∈ D and t ∈ (−ε, ε).

For the map Xt(u, v) = φ(u, v, t), the data compatibility term g(X) is chosen to be

the distance between the original surface and the smoothed surface, such as

g(X) = ‖X−Xt‖2, (3.3)

where ‖ · ‖ denotes a norm. The smoothness is assumed to be the prior knowledge of

the surface. From the frequency analysis point of view, the smoothing or stabilizing

term h(X) should reflect the high frequency energy. From the observation that noisy

surfaces usually have larger area than smooth surfaces, h(X) is chosen to be the surface

area As. This is closely related to the mean curvature flow that has been applied to 3D

image processing [22, 60, 101, 112].

The area As(t) of Xt(D) is obtained as

As(t) =
∫

D

√
1− 4 t l H +R

√
EG− F 2du dv, (3.4)
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where limt→0(R/t) = 0, H represents the mean curvature and E, F and G are the

coefficients of the first fundamental form. The derivative of As(t) at t = 0 is

A′
s(0) = −

∫
D

2 l H
√
EG− F 2du dv. (3.5)

The area is always decreasing if the normal variation is set as l = H, which is called the

mean curvature flow. This flow will generate a minimal surface whose mean curvature

vanishes everywhere. The details of minimal surface theory can be found in [23]. Finding

a minimal surface that spans a given boundary is called the plateau problem. The

discrete plateau problem was solved by Dziuk and Hutchinson [26, 27].

A minimal surface may take the form of a plane, catenoid, Enneper’s surface,

Scherk’s surface, etc. Under mean curvature flow, a smooth cylinder can deform into

a catenoid or two planes. To apply the mean curvature flow to regularized surface

smoothing, the compatibility term g(X) should be used to generate variation near the

original surface.

The curvature on discrete surfaces, such as for the range data and surface meshes, is

difficult to compute because it is defined on an infinitesimal area. For this reason, direct

surface area minimization is better than mean curvature flow for smoothing discrete

surfaces. The triangle mesh is used to represent surfaces because most types of surface

meshes can be easily translated into a triangle mesh.
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3.2 Range Data Smoothing

In Section 3.2.1, the area-decreasing flow is applied to range data smoothing. Edge

preservation by adaptive regularization is discussed in Section 3.2.2.

3.2.1 Area-Decreasing Stabilizer for Range Data

In previous works [10, 80, 83, 97, 107], the surface was considered as a graph z(x, y)

and represented as zij over a rectangular grid. Given the observed data cij on the same

rectangular grid, the viewpoint-invariant surface reconstruction can be performed by

minimizing the regularized energy function as

f =
∑
ij

(zij − cij)2/σ2
ij + λh, (3.6)

where 1/σij denotes the confidence of the measurement. In practice, 1/σij approximates

the surface slant, cos ζ, with respect to the incident laser. The larger the angle ζ between

the surface normal and the direction of measurement is, the smaller the confidence

becomes. Because (zij−cij)/σij is also the perpendicular distance between the estimated

and the real surfaces, this distance is viewpoint invariant. The stabilizing function h

can take several different forms. For example, a first order term is used in [107]; while

a second order term is employed in [83].

Estimating the elevation zij is feasible for sparse data. But in dense range images

from a range scanner with a spherical coordinate system, z(x, y) is no longer a graph

and estimating the elevation may result in overlap in range measurement. Therefore,
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the range rij is estimated instead of zij so that all refinement takes place along the line

of measurement.

For the PERCEPTRON range scanner [65], the range value of each pixel Rij is

converted to (xij , yij , zij) in Cartesian coordinates. The spherical coordinate system-

based calibration model described in [38] is adopted here:




xij = dx+ r sinα

yij = dy + r cosα sinβ

zij = dz − r cosα cosβ

(3.7)




α = α0 +H0(col/2− j)/N0

β = β0 + V0(row/2− i)/M0

(3.8)




r1 = (dz − p2)/δ

r2 =
√
dx2 + (p2 + dy)2/δ

r = (Rij + r0 − r1 − r2)/δ

(3.9)
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dx = (p2 + dy) tanα

dy = dz tan(θ + 0.5β)

dz = −p1(1.0− cosα)/ tan γ

(3.10)

where {p1, p2, γ, θ, α0, β0, H0, V0, r0, δ} represents the set of calibration parameters of

the scanner, and (M0, N0) refers to the image size.

For estimating r, the following parameterization can be used

X(α, β) = (r sinα, r cosα sinβ,−r cosα cosβ), (3.11)

and ignore small values denoted by dx, dy and dz in the analysis. The coefficients of

the first fundamental form, which will be used shortly in the computation of the surface

area, are given, in the basis of {Xα,Xβ}, as




E = Xα ·Xα = r2 + r2α

F = Xα ·Xβ = rαrβ

G = Xβ ·Xβ = r2 cos2 α+ r2β

(3.12)

where

Xα =
∂X
∂α

, Xβ =
∂X
∂β

, rα =
∂r

∂α
, and rβ =

∂r

∂β
.

c is denoted as the observed value of r. Range data smoothing can then be performed
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by minimizing the following energy function

f =
∑
ij

(rij − cij)2/σ2
ij + h. (3.13)

Let the stabilizing function h be the surface area, which can be calculated as

h = As =
∫∫

D

√
EG− F 2 dα dβ, (3.14)

where D represents the domain of (α, β).

The stabilizing function used by Yi [107] has the same effect of minimizing surface

area, but the assumption is made that the surface is a graph in Cartesian coordinates.

By using the height map z(x, y), the coefficients of the first fundamental form are

obtained as




E = 1 + z2
x

F = zxzy

G = 1 + z2
y

. (3.15)

Accordingly, the stabilizing function is obtained as

h =
∫∫

D

√
1 + z2

x + z2
y dx dy, (3.16)

which is similar to the function used in [107].

As (3.14) is not easily minimized due to the square root operation, minimization is
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applied on

h =
∫∫

D
(EG− F 2) dα dβ. (3.17)

That minimizations of (3.14) and (3.17) are equivalent is justified in the Appendix B.

From (3.12), (3.13) and (3.17), the finally regularized energy function is given as

f =
∑
ij

(rij − cij)2/σ2
ij +

∑
ij

λij(r4ij cos2 α+ r2ijr
2
β + r2αr

2
ij cos2 α), (3.18)

Among various optimization methods, the simple gradient descent method is adopted

to minimize (3.18). The estimation r′ij of each measurement rij is given as

r′ij = rij − w ∂f

∂rij
, (3.19)

where w represents the iteration step size and

∂f

∂rij
= 2(rij − cij)/σ2

ij + λij

{
4r3ij cos2 α (3.20)

+ [2rij(ri+1,j − rij)2 − 2r2ij(ri+1,j − rij) + 2r2i−1,j(rij − ri−1,j)]
(

1
dβ

)2

+ [2rij(ri,j+1 − rij)2 − 2r2ij(ri,j+1 − rij) + 2r2i,j−1(rij − ri,j−1)]
(cosα
dα

)2 }
.

In calculating the derivative of f in (3.20), the following forward difference approxima-
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tions were used:

rα =
ri,j+1 − rij

dα
(3.21)

and

rβ =
ri+1,j − rij

dβ
. (3.22)

Alternatively, the central difference approximation can also be used, such as

rα =
ri,j+1 − ri,j−1

2dα
(3.23)

and

rβ =
ri+1,j − ri−1,j

2dβ
. (3.24)

The derivative of f is then differently obtained as

∂f

∂rij
= 2(rij − cij)/σ2

ij + λij

{
4r3ij cos2 α (3.25)

+ [2rij(ri+1,j − ri−1,j)2 − 2r2i+1,j(ri+2,j − rij) + 2r2i−1,j(rij − ri−2,j)]
(

1
2dβ

)2

+ [2rij(ri,j+1 − ri,j−1)2 − 2r2i,j+1(ri,j+2 − rij) + 2r2i,j−1(rij − ri,j−2)]
(cosα

2dα

)2 }
.

The experiment shows that the central difference approximation makes the convergence
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faster.

3.2.2 Edge Preservation for Range Data

Incorporation of the regularizing term in the regularized energy function, as shown in

(3.18), tends to suppress local change in the range image. Although the smoothing

function is good for suppressing undesired noise, it also degrades important feature

information such as edges, corners, and segment boundaries. Using an additional energy

term to preserve discontinuity [10], however, generally makes the minimization very

difficult. Instead, the results of a 2D edge detection operation are used to adaptively

change the weight of the regularization parameter λ so that edges are preserved during

the regularization. Although there are various simple edge enhancement filters, the edge

enhancer in [17] is used, which guarantees both good detection and localization. Let

Jx(i, j) and Jy(i, j) be the gradient component of the Gaussian filtered version of rij in

the horizontal and the vertical directions, respectively. Then the edge strength image

can be obtained as

eij =
√
Jx

2(i, j) + Jy
2(i, j). (3.26)

The regularizing term in (3.18) can then be adaptively weighted, as in [46], using

λij =
ρ

1 + κ e2ij
, for 0 < κ < 1, (3.27)
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where κ represents a parameter that determines the sensitivity of edge strength, and

ρ is a prespecified constant. The selection of ρ generally depends on the desired data

compatibility as well as the level of noise.

3.3 Surface Mesh Smoothing

In order to apply the proposed regularized range image smoothing algorithm, the ac-

curate calibration model of the scanner must be known. However, for some scanners,

such as the RIEGL system LMS-Z210 [71] used in this work, the calibration parameters

are used by the manufacturer and not released. It is also desirable to smooth an ar-

bitrary surface instead of single view range data. In Section 3.3.1, the area-decreasing

flow is extended to process arbitrary surfaces represented by a triangle mesh. Adaptive

smoothing is discussed in Section 3.3.2, where edge strength is computed based on the

tensor voting approach.

3.3.1 Area-Decreasing Stabilizer for Surface Mesh

For an umbrella neighborhood [49] with I triangles on a triangle mesh, the position of

the center vertex v is adjusted along the normal direction n, as shown in Fig. 3.1. The

superscript k represents the k-th adjustment. The original position of the center vertex

is denoted as v(0). In the k-th adjustment, the center vertex moves from v(k) to v(k+1)
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v(k+1)
ai

bi

vi1

v(0)

ln(k)

v(k)

Ti

vi2

Figure 3.1: Umbrella operation: In the k-th iteration, the vertex moves from v(k) to
v(k+1) by ln(k).

by the length l in the direction of n(k), such as

v(k+1) = v(k) + ln(k). (3.28)

An adjustment is made to minimize the area of the umbrella and at the same time

be compatible to the original measurement. The local energy function is defined as

f(l) =
I∑

i=1

4[S(k+1)
i ]2 + λ ‖∆v(k+1)‖2, (3.29)

where S(k+1)
i is the area of the triangle vi1vi2v(k+1), denoted by Ti, and ∆v(k+1) is

defined as

∆v(k+1) = v(k+1) − v0 = ∆v(k) + ln(k). (3.30)

For computational convenience,
∑
Si is replaced by

∑
S2

i . Similar to the justification

shown in the Appendix B, the replacement can be justified using the Cauchy-Schwarz
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inequality, such as

I∑
i=1

Si ≤
√√√√I

I∑
i=1

S2
i . (3.31)

S
(k+1)
i is computed as

S
(k+1)
i =

1
2
‖(vi1 − v(k+1)) ∧ (vi2 − v(k+1))‖. (3.32)

For notational simplicity,

ai = vi1 − v(k)andbi = vi2 − v(k) (3.33)

are defined. The energy function defined in (3.29) can then be rewritten as

f(l) =
I∑

i=1

‖(ai − ln(k)) ∧ (bi − ln(k))‖2 + λ ‖∆v(k+1)‖2 (3.34)

= l2
{ I∑

i=1

{‖ai − bi‖2 − [(ai − bi) · n(k)]2}+ λ
}

+2 l {
I∑

i=1

[(ai · n(k))bi − (bi · n(k))ai] · (ai − bi) + λ (∆v(k) · n(k))}

+
I∑

i=1

‖ai‖2‖bi‖2 − (ai · bi)2 + λ‖∆v(k)‖2.
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The optimum value of l, which minimizes f , can be obtained by solving ∂f
∂l = 0, that is

l =
A− λ∆v(k) · n(k)

B + λ
, (3.35)

where

A =
I∑

i=1

{(bi · n(k))ai − (ai · n(k))bi} · (ai − bi),

and

B =
I∑

i=1

‖ai − bi‖2 − {(ai − bi) · n(k)}2.

The surface is iteratively deformed in the sense of minimizing the area of the umbrella

according to (3.28).

3.3.2 Edge Preservation for Surface Mesh

Similar to the process used for 2D images, edge detection on a triangle mesh is performed

by operation in a local window that is usually called the neighborhood. From a small

neighborhood, such as an umbrella, it is difficult to determine if the vertex is from

noise or near an edge. A large neighborhood is necessary for detecting edges on a

surface with strong noise. The irregular connections on the triangle mesh make window

selection not as straightforward as with 2D images. This research proposes a new 3D

edge detection algorithm using the geodesic window instead of the neighborhood defined
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Figure 3.2: Surface normal voting. (a) n′
i is the voted normal by Ti’s normal ni. (b)

The normal ni at p is transported through the arc
�
pq producing the voted normal n′

i

at q.

by the Euclidean measure in previous works. The geodesic window is a small surface

patch whose boundary has the same geodesic distance to the center vertex. Details for

computing the geodesic distance on a triangle mesh is introduced in Section 4.2.1.

Medioni et al. [57] introduced a tensor voting approach that can signal the presence

of a salient structure, a discontinuity, or an outlier, at any location. Page et al. [62,

63] applied tensor voting to robustly estimate the principal curvatures and principal

directions. In this work, tensor voting and the orientation check are combined inside

the geodesic window to detect the crease edges on a triangle mesh.

The tensor voting method for detecting crease edges can simply be considered as

the eigen analysis of the surface normal vector field. For a certain vertex q, the votes

are cast by the neighboring triangles, as shown in Fig. 3.2(a). The voted tensor cast by

the triangle Ti at vertex q is µin′
in

′
i
T , where n′

i is the voted normal by Ti’s normal ni
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and µi is the weight of the vote. The new tensor collected at q is

T =
M∑
i=1

µin′
in

′T
i , (3.36)

where M is the number of triangles inside the geodesic window of q and M > I. n′
i

is obtained by transporting ni through a sector of arc connecting p and q where p

represents the centroid of Ti. Fig. 3.2(b) illustrates the voting process. The arc is on

the plane defined by two vectors ni and −→pq. The normals at two terminals of the arc

are ni and n′
i. n′

i is computed as

n′
i = 2(ni ·wi)wi − ni, (3.37)

where

wi =
(−→pq ∧ ni) ∧ −→pq
‖(−→pq ∧ ni) ∧ −→pq‖ . (3.38)

The weight µi exponentially decreases according to the geodesic distance d between

p and q, such as

µi = e−(d/τ)2 , (3.39)

where τ controls the decaying speed and depends on the scale of the input triangle mesh.
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The singular value decomposition is applied to the new tensor T as

T =
[

e1 e2 e3

]



ν1 0 0

0 ν2 0

0 0 ν3







eT
1

eT
2

eT
3



. (3.40)

where ν1 ≥ ν2 ≥ ν3. In [57], T is rewritten as

T = (ν1 − ν2)e1eT
1 + (ν2 − ν3)(e1eT

1 + e2eT
2 ) + ν3(e1eT

1 + e2eT
2 + e3eT

3 ), (3.41)

where e1eT
1 describes a stick, e1eT

1 + e2eT
2 describes a plate and e1eT

1 + e2eT
2 + e3eT

3

describes a ball. Here the plate component is of special interest. ν2 − ν3 is related to

the strength of the planar junction. The junction is detected if

ν2 − ν3 > ν1 − ν2 and ν2 − ν3 > ν3. (3.42)

However, this only works for junctions near 90◦. To explain this situation, assume

that a crease edge is parallel to the z axis and two planes generating the edge are

symmetric according to the y axis. The normals of the two surfaces are

n1 = (cosϕ, sinϕ, 0)T (3.43)
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Figure 3.3: Crease edge detection. (a) A crease edge with angle ψ. (b) Angle ψ that
can be detected without an orientation check. Edges with sharp angles are missing. (c)
Angle ψ that can be detected with an orientation check. L is the factor in (3.48).

and

n2 = (− cosϕ, sinϕ, 0)T , (3.44)

as shown in Fig. 3.3(a).

According to (3.36), if µi is set to 1, the collected tensor at the vertex on the edge

is given as

T =




M cos2 ϕ 0 0

0 M sin2 ϕ 0

0 0 0



. (3.45)

And the eigen values are simply obtained as

ν1 = M cos2 ϕ, ν2 = M sin2 ϕ, and ν3 = 0, for 0◦ < ϕ ≤ 45◦ (3.46)
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or

ν1 = M sin2 ϕ, ν2 = M cos2 ϕ, and ν3 = 0, for 45◦ < ϕ < 90◦. (3.47)

From (3.42), where

ν1 < 2ν2,

and ψ = 2ϕ, a limited range of detectable edge angle is obtained, such as

70.53◦ < ψ < 109.47◦.

This research proposes a method to solve this problem. Initially, it is obvious that

if the edge detection condition is set as

ν1 < Lν2 and ν2 > 2ν3, (3.48)

Crease edges can be detected with

2 tan−1 1√
L
< ψ < 2 tan−1

√
L, (3.49)

which is depicted by the shaded region in Fig. 3.3(b). Crease edges with large ψ can be

detected by appropriately increasing L. However, (3.49) is still not complete because of
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a limit on sharp edges. This limit stems from the covariance matrix T that contains no

orientation information. In other words, v and −v result in the same T. Let

n =
M∑
i=1

µin′
i, (3.50)

as shown in Fig. 3.3(a). Observing that n tends to align with e1 if ψ > 90◦ or to be

perpendicular with e1 if ψ < 90◦,

|n · e1| < δ (3.51)

is used as an additional edge detection condition, where δ is a positive threshold. In

the experiments, δ = 0.3 is used. Condition (3.48) and the orientation check in (3.51)

provide a reasonable range of detectable crease edge angles as shown in Fig. 3.3(c).

The crease edge strength is defined as

s =




1, if |n · e1| < δ

1, ν3 > α(ν1 − ν2)

and ν3 > β(ν2 − ν3)

(ν2 − ν3)/ν1, otherwise

, (3.52)

such that 0 ≤ s ≤ 1. The definition of edge strength is divided by three conditions. The

second and the third condition correspond to the tensor voting theory [57]. Vertices on

the corners are considered to have high edge strength, described by the second condition.
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The third condition provides a continuous crease edge strength approximation in [0, 1].

The first condition is to detect sharp edges where the traditional tensor voting method

fails.

Eq. (3.28) is then modified by inserting an additional control factor based on the

crease edge strength, such as

v(k+1) = v(k) + e−5s ln(k), (3.53)

to realize the edge-adaptive smoothing.

The crease edge strength for each vertex is computed only once before deforming

the surface. Assume the triangle mesh has N vertices, and there are M triangles inside

the geodesic window on average. The computational complexity of crease edge strength

is O(NM logM). The complexity for each iteration of smoothing is O(N).

The iteration is stopped if the following condition is satisfied

|Z(k+1) − Z(k)|/Z(k+1) < ε, (3.54)

where

Z(k) =
N∑
‖v(k+1) − v(k)‖,

and ε is a threshold chosen as 0.1 in our experiment. Smaller ε results in more iterations
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of the smoothing.

Surface smoothing using area-decreasing flow has been successfully applied to real

data from different range scanners. Experimental results are shown in Section 7.1.
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Chapter 4

Surface Registration by Point

Fingerprint

In this chapter, a new and efficient surface representation method for surface matching

and its application to 3D image registration are proposed. A feature carrier for the

surface point, which is a set of 2D contours that are the projections of geodesic circles

onto the tangent plane, is generated. The carrier is named point fingerprint because its

pattern is similar to human fingerprints and discriminating for each point. Correspond-

ing points on surfaces from different views are found by comparing their fingerprints.

Rigid transformation is computed from the point correspondences.

The literature review of surface registration is given in Section 2.2. In Section 4.1 the

exponential map that is the theoretical basis of the proposed point fingerprint scheme is

introduced. In Section 4.2 methods for generating geodesic circles and defining 3D point
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fingerprint are presented. Section 4.3 introduces a novel method to select the candidate

points. In Section 4.4 the feature matching method is proposed. The application of

point fingerprint scheme to surface registration is discussed in Section 4.5. Experimental

results of 3D image registration are presented in Section 7.2.

4.1 The Exponential Map

Point correspondence-based surface matching methods generate a feature map for each

surface point by mapping from a surface patch to the 1D or 2D domain. We propose

that the mapping should have the following four properties.

1. View-Invariance

The features for surface matching must be view-invariant because they are used

to match the points from different views.

2. One-to-One mapping

Local one-to-one mapping allows the map to carry meaningful features such as

curvature, normal, and color. If the mapping is not one-to-one, each pixel may

correspond to several surface points so that this pixel cannot carry specific infor-

mation.

3. Continuity

There are no exact correspondences between vertices on two surfaces due to dis-

crete sampling and surface noise. Although two maps generated from different
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Figure 4.1: Geodesic vs Euclidean. (a) Surface patch 1 is the geodesic neighborhood
of p; Euclidean neighborhood erroneously includes surface patch 2. (b) An ambiguous
Euclidean contour. (c) A clearly defined geodesic contour.

views cannot be exactly the same, they should be similar to a certain degree for

the robustness of the feature map.

4. Localization

The mapping should reflect the local geometry, which is more flexible in dealing

with surfaces of arbitrary topology than global geometric information.

The view invariant 2D feature of a point p on a surface S should be defined on

a plane that is common to different views. The tangent plane Tp(S) is an option

and can be easily obtained. In previous works, Splash [82], Spin Image [45], and SPS

[105] are defined on the tangent plane. Some works use the geodesic measure while

others use the Euclidean measure. The problem with using the Euclidean measure

is that the neighborhood of a surface point is sometimes ambiguous. In Fig. 4.1(a),

surface patch 1 is the geodesic neighborhood of p, while the Euclidean neighborhood

59



erroneously includes surface patch 2. In previous works, only Splash [82] and HSI [110]

considered the geodesic measure. PS [20] uses the Euclidean measure because a contour

is generated by the intersection between a sphere and the surface. Point fingerprint

uses geodesic contour. The difference is illustrated by generating both Euclidean and

geodesic contours on a surface. The Euclidean contour in Fig. 4.1(b) is ambiguous,

which makes the PS generated later on problematic. However, the geodesic contour in

Fig. 4.1(c) is clearly defined.

4.1.1 Definition of the Exponential Map

The concept of a point fingerprint was inspired from the exponential map, which was

initially considered as a possible alternative to the harmonic map used in [110]. The

concept of the exponential map is briefly introduced next.

For surfaces in R3, the geodesics can be characterized as those curves c(s), where

s represents arc length, for which the acceleration c′′(s) in R3 is perpendicular to the

surface, i.e., the acceleration of c from the viewpoint of the surface is zero. A geodesic

minimizes arc length for points sufficiently close. In addition, if a curve minimizes the

arc length between any two of its points, it is a geodesic. S represents the surface, and

Tp(S) represents the tangent plane at the point p. The following theorem indicates the

uniqueness of the geodesic in the closed neighborhood of a surface point.

Theorem 1 Given a point p ∈ S and a vector v ∈ Tp(S), v = 0, there exist an ε > 0

and a unique parameterized geodesic γ : (−ε, ε)→ S such that γ(0) = p, γ′(0) = v.
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The proof can be found in [23].

To indicate the dependence of the geodesic on the vector v, it is convenient to denote

this by γ(t,v). The exponential map is defined as expp(v) = γ(1,v), with expp(0) = p.

Geometrically, the construction corresponds to laying off a length equal to ‖v‖ along the

geodesic that passes through p in the direction of v, and the point of S thus obtained

is denoted by expp(v). The exponential map establishes a one-to-one correspondence

between a point’s surface neighborhood and its tangent plane on which a feature map

can be obtained.

The expp is important in that it is always defined and differentiable in some neigh-

borhood of p. The following theorem states this fact.

Theorem 2 expp : Bε ⊂ Tp(S)→ S is a diffeomorphism in a neighborhood U ⊂ Bε of

the origin of Tp(S).

The proof can be found in [23].

The exponential map establishes a one-to-one correspondence between the neigh-

borhood of a point and its tangent plane on which a feature map can be obtained. It

satisfies four properties of a mapping proposed earlier. From the exponential map, local

coordinate systems can be introduced. The most commonly used are normal coordinates

and geodesic polar coordinates. The geodesic polar coordinates are used here, which

correspond to polar coordinates (ρ, θ) in the tangent plane Tp(S), where ρ refers to the

geodesic distance and θ refers to the departure angle of vector v relative to a reference

vector.

61



p

ρ Sθ

A geodesic circle

A radial geodesic

expp(ρ, θ)

Tp(S)(ρ, θ)
exp

Figure 4.2: Definition of the exponential map. The geodesic circle is formed by all the
points that have the same geodesic distances ρ to the center point p. θ is the departure
angle of the radial geodesic.

Fig. 4.2 shows the definition of the exponential map on a surface patch. The expo-

nential map is a map from the tangent plane to the surface patch. When the feature on

the tangent plane is generated, the inverse exponential map is actually used. But for

convenience, the term exponential map will continue to be used.

To use the exponential map to generate the feature image of one point p, ρ and θ

must be computed for each vertex in a neighborhood of p. The method for computing ρ

will be presented later. In the following subsection the difficulty involved in computing

the departure angle θ is discussed.

4.1.2 Computation of the Departure Angle

Let M be a Riemannian manifold and p ∈ M . If expp is defined at v ∈ Tp(M) and

w ∈ Tv(Tp(M)), then the differential of expp is

(dexpp)vw =
∂f

∂s
(1, 0), (4.1)
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where f represents a parameterized surface as

f(t, s) = expptv(s), for 0 ≤ t ≤ 1, and − ε ≤ s ≤ ε, (4.2)

and v(s) is a curve in Tp(M) with v(0) = v, v′(0) = w. ‖(dexpp)v(w)‖ denotes the

rate of spreading of the geodesics t→ expptv(s) which start from p. Now consider the

field

(dexpp)tv(tw) =
∂f

∂s
(t, 0) (4.3)

along the geodesic γ(t) = expp(tv), 0 ≤ t ≤ 1. It can be proven that ∂f
∂s satisfies a

differential equation, which is called the Jacobi equation,

D2J

dt2
+K(γ′(t), J(t))γ′(t) = 0, (4.4)

where J(t) = ∂f
∂s (t, 0), K is the curvature, and D

dt is the covariant derivative operator

that is the orthogonal projection of the usual derivative onto the tangent plane. A

detailed study of the Jacobi field can be found in [24].

The difficulty in solving the departure angle θ originates from the covariant deriva-

tive. No existing numerical method that computes the departure angle on a discrete

surface has been found, and the computation involving the second order derivative is

usually sensitive to noise. In the next section, the 3D point fingerprint based on the
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exponential map is introduced.

4.2 Fingerprint of the Surface Point

Fig. 4.2 indicates that geodesic circles carry the geometry information of the surface. To

simplify feature comparison, the geodesic circles are projected onto the tangent plane to

obtain a set of 2D contours, which are called the point fingerprint due to their similar

appearance to human fingerprints. Point fingerprint is view-invariant because it is de-

fined on the tangent plane. It also has continuity and localization properties. Although

the orthogonal projection is not a one-to-one mapping, the fingerprint functions like

a one-to-one mapping. This concept will be discussed later. In this research, point

fingerprint is used to find the corresponding points.

The geodesic circle is formed by the points that have the same geodesic distance

to the center point. The problems now are how to compute geodesic distance on a

triangulated surface and generate the 3D point fingerprint.

4.2.1 Geodesic Circle Generation

The geodesic distance on the discrete surface must be computed, especially on a tri-

angulated surface, which is the most popular representation of 3D objects. Dijkstra’s

algorithm [79] is widely used for finding the shortest path on a network with prescribed

weights for each link between nodes, which was the case in generating HSI [110]. The

problem of this algorithm is the inconsistency with the underlying continuous prob-
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lem. For this reason this research proposes a modified version of Kimmel’s work [48] to

compute the geodesic distance. Kimmel developed two methods to compute geodesic

distance on surfaces. These methods are based on Sethian’s level set method and the

fast marching method [78], respectively. The basic concept of Kimmel’s methods is to

evolve a geodesic circle with unit speed from a starting point p on the surface. The

contour evolution on the surface can be described as solving an Eikonal equation such

as

|∇ρ|F = 1, (4.5)

with ρ = 0 at the initial location and F represents the magnitude of the evolution

vector.

Kimmel’s first method [47] is for a surface that is a height map z(x, y) on a rectan-

gular grid, in which the level set method is used. The evolution of the geodesic circle

is obtained by evolving its corresponding projection on the xy plane. Kimmel’s second

method [48] is for an arbitrary surface in the form of a triangle mesh, which is a more

general approach. The fast marching method is used because it is more efficient than

the level set method for solving the Eikonal equation.

When the geodesic circle passes a 3D point, the reaching time, that is, the geodesic

distance, is stored for that point. After the evolution stops, the geodesic distance

between every point within the final geodesic circle and the starting point is known.

Since Kimmel’s second method computes the geodesic distance on a triangle mesh more

65



accurately than Dijkstra’s algorithm, it begins to draw much attention from different

research areas. This method has been used to solve surface matching problems [100, 104]

and accurately compute the curvature on a discrete surface [62].

The geodesic distance computation using the fast marching method is as follows.

Algorithm 4.1 (Computing Geodesic Distance [48]) The center point is tagged

as Inside, all the neighboring points of the center point are tagged as Front, and all the

other surface points are tagged as Outside. The geodesic distance to the center point is

denoted as ρ, and the following loop is then executed until ρ of a certain point exceeds

a prespecified value.

1. Change the tag of the Front point with the smallest ρ to Inside.

2. Tag all neighboring points of this new Inside point as Front.

3. Recompute ρ of these neighboring points, using only values of points that are Inside.

ρ is updated only if the recomputed result is smaller.

4. Go back to step 1.

Step 1 in Algorithm 4.1 guarantees that the marching process is always from the point

with the smallest geodesic distance to the point with the largest distance. Kimmel and

Sethian [48] proposed a scheme for updating ρ in step 3 on an arbitrary triangle mesh.

This scheme was extended from the marching on a regular triangulated planar domain

and derived for the triangle mesh with only acute triangles. The obtuse triangles need

to be split into acute triangles first.
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Figure 4.3: Geodesic distance update. (a) Updating ρ inside the triangle. (b) Updating
ρ outside the triangle. (c) Geodesic circles under occlusion.

This research proposes a simple new scheme to update ρ. Assume the geodesic

distances at A and B have already been calculated as ρ(A) and ρ(B), i.e., A and B

are Inside, as shown in Fig. 4.3(a). In order to update ρ(C), a virtual triangle OAB

is created with the lengths of the two edges equal to ρ(A) and ρ(B). Point O is the

virtual center point in the same plane as the triangle ABC. If the update occurs inside

the triangle, the new ρ(C) is assigned as the length of the segment OC as

ρ(C) =
√
|AC|2 + ρ2(A) + 2|AC|ρ(A) cos (α+ θ), (4.6)

where

α = arccos
|AB|2 + |AC|2 − |BC|2

2|AC||AB|
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and

θ = arccos
ρ2(A) + |AB|2 − ρ2(B)

2|AB|ρ(A)
.

If the update occurs outside the triangle as shown in Fig. 4.3(b), ρ(C) is assigned as

ρ(C) = ρ(B) + |BC|. (4.7)

Usually, the vertex may be updated inside the triangle from at least one direction. The

algorithm degenerates to Dijkstra’s algorithm for the vertex that has not been updated

inside a triangle. Locally, the computation of the distance on the surface is changed

to a simple calculation in the planar triangles. The validity of this method is that the

length of the curve on the surface is the integration along the tangent direction and the

tangent surfaces are locally isometric to the planes [23].

Although the geodesic measure is more natural than the Euclidean measure in dif-

ferential geometry, this measure has two shortcomings. First, the geodesic distance is

more sensitive to surface sampling noise. To overcome this, the data should be smoothed

in the preprocessing stage. Second, when the geodesic circles are generated on the self

occluded objects, the calculated geodesic distance may be different from the exact value.

As shown in Fig. 4.3(c), when a part of the plane is occluded, the geodesic circles are

no longer concentric circles. One method to solve this problem is that the marching

process is stopped whenever a step discontinuity is encountered.
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Figure 4.4: Local coordinate system.

4.2.2 Definition of Point Fingerprint

Before projecting the geodesic circles onto the tangent plane, the local coordinate system

should be defined first, as shown in Fig. 4.4. The normal vector n at the point p

defines one coordinate axis, which is computed as the average normal of the neighboring

triangles. By arbitrarily choosing one of the neighbor points, q, the other two axes can

be defined as

vy = n×−→pq/‖−→pq‖ (4.8)

and

vx = vy × n. (4.9)

The projection of a certain point m onto the tangent plane generated by vx and vy

can be computed as

x = ((n×−→pm)× n) · vx (4.10)
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and

y = ((n×−→pm)× n) · vy. (4.11)

Fig. 4.5(a) and 4.5(b) show geodesic circles on two surface patches of a synthetic head

model. The corresponding point fingerprints are illustrated in Fig. 4.5(c) and 4.5(d).

The fingerprint in Fig. 4.5(c) is not complete because of the step discontinuity caused

by self occlusion. Fig. 4.5(e) plots the radius variation of the third pair of contours, in

which both signals are periodic and one is a translated version of the other. Similarly

the normal variation is plotted in Fig. 4.5(f), which is the dot product of normal vectors

between the center point and points on the geodesic circle.

Not only are the fingerprints discriminating themselves, but they also can carry

other features. The key is to use contours instead of a 2D image. The projection on

the tangent plane, which is not a one-to-one mapping, may cause many surface points

to be mapped to the same pixel in the fingerprint. In that case, each pixel cannot be

allowed to carry features of different surface points. When the information on contours

is stored, each point in a certain contour corresponds to one surface point, although

the contours may intersect each other on the tangent plane. Thus the points in the

contours can be made to carry features of the surface points. This is one advantage

of using fingerprints rather than some previous works that project the whole surface

patch on the tangent plane. The other advantage of the proposed fingerprint is that the

comparison of several contours is much more efficient than the comparison of a pair of
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Figure 4.5: Definition of point fingerprint. (a)(b) Geodesic circles around the same
point on two surface patches. (c)(d) Corresponding point fingerprints. (e)(f) Radius
and normal variations from 0 to 360◦ along the third pair of contours.
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images.

4.3 Candidate Point Selection

Because it is time consuming to compare all pairs of points in two surfaces, and points

in the flat area whose fingerprints are like concentric circles provide little information in

the point matching, we need to choose a meaningful set of points to compare. Various

previous works [20] argued that all point pairs should be compared in the case of free-

form surface matching [9], where the surface may not have easily detectable landmark

features such as edges and vertices. In this work, some feature points can be extracted

even for the free-form surfaces as long as a sufficiently large neighborhood is consid-

ered. To operate locally on the triangle mesh, most previous works only considered

the neighborhood as a simplex [109], or some nearest points obtained by KD-tree im-

plementation based on the Euclidean measure. It is suggested that using the geodesic

measure to define the neighborhood is a better way because the resulting neighborhood

is independent of the surface sampling resolution.

Although the most popular feature point extraction method is to find high curvature

points, the estimation of stable and accurate curvature values on the discrete surface is

difficult. In this research, a novel method is proposed to efficiently extract candidate

points.

Considering that a point-of-interest has discriminating fingerprints, candidate points

that result in irregular contour shapes in the fingerprints are found. The irregularity
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measure is defined by the ratio of the maximum radius to the minimum radius for a

certain contour in its fingerprint. The irregularity measures for points on a planar re-

gion or a sphere are close to 1. On the other hand, points of interest have irregularity

measures much greater than 1. Only one contour is used, and the size of the geodesic

circle generating the contour depends on the type and size of the surfaces under match-

ing. It is reasonable that relatively large contours are used for free-form surfaces or

large scale surfaces. The candidate point is labeled if the irregularity measure is larger

than a prespecified value. The fingerprints of the extracted candidate points are then

compared to find correspondences.

The complexity of candidate point selection is O(N1N2 log(N2)), where N1 is the

number of points in the surface mesh and N2 is the number of neighboring points

considered for each point. Typically, the geodesic radius of the neighborhood is three

to five times larger than the average edge length of the triangle mesh.

4.4 Feature Matching

Some candidate points are located near the surface boundary. Although the fingerprint

contours of boundary points may not be closed, they still contain useful information.

Therefore, boundary points are not discriminated from other points in the matching

process. In our work, the whole surface is marched to create the fingerprint for each

candidate point. Fig. 4.6(a) and 4.6(b) show examples of two fingerprints.

From various features a fingerprint can carry, we exclusively use the contour radius
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Figure 4.6: Global fingerprint and normal variation. (a) and (b) show the same 3D
point fingerprint on a head model from two different views, which were obtained by
marching the whole surface. (c) Normal variation on the geodesic circles. (d) A zoom
view of (c).

74



variation and the normal variation for surface matching. Fig. 4.6(c) and 4.6(d) plot

the normal variation along the geodesic circles. On each contour of the fingerprint, we

sample with an incremental angle of 2π/K to represent the whole contour. Because

each surface may have L candidate points and each candidate point fingerprint may

have M contours, we used a three dimensional (L×M ×K) data structure to store the

information for each surface. In the experiments, L ≈ 100, M < 20, and K = 30 were

used.

The fingerprints of an identical point from different views match with a 2D rotation,

and the samples along each contour are periodic. The following formula is used to

compute Rij which is the dissimilarity measure between the ith candidate point on the

first surface and the jth point on the second surface. The formula is similar to the form

of cross correlation:

Rij =
K

min
l=1

[ M∑
m=1

K∑
k=1

(n1,i,m,k · n′
1,i − n2,j,m,k+l · n′

2,j)
2]
, (4.12)

where n1,i,m,k is the normal at the kth point on the mth contour of the ith fingerprint

from the first surface and n′
1,i is the normal at the center point of the ith fingerprint

from the first surface, and similarly for n2,j,m,k and n′
2,j from the second surface. The

ith candidate point in the first surface and the jth candidate point in the second surface

correspond if

j = argmin
k
Rik, (4.13)
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and Rij is below a threshold. The contour radius variation is similarly used to confirm

the correspondences.

4.5 Application to Surface Registration

For a given pair of surfaces, the algorithm for surface registration using point fingerprint

works as follows.

Algorithm 4.2 (3D Registration by Point Fingerprint)

1. Extract candidate points in both surfaces.

2. Generate fingerprint for every candidate point.

3. Find corresponding points by fingerprint matching.

4. Compute a coarse rigid transformation using Horn’s method.

5. Apply Iterative Closest Point (ICP) to get a refined transformation.

Previous sections present the first three steps. Coarse registration and ICP refinement

are discussed in this section.

4.5.1 Coarse Registration by Fingerprint Comparison

After point correspondences are established, a coarse registration between surfaces can

be solved. Horn [41] discussed how to compute the coordinate transformation from N

pairs of corresponding points based on quaternion and orthonormal matrix respectively,
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which is also called the 3D-3D absolute orientation problem. This problem was also

discussed by several other works [34], but with the same results. Assume N pairs of

points are represented by p1, ...,pN and q1, ...,qN , and R and t are the rotation matrix

and the translation vector. pn and qn are related by

pn = Rqn + t, n = 1, ..., N. (4.14)

To determine R and t, a constrained least-squares problem is set up. The function to

be minimized is
∑N

n=1 ‖pn− (Rqn + t)‖2 subject to the constraint that R is a rotation

matrix. Once R is known, the translation can be obtained directly as

t = p−Rq, (4.15)

where

p = 1
N

∑N
n=1 pn and q = 1

N

∑N
n=1 qn.

Let

B = (b1b2b3), (4.16)

where

bk =
N∑

n=1

(pnk − pk)(qn − q). (4.17)
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If the singular-value decomposition of B is

B = UDV, (4.18)

where U and V are orthonormal and D is diagonal matrix, then

R = V′U′, (4.19)

where U′ and V′ are the transpose of U and V.

4.5.2 ICP Refinement

Due to the nature of the discrete sampling, the corresponding points cannot be exactly

the same. Therefore, the registration almost always has a certain amount of error

which may affect the appearance of the surface reconstruction. The ICP algorithm can

be used to refine the registration results. The ICP algorithm is very effective to register

two surfaces with fairly good initial pose estimation. This algorithm has been widely

used to refine the coarse registration result obtained from either manual point matching

or automatic point matching. Since the ICP algorithm was first introduced by Besl

and McKay [7] and Chen and Medioni [19], many variants have been proposed in the

literature [52, 56, 68, 95, 96]. A recent review and comparison of these variants was

done in [73]. The basic ICP algorithm is given in the following.

Algorithm 4.3 (Basis ICP Algorithm) The following loop is executed until a pre-
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specified condition is satisfied, for example the pose estimation change between two it-

erations is smaller than a certain threshold.

1. Select a set of points in one surface.

2. Find their nearest corresponding points in the other surface.

3. Compute the pose estimation based on these correspondences.

4. Go back to Step 1.

Variants of the basic algorithm reside in:

1. How to select the set of points, such as sampling randomly or uniformly.

2. How to find corresponding points, such as using a KD-tree search or projection.

3. Using different rejection criteria to remove certain correspondences to increase

robustness.

4. Using different error metrics to estimate the pose.

The ICP algorithm in this work is similar to the one used by Turk and Levoy

[96]. The point correspondences for the points on the mesh boundary are discarded,

and a threshold is used to reject matched points which are far apart. Experimental

results show that the modified ICP algorithm works well and demonstrates a significant

improvement on the coarse registration using fingerprint methods.

Experimental results of point fingerprint-based surface registration are presented in

Section 7.2.
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Chapter 5

Surface Reconstruction from

Multi-View Range and Color

Images

This chapter presents research on surface reconstruction using range and color images

from multiple viewpoints. A mesh-based algorithm and a volume-based algorithm for

surface reconstruction are implemented and compared. This research introduces texture

fusion into these two methods to generate textured 3D models. Surface reconstruction

with or without space carving is discussed. In the model post-processing stage, volumet-

ric smoothing driven by mean curvature flow, and hole filling by volumetric interpolation

are presented. Automatic hole filling makes it possible to generate watertight models

when the surfaces of the object are not completely scanned.
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Figure 5.1: Triangulation of a single range image. There are six possible configurations
for the creation of triangles from four neighboring points.

The literature review of multi-view surface reconstruction using range images is given

in Section 2.3. In Section 5.1, a mesh integration approach is presented. Section 5.2

discusses the implicit surface integration approach and model post-processing methods.

Experimental results are presented in Section 7.3.

5.1 Mesh-Based Surface Integration

The mesh-based surface integration includes three steps: single view triangulation, re-

moving less confident triangles, and linking the gaps.

5.1.1 Triangulating a Single Range Image

Most laser range scanners employ a spherical coordinate system, and the viewing volume

is restricted by the horizontal and vertical limits. The range measurements are stored

as a 2D grayscale image, from which the 3D coordinates can be recovered when the

calibration parameters are known. The initial triangulation considers four neighboring

points and the six possible connections [74] as shown in Fig. 5.1.

When two neighboring range measurements differ by more than a threshold, there

81



Figure 5.2: Two registered and overlapping meshes.

is a step discontinuity. The threshold is determined by the average range value and

the sampling resolution. If a discontinuity is present, a triangle should not be created.

Triangles created across step discontinuities usually have very small internal angles,

which cause problems in searching for neighboring triangles and identifying overlapping

regions. Among the four points, only the ones that are not along discontinuities are

considered. If three of the four points satisfy this condition, a triangle will be created,

such as one of the last four cases shown in Fig. 5.1. If none of the four are along a

discontinuity, two triangles will be created and the common edge will be the one with

the shortest 3D distance, as illustrated by the first two cases shown in Fig. 5.1.

5.1.2 Removing Triangles in Overlapping Regions

Fig. 5.2 shows two registered and overlapping meshes from simulated range shots of a

sphere. The overlapping region detection is based on back projection. Knowing the

calibration model, the 3D points can be projected back to a 2D reference frame. Given

a new triangle mesh, each triangle of the existing mesh is projected onto the new 2D
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Figure 5.3: Bounding box of a triangle.

reference frame, which is the image plane of the new range image. If the 2D projection

of the triangle is out of the reference frame, the triangle is not in the viewport of the

new range shot and will be left unchanged. If the projection is inside the new reference

frame, it is necessary to check whether this triangle overlaps the new mesh. A test is

performed to see whether the triangle is facing the viewpoint of the new range shot. If

the dot product of the triangle normal with one of the three measurement rays (i.e.,

the rays from the viewpoint to each of the triangle vertices) is positive, the triangle is

front-facing. The bounding rectangle of the projected triangle is computed, as shown

in Fig. 5.3. To check if a front-facing triangle in the existing mesh overlaps any triangle

in the new mesh, the triangles in the new mesh whose projections are in the bounding

rectangle are considered. In Fig. 5.4, conditions of 2D triangle intersection, which can

be detected by edge intersection, are illustrated. An efficient algorithm for checking 2D

line intersection is described by O’Rourke [61].

When all the triangles in the bounding rectangle have been checked and there is

overlapping, either the triangle in the existing mesh or all the overlapping triangles in
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Figure 5.4: Intersecting triangles.

the new mesh are deleted. To keep the best measurements, a measurement confidence

is computed for each triangle. Similar to previous works [21, 66, 96], the confidence is

defined as the dot product of the normal of the triangle and the normalized viewing

direction. This concept matches the range scanners’ working principle: the measurement

accuracy depends on the incident angle. The average confidence of all the overlapping

triangles in the bounding rectangle is computed. If this average is larger than that of the

triangle from the existing mesh, the triangle in the existing mesh is deleted. Otherwise,

all the overlapping triangles in the bounding box are deleted. Overlapping in 2D does

not always imply overlapping in 3D. A threshold is set to determine whether two patches

overlapping in 2D are from the same area of the object. If the distance between two

triangles is smaller than the threshold, they are considered to be the representations

of the same surface patch. The threshold is set according to the accuracy of the range

scanner and the measured distance.

Since there is always registration error and noise in the range data, registered surface

patches cannot be aligned perfectly. The triangles may not be overlapping in one view

while they are in another view. This case is illustrated in Fig. 5.5. As the overlap
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Figure 5.5: View-dependent overlapping. From View 1 there is overlapping, but not
from View 2.
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Figure 5.6: Checking overlap for back-facing triangles.

detection is view dependent, the test is performed not only in the new viewport, but

also in the existing viewports.

In general, triangles in the existing mesh that are not front-facing do not need to

be checked for overlapping. However, a special case must be considered, as shown in

Fig. 5.6. When the step discontinuity is smaller than the threshold, two points along

a discontinuity are connected. But when the real surface is measured, the connection

may need to be removed. For example, in Fig. 5.6(a) a surface is measured from two

different views. The dashed line shown in Fig. 5.6(b) is created from View 2, which is

not correct if it is seen from View 1. Therefore, the triangles indicated by the dashed

line should be removed.
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Figure 5.7: Gap between surfaces after deleting overlapping triangles.

In Fig. 5.7, a two-view image of a head model is shown after deleting overlapping

triangles. Two views are taken, one at each side of the model. The most confident

measurements are kept.

5.1.3 Linking the Mesh Patches

To link the gaps between the mesh patches, candidate triangles are labeled to combine

with other points for building new triangles. These candidate triangles, which are on

the mesh boundaries, are called active triangles. If one of a triangle’s neighbors has

been deleted, it is marked as an active triangle.

An active triangle may have one, two, or even three active edges that need to find a

point to build a new triangle. For one active edge, some neighboring points are found

as candidates. A KD-tree [58] is employed for candidate point searching. The validity

of each candidate is then checked, and the best one is chosen to create a new triangle

that does not intersect the existing triangles. For all the valid candidate points, the

one that faces the active edge with the largest angle is the best. If the new triangle has
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a common edge with any existing triangle, both triangles will update the neighboring

information. After linking all the gaps, a global mesh representation of the surface is

obtained.

5.1.4 Texture Mapping

To produce a realistic scene, the color images should be fused with the range images

as a texture map. Generally the texture map can be of any type, such as color or

thermal images. In the simulations, both range images and color images are captured

from the exact same view (and are therefore automatically registered). Each triangle

in the complete mesh is associated with the texture image corresponding to the range

image from which it was generated. The triangles seaming the meshes are associated

with the texture image corresponding to the range image where two of the three triangle

vertices lie. Each triangle is projected onto its 2D reference frame to find the 2D texture

coordinates. The final result is a 3D textured scene.

In the experimentation, the mesh integration method performs well on the synthetic

data. However, the zippering process is not as robust as the volumetric integration

approach against sampling noise and registration error which always exist in real range

data. The assumption of the knowledge of the calibration parameters is another limi-

tation of this approach.
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5.2 Volume-Based Surface Integration and Post-Processing

The implicit surface integration method and surface post-processing techniques pre-

sented in this section are volume-based.

5.2.1 Implicit Surface Integration

The proposed implicit surface integration approach is an extension of Hilton’s work

[36]. Signed distance fields are generated in a volumetric grid. The value at each

voxel is computed as the signed distance to the surface mesh and updated when a new

mesh is integrated. Curless and Levoy [21] also integrated multiple surfaces based on

the fusion of implicit surfaces. In their work, space carving is implemented to generate

watertight models. The advantages of space carving are watertight model reconstruction

and the ability to remove outliers. However, Curless’ method is not proper for the

reconstruction tasks when the scene contains a lot of deep step discontinuities and

when complete scanning of the scene is impossible. Space carving also assumes to know

the range scanner’s calibration model because the carving is based on back projecting

each voxel onto the image plane. In this context, Hilton’s method is more flexible

because it assumes no knowledge about the scanner, and the only inputs to the algorithm

are triangle meshes that are not even necessarily from range scans. Curless computes

the signed distance by approximation along the viewing direction. Hilton’s method

computes the true distance from the voxel to the surface mesh.

This research incorporates color image integration into Hilton’s method to generate
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Figure 5.8: Generating signed distance field in a volumetric grid. (a) Construction of
a volumetric grid containing the surface. (b) Calculation of signed distance field at a
voxel x by −→xp · n, where p is the closest points on the surface to x.

texture integrated models. The algorithm is described as follows.

Algorithm 5.1 (Implicit Surface Integration)

1. A volumetric grid is initialized to contain the region of interest, as illustrated in

Fig. 5.8(a).

2. The voxels near the surface mesh are located, and their indices are put into a

queue.

3. A KD-tree data structure is built for all the vertices of the mesh.

4. For each voxel x in the queue, its nearest point p on the surface mesh is obtained

from the query of the KD-tree. The signed distance between the voxel and the

surface mesh is computed as the dot product of −→xp with n, where n is the normal

vector at p, as illustrated in Fig. 5.8(b). If the nearest point is on the boundary

of the mesh, the signed distance is discarded due to lack of information. The
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2D texture coordinate of x is set the same as that of p, and the pointer to the

corresponding texture file is stored. When a new surface is integrated, the signed

distance is updated by the weighted average according to the confidence of the

measurement.

5. The final surface mesh is extracted using the marching cube algorithm [54]. The

texture coordinate of each vertex on the extracted mesh is set the same as its

nearest voxel.

If it is necessary to generate a watertight model, a space carving process still can be

added as long as the range scanner calibration is known.

5.2.2 Volumetric Postprocessing by Mean Curvature Flow

After reconstruction, the surfaces are post-processed by mean curvature flow using the

level set method [77] in a volumetric grid. In this post-processing stage, mean curvature

flow is chosen instead of the area-decreasing flow because the mean curvature can be

easily computed for the implicit surface, and volumetric deformation can effectively

remove the outliers. Similar mean curvature flow implementations can be found in

[101, 112].

The mean curvature flow process also involves five steps in the volumetric integration

process except that there is only one mesh involved and the signed distance field is

modified according to the mean curvature value. The signed distance field value ψ at
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each voxel is updated as

ψ(k+1) = ψ(k) + εH, (5.1)

where ε controls the speed of surface deformation, and the mean curvature H is esti-

mated as

H =
1

(ψ2
x + ψ2

y + ψ2
z)3/2




(ψyy + ψzz)ψ2
x + (ψxx + ψzz)ψ2

y

+(ψxx + ψyy)ψ2
z

−2ψxψyψxy − 2ψxψzψxz − 2ψyψzψyz



, (5.2)

where ψx, ψy, and ψz are the first order derivatives along three coordinate axes, and

ψxx, ψyy, ψzz, ψxy, ψyz, and ψxz are the second order derivatives. These derivatives are

estimated in a 5× 5× 5 window.

5.2.3 Automatic Hole Filling

Although it is easy to change the pose of an object and scan most of the surface in

small parts reconstruction, sometimes it is impossible for the laser to cover every corner

due to the complexity of the object. This results in holes in the reconstructed model.

Most of these holes can be automatically filled. Filling the holes on a triangle mesh is

conducted by filling the holes on the implicit surface in the volumetric grid. Fig. 5.9

shows a slice of the volumetric grid in which a curve with a gap represents a surface

with a hole. In the fourth step of the integration process, the signed distance values
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Figure 5.9: Hole filling illustrated in a slice of volumetric grid. The hole can be filled if
the signed distance values at voxels A and B are computed.

of the voxels whose nearest points are on the mesh boundary are discarded. However,

these values are useful in the hole filling process. In Fig. 5.9, voxels A and B have their

nearest neighbors on the mesh boundary. The signed distance field has a gap between

A and B. The gap can be filled by computing the signed distance values at A and B

as if the surfaces are extended. Once the signed distance field describing the surface is

complete, the extracted triangle mesh is also complete with the holes filled.

The reconstructed surface usually uses a lot of triangles, making model rendering

and further operation extremely slow. The number of triangles are reduced by using a

mesh simplification algorithm. Among the various simplification algorithms, Garland’s

algorithm [30], which is based on the Quadric Error Metrics, is implemented.

The volume-based approach is robust to surface noise and registration error. There

is no assumption of the calibration parameters. It is also convenient to post-process

the surface in a volumetric grid. However, the volume initialized for reconstruction is

not easy to change during the integration process. Overall, the volume-based approach

is more suitable for surface reconstruction from range data than are the mesh-based

approaches.
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Chapter 6

Surface Mesh Segmentation

This chapter presents a watershed-based approach to segmenting the surfaces repre-

sented by triangle meshes. The proposed approach includes a robust method for the

edge strength computation at each vertex and an accurate segmentation method based

on fast marching watershed. Edge strength constructs a piecewise continuous height

map on the surface, which is used for watershed segmentation. Compared to previ-

ous watershed-based mesh segmentation approaches, the proposed algorithm is able to

segment the surface more accurately by generating a lower complete image using the

geodesic erosion.

The literature review of surface segmentation and watershed-based segmentation is

given in Section 2.4. This chapter starts with an introduction of a typical watershed

algorithm in Section 6.1. Section 6.2 introduces the edge strength map on a triangle

mesh. The fast marching watershed is proposed in Section 6.3. Experimental results
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are presented in Section 7.4.

6.1 A Typical Watershed Algorithm

As a primary tool of mathematical morphology for image segmentation, watershed-

based segmentation has been studied for over twenty years [12]. A 2D grey scale image

can be considered as a 3D landscape with the third dimension being the grey level. This

image is defined on a 2D regular grid, which is an unweighted graph. The image can

be segmented by the watershed of the landscape. A typical watershed algorithm is as

follows.

Algorithm 6.1 (A Typical Watershed Algorithm)

1. (Minima Detection) Find local minima and assign a unique label to each minimum.

2. (Descending) Allow all unlabeled vertices to descend and join to labeled regions.

3. (Region Merging) Merge regions whose watershed depths are below a preset thresh-

old, and finally, relabel all the regions.

Vincent and Soille [98] proposed another version of this algorithm by performing the

first two steps based on the immersion simulation.

6.2 Construct a Height Map of Edge Strength

To apply watershed segmentation on a triangle mesh, a height map based on the high

pass filtering needs to be computed. The edge strength height map in this research is
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(a) (b)

Figure 6.1: Geodesic neighborhood on a waterneck model. (a) The neighborhood con-
tains 200 vertices. (b) The zoomed view of (a).

more robust to noise than Mangan’s total curvature height map [55]. Mangan computed

the total curvature value at each vertex only based on an umbrella neighborhood, so

the result is very sensitive to the surface noise and mesh resolution.

In many cases, 3D surfaces are represented by very dense triangle meshes. The

transition of geometric features is not obvious in a small neighborhood. For robust edge

detection, the neighborhood size often needs to be very large. In Fig. 6.1, a reasonably

large neighborhood that is able to detect weak crease edges contains 200 vertices! This

neighborhood is much larger than the umbrella neighborhood used in [55] and in most

computer graphics applications.

The edge strength computation in this work, which was presented in Section 3.3.2,

involves a geodesic neighborhood with flexible size and eigen analysis of surface normals.

The robust edge strength estimation makes the watershed segmentation work well on

noisy and dense triangle meshes.
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6.3 Applying the Fast Marching Watershed on a Triangle

Mesh

The swiftest descending path (SDP) from a pixel (x, y) is defined as a finite succession

of connected pixels such that each pixel is not higher than its predecessor and is one of

its lowest neighbors. The step of descending in Algorithm 6.1 is a process of finding the

SDP.

The watershed-based algorithm has the plateau problem, where the SDP is undefined

for pixels inside the plateau. A common approach to plateau elimination transforms

the image into a lower complete image so that the SDP is defined on every pixel. The

transformation raises the plateau according to the geodesic distance from a pixel to the

plateau boundary. The pixel in the center of the plateau is higher than the pixel near

the boundary. An alternative method is geodesic erosion by directly extending the SDP

from the boundary pixels inside the plateau. The plateau is eroded starting from the

boundary with the same speed until the plateau disappears. The SDP is in the opposite

direction of the erosion process.

Geodesic erosion was introduced into image analysis by Lantuejoul and Maison-

neuve [51]. They proposed important concepts: geodesic zone of influence and skeleton

by influence zones. Vincent and Soille [98] used the breadth-first algorithm for geodesic

erosion on a 2D hexagonal grid. Bleau [11] described an algorithm based on idempotent

geodesic transform implemented on square or hexagonal grids of any dimensions. How-

ever, the geodesic distance computed by using these methods is not accurate because
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the shortest path is restricted along the edges.

Geodesic erosion for partitioning the plateaus is also necessary on a 3D triangle

mesh. In [55], Mangan and Whitaker first reported the research on watershed-based

segmentation of triangle meshes. However, their algorithm classifies a whole plateau

into a neighboring region instead of segmenting it. The breadth-first algorithm can

be used for finding the shortest path only on an unweighted graph. For a weighted

graph, such as a 3D triangle mesh, a priority queue-based algorithm must be used.

This research applies the fast marching method for geodesic erosion on a triangle mesh

because it is more accurate than Dijkstra’s algorithm [79].

Let a graph G = (V,E,H) denote a triangle mesh consisting of a set V of vertices,

a set E of edges, and a height map H defined on the vertices. NG(v) represents the set

of vertices that are in the umbrella neighborhood of v. v.d and v.s are used to represent

the geodesic distance and status at a vertex v, used for geodesic erosion. The status of

each vertex may have one of three conditions. Inside vertex represents a vertex inside

the current geodesic neighborhood. Front vertex represents a vertex on the propagation

front. Front vertices are stored in a priority queue Q using a heap data structure and

keyed by the geodesic distance. The status of other vertices is outside. v.n points to the

next vertex in the SDP. v.l is the label denoting the region to which the vertex belongs.

v.h is the associated height map value at v.

The fast marching watershed algorithm has four steps as summarized in the following

algorithm.
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Algorithm 6.2 (Fast Marching Watershed)

1. (Minima Detection) Extract flat regions. Assign unique labels to minima. Vertices

on ramp and plateau boundaries get v.n.

2. (Geodesic Erosion) Propagate v.n from plateau boundaries toward inside.

3. (Descending) Label non-minima vertices, directed by v.n.

4. (Region Merging) Merge all shallow regions into neighboring regions.

The four steps in Algorithm 6.2 are introduced in Sections 6.3.1 to 6.3.3.

6.3.1 Minima Detection

All vertices are initially considered on the ramp and denoted by -1. From a vertex v, a

set of connected vertices with the same height map value as v.h are extracted and stored

in a vector A. A FIFO queue-based breadth-first algorithm, which has been used for

minima detection in 2D watershed-based segmentation in [72], is applied. Flat regions

are extracted and classified into minima and plateaus. A flat region is considered as a

minimum if all adjacent vertices have height map values greater than or equal to that

of the region. Otherwise, the flat region becomes a plateau if it contains more than

one vertex. Minima regions are assigned unique labels starting from 0. Vertices on the

plateaus are assigned a -2 label. Vertices on ramp and plateau boundaries obtain their

v.n simply by looking for the vertex with the smallest height map value in NG(v). The

vertices on the plateau boundaries are put into a vector bound used for geodesic erosion.
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A vector structure has three operations:

• vector init(A) initializes a vector A.

• vector add(A, v) adds a vertex v into A.

• vector size(A) returns the size of A.

A FIFO queue structure has four operations:

• fifo init(Q) initializes a FIFO queue Q.

• fifo add(Q, v) adds a vertex v into Q.

• fifo delete(Q) gets the first element of Q.

• fifo empty(Q) checks if Q is empty.

The detailed algorithm for minima detection is as follows.

Algorithm 6.3 (Minima Detection)
1: #define Inside 0
2: #define Outside 2
3: for all v ∈ G do
4: v.s ← 2; v.l ← −1; v.n ← null
5: end for
6: L = 0
7: for all v ∈ G do
8: if v.l = −1 then
9: vector init(A); adjmin ← v.h; vcur ← v; fifo init(Q); v.s ← 0

10: loop
11: vector add(A, vcur); min← vcur.h

12: for all vi ∈ NG(vcur) do
13: if vi.h < min then
14: min← vi.h; vcur.n ← vi
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15: end if
16: if vi.h < adjmin then
17: adjmin ← vi.h

18: end if
19: if vi.s = 0 and vi.h = vcur.h then
20: fifo add(Q, vi); vi.s ← 0
21: end if
22: end for
23: if vcur.n = null then
24: vector add(bound, vcur)
25: end if
26: if fifo empty(Q) then
27: BREAK
28: else
29: vcur ← fifo delete(Q)
30: end if
31: end loop
32: if adjmin ≥ v.h then
33: for all vi ∈ A do
34: vi.l ← L
35: end for
36: L← L+ 1
37: else if adjmin < v.h and vector size(A) > 1 then
38: for all vi ∈ A do
39: vi.l ← −2
40: end for
41: end if
42: for all vi ∈ A do
43: vi.s ← 2
44: end for
45: end if
46: end for

Fig. 6.2(a) shows a surface whose height map has four flat regions. A 2D slice of the

height map is shown in Fig. 6.2(b). The flat regions are extracted by FIFO queue-based

flooding from vertices A, B, C, and D. Solid arrows denote that the vertices have found

v.n. In this step, only the vertices on the ramp and plateau boundaries found v.n, and

the labeling result is shown in Fig. 6.2(b).
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Figure 6.2: Fast marching watershed. (a) A surface patch whose flat regions are ex-
tracted by FIFO queue-based flooding. (b) A 2D slice of the height map, on which
the minima are uniquely labeled and plateaus are marked as -2. Vertices on ramp
and plateau boundaries get v.n represented by solid arrow. (c) Propagate v.n from the
plateau boundary by geodesic erosion. (d) v.n at vertex on the plateau is opposite to
the erosion direction. (e) All non-minima vertices get v.n. (f) All vertices are labeled
by tracing v.n.
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6.3.2 Geodesic Erosion

This step assigns v.n for vertices inside the plateaus. From the previous step, a list

of vertices that are on the plateau boundaries are recorded in a vector bound. These

vertices have been assigned v.n. A geodesic erosion process propagates v.n from the

plateau boundary toward the inside.

A priority queue-based heap structure used in the geodesic erosion has five opera-

tions:

• heap init(Q) initializes a heap Q.

• heap insert(Q, v) adds a vertex v into Q.

• heap delete(Q) gets the first element of Q.

• heap changekey(Q, v) re-sorts the queue after the key of a component v is changed.

• heap empty(Q) checks if Q is empty.

The detailed algorithm is as follows.

Algorithm 6.4 (Geodesic Erosion)
1: #define Inside 0
2: #define Front 1
3: #define Outside 2
4: if vector size(bound)=0 then
5: EXIT
6: end if
7: heap init(Q)
8: for all v ∈ bound do
9: v.d ← 0; v.s ← 0; heap insert(Q, v)
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10: end for
11: vcur ← heap delete(Q)
12: loop
13: vcur.s ← 0
14: for all vi ∈ NG(vcur) do
15: if vi.s = 0 and vi.h = vcur.h then
16: old vi.d ← vi.d

17: compute vi.d

18: if vi.d < old vi.d then
19: vi.n ← vcur.n

20: end if
21: if vi.s = 2 then
22: vi.s ← 1; heap insert(Q, vi)
23: else
24: heap changekey(Q, vi)
25: end if
26: end if
27: end for
28: if heap empty(Q) then
29: BREAK
30: else
31: vcur ← heap delete(Q)
32: end if
33: end loop

The dashed arrows in Fig. 6.2(c) represent the directions of geodesic erosion. The

erosion seems to proceed in parallel on all plateaus because all the vertices on the

plateau boundaries are put in one priority queue. Compared with the algorithm in [70],

this proposed approach is more efficient because there is only one marching process.

Solid arrows on the plateaus in Fig. 6.2(d) are opposite to the erosion direction, and

they represent that the vertices inside plateaus obtain v.n after geodesic erosion. For a

vertex v in the plateau, the geodesic distance v.d to the plateau boundary is computed

from vi ∈ NG(v), and v.n is defined as vi that generates the smallest v.d.

Geodesic erosion enables plateau segmentation. The surface shown in Fig. 6.3 is a
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Figure 6.3: Segmenting a plateau area. (a) Initially labeled regions on a rounded corner,
minima are in red and green and plateau is purple. (b) Mangan’s algorithm groups the
plateau into a neighboring region. (c) Geodesic erosion in progress by fast marching
watershed. (d) Fast marching watershed equally divides the plateau region.

rounded edge appearing in many CAD models, formed by a piece of cylinder and two

tangent planes. The height map on the curved region constructs a plateau. The labeling

result after minima detection is shown in Fig. 6.3(a), where two planes are labeled as

minima and shown in red and green. The plateau is the purple region. Mangan’s

algorithm [55] gives the result shown in Fig. 6.3(b) where the whole plateau is merged

into a neighboring region. The fast marching watershed algorithm erodes the plateau

from the boundary as shown in Fig. 6.3(c) and generates the correct segmentation in

Fig. 6.3(d), where the boundary is exactly in the middle of the plateau.
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6.3.3 Descending and Region Merging

Labeling vertices by descending is straightforward after v.n is defined on every non-

minima vertex. This work applies a similar method of region merging used in Mangan’s

work [55]. Region merging is essentially a graph problem with the node being the

individual region. The process is independent from the triangle mesh segmentation.

In the proposed algorithm, a larger region is favored over a smaller region. Although

the real surface area is more accurate, the vertices number is simply used as an area

measure. It was reported in [55] that the area-based metric penalizes the small area

too much. This research confirms that report when the metric is used for all regions.

However, if the metric is only applied on those relatively small areas, the area-based

metric is very effective in avoiding over-segmentation, as shown in the experimental

results.

In the surfaces reconstructed from range scanners, sometimes there exist outliers that

have only a few vertices. These outliers can not be merged into other regions no matter

what area penalization is applied because they are separated in 3D space. One way

to avoid over-segmentation caused by outliers is to remove them before segmentation.

Another way, which is used in this research, is to discard the regions whose areas are

smaller than a given threshold after segmentation.

The proposed segmentation algorithm is applied to segment the surfaces recon-

structed from the range data. Experimental results will be given in Section 7.4.
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Chapter 7

Experimental Results

This chapter presents the experimental results of surface smoothing, registration, inte-

gration, and segmentation from Section 7.1 to 7.4. An application of the whole surface

modeling and analysis framework is shown in Section 7.5.

7.1 Surface Smoothing

Fig. 7.1 shows raw data captured by the PERCEPTRON laser range scanner. The size

of the original range image is 1024 by 1024 pixels. The PERCEPTRON scanner is able

to scan objects in a range from 2 to 20 m. Besides random noise, measurement accuracy

is also sensitive to the surface material. Fig. 7.2 shows the corresponding nonadaptive

regularization results that are much smoother than the raw surfaces shown in Fig. 7.1.

Fig. 7.3(a) shows the result of a 3 by 3 median filtering conducted twice, which

does not produce sufficiently smoothed surface. Additional median filtering provides
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Figure 7.1: Raw range data (left) and zoomed portion (right). The image was taken
by the PERCEPTRON range scanner. The size of the original range image is 1024 by
1024. The 3D model has 1,996,958 triangles.

Figure 7.2: Range data regularization result (left) and zoomed portion (right). The
smoothed image is obtained by 50 iterations of nonadaptive regularization using area-
decreasing flow.
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no discernible improvement. For fair comparison, results with a larger median filtering

window are not included because the proposed algorithm is based on operation with a 3

by 3 window. Fig. 7.3(b) shows the regularization result using the simple 2D Laplacian

smoothing term. Unstable results along edges are obtained, which coincide with the

results reported in [10]. The edge map and 50 iterations of nonadaptive and adaptive

regularization results are shown in Fig. 7.3(c)-(e), respectively. In the regularization,

w = 10−5, ρ = 0.01 and κ = 0.5 were selected. Note in Fig. 7.3(e), the wires on the

cubicle wall behind the monitor which are preserved by the adaptive regularization. The

adaptive regularization technique gives much better results than the median filtering

method. In the experiments, central difference approximation makes the minimization

more robust, and the regularization factor can be set to a large value to speed up the

convergence.

Fig. 7.4 shows nonadaptively smoothed results of the surface mesh for synthetic data.

The blocky-looking surfaces in Fig. 7.4(a) and (c) are caused by binary reconstruction

using the marching cube algorithm [54]. Binary reconstruction means the voxel’s status

is either empty or occupied. The aliasing artifacts are caused by the discontinuous tran-

sition of the status. Fig. 7.4(b) shows the nonadaptively smoothed result of Fig. 7.4(a)

after 6 iterations. Fig. 7.4(d) shows the nonadaptively smoothed result of Fig. 7.4(c)

after 7 iterations.

Fig. 7.5 shows the result of surface mesh smoothing using area-decreasing flow ap-

plied on a waterneck model scanned by the IVP RANGER Profiling System. Figs. 7.5(a)
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(a) (b)

(c) (d)

(e)

Figure 7.3: Results of median filtering, nonadaptive and adaptive regularization of
range data. (a) Result from 3 by 3 median filtering conducted twice. (b) Result from
regularization using Laplacian smoothing term. Note the instability along edges. (c)
The edge map. (d) Result from nonadaptive regularization. (e) Result from adaptive
regularization. Note the wire on the wall preserved by the adaptive method.
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(a) (b)

(c) (d)

Figure 7.4: Surface smoothing of synthetic data. (a) Surface mesh of Stanford bunny
model generated by binary reconstruction, 15,665 triangles. (b) 6 iteration, nonadaptive
smoothed result of (a). (c) Synthetic surface mesh of a torus model generated by binary
reconstruction, 14,604 triangles. (d) 7 iteration, nonadaptive smoothed result of (c).
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(a) (b)

(c) (d)

Figure 7.5: Smoothing surfaces from scans of a waterneck captured by the IVP
RANGER Profiling System. (a)(b) Surfaces from a range scan of a waterneck and
zoomed window. (c)(d) Smoothed surfaces after 2 iterations and zoomed window.
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(a) (b)

(c) (d)

Figure 7.6: Smoothing surfaces from scans of a crank captured by the IVP RANGER
Profiling System. (a)(b) Surfaces from a range scan of a crank and zoomed window.
(c)(d) Smoothed surfaces after three iterations and zoomed window.
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(a) (b)

Figure 7.7: Smoothing surfaces captured by the RIEGL System. (a) Raw surface with
99,199 triangles. (b) 6 iteration, nonadaptive smoothed result of (a).

and 7.5(b) show the raw surface; Figs. 7.5(c) and 7.5(d) show the smoothed results that

are obtained after two iterations. Similar results for a crank model are shown in Fig. 7.6

using three iterations.

Fig. 7.7(a) shows the raw surface captured by the RIEGL laser mirror scanner LMS-

Z210 [71], with 99,199 triangles. The scanner is able to capture range images and color

images simultaneously in a range from 2 up to 350 m. The standard deviation of the

measurement error is 2.5 to 5 cm. Fig. 7.7(b) shows the corresponding nonadaptively

smoothed result after 6 iterations with λ = 0.01, in which noise is effectively suppressed.

Fig. 7.8 shows the experimental results of adaptive smoothing on the triangle mesh.

Fig. 7.8(a) and Fig. 7.8(b) show the raw surface captured by the RIEGL scanner with

and without texture. The sampling noise can be observed from the zoomed portion of

the window. The size of the original range image is 524 by 223 pixels. The building is

approximately 50 m away from the scanning position. No data were obtained behind
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(a) (b)

(c) (d)

(e) (f)

Figure 7.8: Adaptive smoothing of a surface mesh. (a) Raw textured surface captured
by the RIEGL laser range scanner. (b) Raw surface without texture, 139,412 triangles.
(c) Edge detection. Vertices on the edges are marked by small spheres. (d) Zoomed
window frame portion of (c). (e) 5 iterations of nonadaptively smoothed result of (b).
(f) 5 iterations of adaptively smoothed result of (b). Note the well preserved window
frame structures.
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the building where the distance is greater than the scanner’s capturing range. The

tower is separated due to self occlusion. Trees in front of the building are removed to

highlight the smoothing on the building surface. The 3D model has 139,412 triangles.

Crease edge detection on the triangle mesh is shown in Fig. 7.8(c), where each vertex on

the crease edge is marked by a small sphere. The window frame portion is zoomed and

shown in Fig. 7.8(d). Fig. 7.8(e) and Fig. 7.8(f) show the nonadaptively and adaptively

smoothed results, respectively, after 5 iterations with λ = 0.01. The geometric details

such as window frames, as seen from the zoomed portion, are well preserved by the

adaptive smoothing.

The algorithm relies on adjusting the vertex along the normal direction. When the

surface is so noisy that the normal estimation is no longer stable, the algorithm fails

because the smoothing will cause mesh self-intersection. The algorithm works well for

all tested real range data. The noise effect is tested using a digital elevation map by

adding Gaussian noise. The smoothing fails when the signal-to-noise ratio reaches 8.1

dB. This problem can be solved using Laplacian flow by improving the mesh regularity

[60].

7.2 Surface Registration

The point fingerprint-based surface registration scheme was tested on both synthetic and

real range data. Synthetic range images were obtained from a range scanner simulator

that reads the depth buffer [59] and recovers the range values of the rendered 3D object.
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The real range images were scanned using the IVP RANGER Profiling System [43],

where objects scanned were located on a conveyor belt.

Fig. 7.9(a) shows the misaligned surfaces from a synthetic bunny model, and 7.9(b)

shows the registered result. The surfaces were misaligned by a translation before reg-

istration. Fig. 7.9(c) shows the misaligned surfaces from a synthetic head model, and

7.9(d) shows the registered result. The surfaces were misaligned by a translation and a

rotation before registration.

This method was also applied to align USGS DEM data. Fig. 7.10(a) shows two

misaligned surfaces, and Fig. 7.10(b) shows the registered result. Note that the two

data sets only overlap in some area and the proposed method successfully found the

corresponding point pairs in the overlapping area.

Fig. 7.11(a) and 7.11(b) show extracted points on two surfaces which were scanned

from a brain model using the Minolta 700 range scanner [14]. After point matching by

fingerprint comparison, corresponding points are obtained and displayed in Fig. 7.11(c)

and 7.11(d). A coarse registration based on point correspondences is computed, and

registered surfaces are shown in Fig. 7.11(e). Fig. 7.11(f) shows the registered surfaces

after ICP refinement. Similarly, experimental results on a face model [14] are illustrated

in Figs. 7.12(a) to 7.12(f).

A pair of surfaces in Fig. 7.13 were scanned from a mannequin using the IVP

RANGER profiling system [43] and used for occlusion testing. The measurements near

the nose were incomplete due to self occlusions. Experimental results of extracted
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(a) (b)

(c) (d)

Figure 7.9: 3D registration of synthetic range data. (a) and (c) are
unregistered synthetic surfaces from a bunny model and a head model.
The bunny model was from Stanford University Computer Graphics Lab-
oratory and available at http://graphics.stanford.edu/data/3Dscanrep/.
The head model was reconstructed by Hugues Hoppe and available at
ftp://ftp.research.microsoft.com/users/hhoppe/data/thesis/. (b) and (d) are sur-
face registration results of (a) and (c) by point fingerprint matching.
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(a)

(b)

Figure 7.10: Registration of DEM data. (a) Misaligned surfaces from USGS DEM data
with only a partially overlapping region between each. (b) Registration results of (a)
by point fingerprint matching, shown in wireframe.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.11: Matching surfaces of a brain model downloaded from
http://sampl.engr.ohio-state.edu/∼sampl/database.htm [14]. (a)(b) Extracted
feature points on two surfaces. (c)(d) Corresponding points by fingerprint matching.
(e) Surface registration. (f) Refined registration using ICP.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.12: Matching surfaces of a face model downloaded from http://sampl.engr.ohio-
state.edu/∼sampl/database.htm [14]. (a)(b) Extracted feature points on two surfaces.
(c)(d) Corresponding points by fingerprint matching. (e) Surface registration. (f) Re-
fined registration using ICP.
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(a) (b) (c) (d) (e) (f)

Figure 7.13: Matching surfaces of a mannequin face. (a)(b) Extracted feature points
on two surfaces. (c)(d) Corresponding points by fingerprint matching. (e) Surface
registration. (f) Refined registration using ICP.

points, point correspondences, coarse registration, and refined registration are shown in

Figs. 7.13(a) to 7.13(f).

Surfaces in Fig. 7.14(a) and 7.14(b) are from the USGS Digital Elevation Model

(DEM) with an overlapping region. Zero-mean Gaussian noise is superimposed on the

original surfaces. The signal-to-noise ratio (SNR) of surfaces in Fig. 7.14(c)-7.14(d),

7.14(e)-7.14(f), 7.14(g)-7.14(h), and 7.14(i)-7.14(j) are 31.63, 22.08, 17.65, and 11.63

dB, respectively. Obtained corresponding points are displayed on the surfaces. Results

show that fingerprint matching is robust against noise. With a SNR lower than 11.63

dB, the matching failed.

Surfaces [14] in Fig. 7.15 are used in the experiment of handling different surface

sampling resolutions. The surface in Fig. 7.15(a) has 28,964 triangles. The surface in
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j)

Figure 7.14: Finding corresponding points on surfaces with noise. (a)(b) Surfaces with-
out noise. (c)(d) Surfaces with 31.63 dB SNR. (e)(f) Surfaces with 22.08 dB SNR. (g)(h)
Surfaces with 17.65 dB SNR. (i)(j) Matching fails on surfaces with 11.63 dB SNR.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7.15: Matching surfaces with different resolutions. Original range images were
downloaded from http://sampl.engr.ohio-state.edu/∼sampl/database.htm [14]. (a)(b)
Extracted feature points on two surfaces with 28,964 and 5,000 triangles respectively.
(c)(d) Geodesic contours on two surfaces. (e)(f) Corresponding points by fingerprint
matching. (g) Surface registration. (h) Refined registration using ICP.
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Figure 7.16: ICP refinement. (a) Surface integration result without using the ICP
refinement. Note the seam on the forehead. (b) Smooth surface integration result after
using the ICP algorithm. (c) Translation errors along three axes during ICP iterations.
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Fig. 7.15(b) has 5,000 triangles, reduced from 28,893 triangles. Extracted candidate

points are shown on the surfaces. Figs. 7.15(c) and 7.15(d) illustrate the geodesic

contours of the same radius on two surfaces shown in wireframe. Corresponding points,

coarse registration, and refined registration are shown in Figs. 7.15(e) to 7.15(h).

The improvement from using ICP refinement can be seen from the two-view merged

surfaces shown in Figs. 7.16(a) and 7.16(b), which respectively represent the integration

results with and without ICP refinement. After ICP refinement, the integrated surface

becomes smoother without the appearance of having seams. Fig. 7.16(c) shows the error

convergence. Because the rotation refinement is very small and can be ignored, only

the convergence of translation errors along three axes was plotted. The transformation

after 200 iterations is regarded as the ground truth. The errors become stable after 150

iterations.

7.3 Surface Reconstruction

Fig. 7.17(a) shows a synthetic 3D model with texture, and Fig. 7.17(b) shows the cor-

responding wireframe model. Using a simulated range scanner, both range and color

information from the rendered 3D scene can be captured. Fig. 7.17(c) shows the sur-

face from one range scan. Figs. 7.17(d) to 7.17(f) show the two-, three-, and four-view

integration results using the mesh zippering method. The reconstructed model consists

of 424,495 triangles.

Fig. 7.18 shows the two-view integration of the synthetic room model using the
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(a) (b)

(c) (d)

(e) (f)

Figure 7.17: Surface reconstruction using mesh zippering. (a) A synthetic 3D office
model, downloaded from http://www.cowhouse.com. (b) Wireframe of (a). (c) Recon-
structed surface from one simulated range scan of (a), 126,517 triangles. (d)-(f) Two-,
three-, and four-view integration, with 218,283, 327,816, and 424,495 triangles.
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Figure 7.18: Two-view integration by implicit surface fusion with 150,351 triangles.

(a) (b) (c)

Figure 7.19: Implicit surface-based reconstruction of a synthetic object. (a) Original
synthetic model. (b) 44-view reconstructed surface with 119,911 triangles. (c) Simplified
surface with 800 triangles.
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Table 7.1: Small parts 3D reconstruction

Model Number of Views Number of Triangles
Crank 35 93,572
Disk brake 10 73,553
Waterneck 28 117,564
Distributor cap 16 117,036
Racecar 9 109,823
Mannequin 10 80,148

implicit surface-based fusion. Both the geometric and texture integrations are similar

to the one obtained using mesh zippering. However, the back projection is not necessary.

Fig. 7.19(a) shows a synthetic model composed of different parts that are inter-

sected with each other. The 44-view reconstruction without space carving is shown in

Fig. 7.19(b) with 119,911 triangles. Fig. 7.19(c) shows the simplified mesh with 800 tri-

angles. The reconstruction process is able to convert a rendered model of any structure

into a whole sheet of triangle mesh.

Figs. 7.20 to 7.22 illustrate small object 3D reconstruction results using the IVP

Profiling System, by showing the photos of the objects and screen shots of the 3D

reconstructions. The objects include a crank, disk brake, waterneck, distributor cap,

racecar, and a mannequin. Multiple views are scanned for a full 3D reconstruction.

The number of views and number of triangles used for reconstruction of each object

are listed in Table 7.1. The reconstructions (without space carving) of the disk brake,

distributor cap, and racecar do not have bottoms because only the top of the objects

were scanned. Using a number of views to cover the whole object, the reconstruction is
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(a) (b)

(c) (d)

Figure 7.20: Surface modeling of a crank and a disk brake using the RANGER System.
(a) Photo of a crank. (b) 35-view 3D reconstruction of (a) with 93,752 triangles. (c)
Photo of a disk brake. (d) 10-view 3D reconstruction of (c) with 73,553 triangles.
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(a) (b)

(c) (d)

Figure 7.21: Surface modeling of a waterneck and a distributor cap using the RANGER
System. (a) Photo of a waterneck. (b) 28-view 3D reconstruction of (a) with 117,564
triangles. (c) Photo of a distributor cap. (d) 16-view 3D reconstruction of (c) with
117,036 triangles.
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(a) (b)

(c) (d)

Figure 7.22: Surface modeling of a racecar and a mannequin using the RANGER Sys-
tem. (a) Photo of a racecar. (b) 9-view 3D reconstruction of (a) with 109,823 triangles.
(c) Photo of a mannequin. (d) 10-view 3D reconstruction of (c) with 80,148 triangles.
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(a) (b)

Figure 7.23: Automatic hole filling. (a) Reconstructed surface with holes. (b) Surface
after automatically filling holes.

watertight for the crank, the waterneck, and the mannequin.

Fig. 7.23(a) shows the original reconstructed surface of the distributor cap. The

surface contains holes where the laser could not reach. By volumetric processing and

applying the hole filling algorithm, most holes can be automatically filled, as shown in

Fig. 7.23(b).

Fig. 7.24 shows the 3-view reconstruction results using range data captured by the

Coleman scanner. Three range images are displayed in Figs. 7.24(a) to 7.24(c), and the

registered pairs of surfaces are illustrated in Figs. 7.24(d) and 7.24(e). The reconstructed

surfaces displayed from three different viewpoints are shown in Figs. 7.24(f) to 7.24(h).

Implicit surface-based integration of geometry and texture using real data is illus-

trated in Fig. 7.25. Figs. 7.25(a) and 7.25(b) show a pair of range images taken from
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(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 7.24: Surface modeling using the COLEMAN scanner. (a)-(c) Range images from
three different views. (d) Registered surfaces of (a) and (b). (e) Registered surfaces of
(a) and (c). (f)-(h) Reconstructed surfaces displayed from three different viewpoints.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7.25: Surface modeling using the RIEGL scanner. (a)(b) A pair of range images
captured by the RIEGL scanner. (c)(d) Corresponding color images. (e) 2-view 3D
reconstruction from (a) and (b) with 159,677 triangles. (f) Reconstructed surface with
texture fusion. (g)(h) Reconstructed surface displayed from another viewpoint.
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(a) (b)

(c) (d)

Figure 7.26: Four indoor range images scanned by the RIEGL scanner.

135



(a) (b)

(c) (d)

Figure 7.27: Four-view reconstruction using the RIEGL scanner. (a)-(c) Four-view
reconstruction using the RIEGL scanner, with 341,639 triangles, displayed from different
viewpoints. (d) Simplified model with 5,000 triangles.
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two different views in front of Ayres Hall using the RIEGL scanner. Figs. 7.25(c) and

7.25(d) are the corresponding color images. Fig. 7.25(e) shows the 3D reconstruction

with 159,677 triangles. Fig. 7.25(f) shows the results with texture fusion. Figs. 7.25(g)

and 7.25(h) display the reconstructed surface from another viewpoint.

Reconstruction by space carving is shown in Figs. 7.26 to 7.27 using range images

captured by the RIEGL scanner. Four range images of a room are shown in Fig. 7.26(a)

to 7.26(d). The region of interest is a corner of the room. The reconstructed surface has

341,639 triangles and is displayed in Figs. 7.27(a) to 7.27(c) from four different view-

points. Due to the noise introduced by the scanner, the surface was heavily smoothed

using the mean curvature flow in a volumetric grid. The simplified model with 5,000

triangles is shown in Fig. 7.27(d).

7.4 Surface Segmentation

Fig. 7.28 shows the process of segmenting a synthetic fandisk model. Fig. 7.28(a) shows

the color-coded edge strength of each vertex. Piecewise continuous edge strength defi-

nition results in smooth color transition along the crease edges. Fig. 7.28(b) shows the

labeling after minima detection. Minima are uniquely labeled and painted by random

colors. Vertices in purple are on plateaus, and vertices in blue are on ramps. Fig. 7.28(c)

shows the labeling result after geodesic erosion. Plateaus are segmented and distributed

into neighboring regions, and all vertices are labeled. Fig. 7.28(d) shows the final seg-

mentation result after region merging.
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(a) (b)

(c) (d)

Figure 7.28: Segmentation process. (a) Color-coded edge strength on a fandisk model.
(b) Labeling after minima detection. Plateau regions are in purple, and vertices on the
ramp are in blue. Local minima are labeled in random colors.(c) Labeling after geodesic
erosion. (d) Final segmentation after region merging.
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(a) (b) (c)

Figure 7.29: Surface segmentation of small parts. (a) Waterneck. (b) Distributor cap.
(c) Racecar model.

Fig. 7.29 show the segmentation results of the waterneck, distributor cap, and race-

car, which were reconstructed using the data from the IVP profiling system.

Figs. 7.30(a) to 7.30(d) show the picture of the room, the surface before region

merging (8,851 regions), the surface after region merging (451 regions), and the surface

with area penalization (49 regions), respectively. Area penalization is very effective to

avoid over-segmentation. By deleting the small regions caused by outliers, the final

segmentation has 30 regions.

The segmented parts can be manipulated by rotation or translation in 3D space.

Fig. 7.31(a) shows that the hood is open and the top is displaced. A pulley model in

Fig. 7.31(b) is decomposed and shown in Fig. 7.31(c).

Table 7.2 shows the segmentation time spent in each step for seven models used in

the experiment. All models except the fandisk are reconstructed from the real data. The
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(a) (b)

(c) (d)

Figure 7.30: Surface segmentation of a scene. (a) A photo of a room’s corner recon-
structed from 4-view range scans with 341,639 triangles. (b) Segmentation result before
region merging with 6,381 regions. (c) Segmentation result after region merging with
936 regions. (d) Final segmentation result after penalizing small areas with 160 regions.
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(a) (b)

(c)

Figure 7.31: Manipulating segmented parts. (a) The hood is open and the top is moved.
(b) A 3D pulley model. (c) The decomposition of (b).
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Table 7.2: Performance of the fast marching watershed on six 3D models

Model Number of Minima Erosion Descend Merge Number of
Triangles (ms) (ms) (ms) (ms) Regions

Fandisk 12,936 99.3 37.5 1.4 6.5 18
Pulley 11,366 118.7 58.9 2.3 106.1 4
Racecar 109,823 1182.9 610.0 35.8 1463.4 30
Distributor cap 117,036 1187.0 659.0 36.3 4820.3 40
Waterneck 117,564 1174.1 668.5 38.4 3259.6 13
Room 341,639 3493.4 1976.9 108.1 4551.0 30

time is measured in milliseconds on an SGI Octane. Time spent in each step depends on

the size of the triangle mesh, the geometric complexity of the models, and the surface

noise level. The times for minima detection and for geodesic erosion are approximately

proportional to the number of triangles. However, for smooth or synthetic surfaces,

the flat regions are often large and minima detection takes more time than for noisy

surfaces. On the other hand, synthetic surfaces often have sharp edges and the plateau

regions are small. Therefore, geodesic erosion on a synthetic model is often faster than

on a real model. The number of regions in Table 7.2 represents the segmentation result

after penalizing small regions and deleting small regions caused by outliers.

7.5 The Frame of Surface Modeling and Analysis

Through an application of indoor 3D mapping using the laser range scanner, this section

explains how the whole surface modeling and analysis framework works.

Fig. 7.32(a) is a range image acquired in a room using the RIEGL scanner. The
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(a) (b)

(c) (d)

(e) (f)

Figure 7.32: Application of the surface modeling framework. (a) A range image captured
by the RIEGL scanner. (b) The surface reconstructed from the raw range data. (c)
Smoothed surface. (d) Two registered surfaces. (e) Four-view integrated surface. (f)
Segmented surfaces.
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surface reconstructed from the raw data is shown in Fig. 7.32(b). Fig. 7.32(c) displays

the smoothed surface using the area-decreasing flow. Registered by matching the point

fingerprints, two surfaces are shown in Fig. 7.32(d). By integrating the surfaces from

four different views, the final reconstruction is obtained and illustrated in Fig. 7.32(e),

which has been post-processed by volumetric mean curvature flow. Fig. 7.32(f) shows

the surface segmentation results using the fast marching watershed algorithm.
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Chapter 8

Conclusions and Future Work

This chapter summarizes the contributions of this research. It concludes by describing

the opportunities for future work.

8.1 Conclusions

This section summarizes the contributions of this research in building a framework of

surface modeling and analysis.

Area-Decreasing Flow

For surface smoothing, area-decreasing flow instead of mean curvature flow is proposed.

Despite their mathematical equivalence, area minimization generates a more efficient

algorithm for discrete surface smoothing. The problems with mean curvature flow are

that the curvature is difficult to estimate on a discrete surface, and there is no easy way
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to choose a proper flowing step size. The advantages of the proposed algorithm are as

follows.

1. Curvature estimation is eliminated. Surface area can be easily formulated on a

triangle mesh.

2. An optimal flowing step size can be computed.

A typical problem for surface smoothing is shrinkage. Previous works avoided this

problem by preserving the volume of the surface being smoothed. The new algorithm

incorporates a rigidity term in the energy function to prevent the shrinkage problem.

An adaptive term is added into the smoothing scheme based on the edge strength

at each vertex. Edge strength is robustly estimated using tensor voting on a triangle

mesh. Adaptive smoothing effectively preserves the crease edges and sharp corners while

achieving the same smoothing result elsewhere.

Experimental results show the proposed algorithm is able to efficiently smooth both

calibrated range images and large meshes generated by different range scanners.

Point Fingerprint

A new surface representation scheme, called point fingerprint, based on a set of geodesic

circles generated on the triangle mesh, is presented. The projections of geodesic cir-

cles on the tangent plane form a discriminating feature, which is similar to human

fingerprints and can be used to match surface points. The concept of point finger-

print originated from the exponential map that is well defined in differential geometry.
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The fingerprints of points of interest from a pair of surfaces are compared to find the

corresponding points.

There are four major advantages of the point fingerprint scheme:

1. Only HSI [110] and point fingerprint, based on a one-to-one mapping, are able

to carry additional information such as curvature and color to improve matching

accuracy. Spin Images [45] and SPS [105] are based on 2D histograms and cannot

carry additional information.

2. HSI finds corresponding points by 2D image correlation, which is more computa-

tionally expensive than point fingerprint matching, which is based on a set of 1D

signal correlations.

3. Only Splash [82], HSI, and point fingerprint use geodesic measure. However, the

geodesic distance computed in point fingerprint is more accurate due to use of the

fast marching method instead of Dijkstra’s algorithm.

4. Both point fingerprint and PS [20] use contours around a point. The contours of

PS, obtained by intersecting a sphere with a surface, are sometimes ambiguous.

However, the contours in point fingerprint are clearly defined using the geodesic

measure.

A simple alternative method is proposed to compute the geodesic distance on a

triangle mesh, based on the fast marching method. To speed up the matching process,

this work employs a novel candidate point selection approach, which identifies the points
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of interest based on the shape irregularity of their fingerprints.

The point fingerprint was successfully applied to automatic registration of partially

overlapped surfaces obtained from real range data. Experimental results demonstrated

that the method can provide a good initial pose estimation for further ICP refinement.

As an efficient point representation scheme, point fingerprint may also be applied to 3D

object recognition tasks.

Multi-View Surface Reconstruction

The surface reconstruction algorithm employed in this research is implicit surface-based.

Registered surface meshes from different views are put in a volumetric grid. Signed

distances from each voxel to registered surfaces are computed and fused together. The

reconstructed surface is extracted from the fused signed distance field.

This research incorporated fusion of color images in the volumetric grid to generate

a textured surface. The automatic hole-filling algorithm is able to generate a watertight

3D model when the range data are incomplete due to self occlusions.

Depending on the completeness of the range data, the algorithm either carves the

empty space to generate a watertight model directly, or faithfully reconstructs the sur-

face by leaving holes that can be filled in the post-processing stage.

The algorithm is applied to reconstruct surfaces using various range scanners. It is

adapted to small parts reverse engineering, indoor 3D mapping, and outdoor 3D scene

reconstruction.
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Fast Marching Watershed

This dissertation describes an approach to segmenting surfaces represented by triangle

meshes, which is based on the robust edge detection using tensor voting and a fast

marching watershed process.

Edge strength at all vertices defines a piecewise continuous height map on the trian-

gle mesh. A watershed-based segmentation approach is applied to partition the surface

based on the height map. One problem associated with watershed segmentation on tri-

angle mesh is how to find the swiftest descending path on plateaus. A popular method

in 2D watershed-based segmentation is partitioning plateaus by geodesic erosion from

plateau boundaries. The fast marching watershed method extends the geodesic erosion

to watershed-based segmentation of 3D triangle mesh. On a plateau, the descending

path is traced back from the boundary to the inside of the plateau. The geodesic erosion

guarantees the accurate segmentation of plateaus. The breadth-first algorithm cannot

be used for geodesic erosion on the triangle mesh because a triangle mesh is a weighted

graph. The geodesic distance on the triangle mesh is computed using the fast marching

method, which is more accurate than Dijkstra’s algorithm.

The experimental results show successful segmentation of various 3D models re-

constructed from multi-view range scans of real objects. The segmentation makes it

possible to manipulate and animate partitioned surfaces in 3D space and simplifies the

3D object recognition tasks.
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8.2 Future Research

There are many opportunities to improve the whole framework. The most promising

opportunity for new research is to make the surface registration more robust. Current

research uses a simple threshold to sift corresponding point pairs. However, a risk of a

simple threshold is to introduce false correspondences. To obtain the same number of

corresponding points, the dissimilarity threshold needs to be larger for a noisy surface

than for a smooth surface. How to automatically set such a threshold becomes another

problem.

In most cases, a pair of corresponding points with the smallest dissimilarity measure

match correctly. More corresponding point pairs can be confirmed by considering the

geometric constraints from the known correspondences. For example, the second pair

of corresponding points should be within approximately the same distance from the

first pair of corresponding points. If they are not, other corresponding pairs can be

inspected. Whenever a new correspondence is confirmed, the geometric constraint will

be updated for further inspection.

This process of finding corresponding points is independent of the proposed point

fingerprint scheme. However, it may significantly improve the matching result and the

registration accuracy.

Future work also aims at applying point fingerprint to 3D object recognition.

150



Bibliography

151



Bibliography

[1] E. L. Allgower and P. H. Schmidt. An algorithm for piecewise linear approximation
of an implicitly defined manifold. SIAM Journal of Numerical Analysis, 22:322–
346, 1985.

[2] N. Amenta, M. Bern, and M. Kamvysselis. A new Voronoi-based surface recon-
struction algorithm. In Proc. SIGGRAPH, pages 415–420, 1998.

[3] N. Amenta, S. Choi, and R. Kolluri. The power crust. In Proc. of 6th ACM
Symposium on Solid Modeling, pages 249–260, 2001.

[4] A. P. Ashbrook, R. B. Fisher, C. Robertson, and N. Werghi. Finding surface
correspondences for object recognition and registration using pairwise geometric
histograms. In Proc. European Conf. on Computer Vision, volume II, pages 674–
680, 1998.

[5] F. Bernardini, I. M. Martin, and H. Rushmeier. High-quality texture reconstruc-
tion from multiple scans. IEEE Trans. Visualization and Computer Graphics,
7(4):318–332, 2001.

[6] F. Bernardini, J. Mittleman, H. Rushmeier, C. Silva, and G. Taubin. The ball-
pivoting algorithm for surface reconstruction. IEEE Trans. Visualization and
Computer Graphics, 5(4):349–359, 1999.

[7] P. Besl and N. McKay. A method for registration of 3-D shapes. IEEE Trans.
Pattern Anal. Machine Intell., 14(2):239–256, 1992.

[8] P. J. Besl. Surfaces in Range Image Understanding. Springer-Verlag, 1988.

[9] P. J. Besl. The free-form surface matching problem. Machine Vision for Three-
Dimensional Scenes, H. Freeman, Ed., pages 25–71, 1990.

[10] A. Blake and A. Zisserman. Visual Reconstruction. Cambridge, Mass.: MIT Press,
1987.

[11] A. Bleau, J. D. Guise, and A. R. Leblanc. A new set of fast algorithm for math-
ematical morphology, I. idempotent geodesic transforms. Computer Vision and
Image Understanding, 56(2):178–209, 1992.

152



[12] A. Bleau and L. J. Leon. Watershed-based segmentation and region merging.
Computer Vision and Image Understanding, 77:317–370, 2000.

[13] J. D. Boissonnat. Geometric structures for three-dimensional shape representa-
tion. ACM Transactions on Graphics, 3(4):266–286, 1984.

[14] R. Campbell and P. Flynn. A WWW-accessible 3D image and model database
for computer vision research. In IEEE Computer Society Workshop on Empirical
Evaluation Methods in Computer Vision, pages 148–154, 1998.

[15] R. Campbell and P. Flynn. A survey of free-form object representation and recog-
nition techniques. Computer Vision and Image Understanding, 81(2):166–210,
2001.

[16] R. J. Campbell and P. J. Flynn. Eigenshapes for 3D object recognition in range
data. In Proc. IEEE Computer Society Conf. on Computer Vision and Pattern
Recognition, pages 505–510, 1999.

[17] J. Canny. A computational approach to edge detection. IEEE Trans. Pattern
Anal. Machine Intell., 8(6):679–698, 1986.

[18] O. Carmichael, D. Huber, and M. Hebert. Large data sets and confusing scenes
in 3-D surface matching and recognition. In Proc. Int’l Conf. on Recent Advances
in 3D Digital Imaging and Modeling, pages 358–367, 1999.

[19] Y. Chen and G. Medioni. Object modeling by registration of multiple range
images. In Proc. IEEE Int’l Conf. on Robotics and Automation, pages 2724–2729,
1991.

[20] C. Chua and R. Jarvis. Point signatures: a new representation for 3D object
recognition. Int’l J. Computer Vision, 25(1):63–85, 1997.

[21] B. Curless and M. Levoy. A volumetric method for building complex models from
range images. In Proc. SIGGRAPH, pages 303–312, 1996.

[22] M. Desbrun, M. Meyer, P. Schroder, and A. H. Barr. Implicit fairing of irregular
meshes using diffusion and curvature flow. In Proc. SIGGRAPH, pages 317–324,
1999.

[23] M. DoCarmo. Differential Geometry of Curves and Surfaces. Prentice Hall, 1976.

[24] M. DoCarmo. Riemannian Geometry. Birkhauser, 1992.

[25] C. Dorai and A. K. Jain. COSMOS – a representation scheme for 3D free-form
objects. IEEE Trans. Pattern Anal. Machine Intell., 19(10):1115–1130, October
1997.

153



[26] G. Dziuk and J. E. Hutchinson. The discrete plateau problem: Algorithm and
numerics. Math. Comp., 68(225):1–23, 1999.

[27] G. Dziuk and J. E. Hutchinson. The discrete plateau problem: Convergence
results. Math. Comp., 68(226):519–546, 1999.

[28] H. Edelsbrunner and E. P. Mucke. Three dimensional alpha shapes. ACM Trans-
actions on Graphics, 13(1):43–72, 1994.

[29] P. J. Flynn and A. K. Jain. On reliable curvature estimation. In Proc. IEEE
Computer Society Conf. on Computer Vision and Pattern Recognition, pages 110–
116, 1989.

[30] M. Garland and P. S. Heckbert. Surface simplification using quadric error metrics.
In Proc. SIGGRAPH, pages 209–216, 1997.

[31] J. Gomes and O. D. Faugeras. Level sets and distance functions. In Proc. European
Conf. on Computer Vision, pages 588–602, 2000.

[32] R. C. Gonzalez. Digital Image Processing. Addison-Wesley, 1992.

[33] E. Guest, E. Berry, R. A. Baldock, M. Fidrich, and M. A. Smith. Robust point
correspondence applied to two- and three-dimensional image registration. IEEE
Trans. Pattern Anal. Machine Intell., 23(2):165–179, Feb. 2001.

[34] R. M. Haralick and L. G. Shapiro. Computer and Robot Vision, volume II.
Addison-Wesley Publishing Company, 1993.

[35] M. Hebert, K. Ikeuchi, and H. Delingette. A spherical representation for recogni-
tion of free-form surfaces. IEEE Trans. Pattern Anal. Machine Intell., 17(7):681–
690, July 1995.

[36] A. Hilton, A. Stoddart, J. Illingworth, and T. Windeatt. Implicit surface-based
geometric fusion. Computer Vision and Image Understanding, 69:273–291, 1998.

[37] A. Hilton, A. J. Stoddart, J. Illingworth, and T. Windeatt. Marching triangles:
Range image fusion for complex object modeling. In Proc. IEEE Int’l Conf. on
Image Processing, pages 381–384, 1996.

[38] A. Hoover. The Space Envelope Representation for 3D Scenes. PhD thesis, Uni-
versity of South Florida, 1996.

[39] A. Hoover, G. J. Baptiste, X. Jiang, P. J. Flynn, H. Bunke, D. B. Goldgof,
K. Bowyer, D. W. Eggert, A. Fitzgibbon, and R. B. Fisher. An experimental
comparison of range image segmentation algorithms. IEEE Trans. Pattern Anal.
Machine Intell., 18(7):673–689, 1996.

154



[40] H. Hoppe, T. Derose, and T. Duchamp. Surface reconstruction from unorganized
points. In Proc. SIGGRAPH, volume 26, pages 71–78, 1992.

[41] B. Horn, H. Hilden, and S. Negahdaripour. Closed-form solution of absolute ori-
entation using orthonormal matrices. Journal-of-the-Optical-Society-of-America-
A-(Optics-and-Image-Science), 5(7):1127–1135, July 1988.

[42] J. Huang and C. Menq. Automatic data segmentation for geometric feature ex-
traction from unorganized 3-D coordinate points. IEEE Trans. Robotics and Au-
tomation, 17(3):268–279, 2001.

[43] Integrated Vision Products, Sweden. User Documentation: MAPP Ranger Sys-
tem, 2000. Version 1.6.

[44] X. Jiang, H. Bunke, and U. Meier. High-level feature based range image segmen-
tation. Image and Vision Computing, 18:817–822, 2000.

[45] A. E. Johnson and M. Hebert. Surface registration by matching oriented points.
In Proc. Int’l Conf. on Recent Advances in 3D Digital Imaging and Modeling,
pages 12–15, 1997.

[46] A. K. Katsaggelos. Iterative image restoration algorithms. Optical Engineering,
28(7):735–748, 1989.

[47] R. Kimmel, A. Amir, and A. M. Bruckstein. Find shortest paths on surfaces using
level sets propagation. IEEE Trans. Pattern Anal. Machine Intell., 17(6):635–640,
June 1995.

[48] R. Kimmel and J. A. Sethian. Computing geodesic paths on manifolds. In Proc.
National Academy of Sciences, pages 8431–8435, July 1998.

[49] L. Kobbelt, S. Campagna, J. Vorsatz, and H. P. Seidel. Interactive multi-resolution
modeling on arbitrary meshes. In Proc. SIGGRAPH, pages 105–114, 1998.

[50] Y. Lamdan and H. Wolfson. Geometric hashing: A general and efficient model-
based recognition scheme. In Proc. IEEE Int’l Conf. on Computer Vision, pages
238–249, 1988.

[51] C. Lantuejoul and F. Maisonneuve. Geodesic methods in quantitative image anal-
ysis. Pattern Recognition, 17(2):177–187, 1984.

[52] D. Laurendeau, G. Roth, and L. Borgeat. Optimization algorithms for range
image registration. In Proc. of Vision Interface, pages 141–151, 1996.

[53] X. Li, T. Woon, T. Tan, and Z. Huang. Decomposing polygon meshes for in-
teractive applications. In ACM Symp. on Interactive 3D Graphics, pages 35–42,
2001.

155



[54] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface
construction algorithm. In Proc. SIGGRAPH, pages 163–169, 1987.

[55] A. P. Mangan and R. T. Whitaker. Partitioning 3D surface meshes using water-
shed segmentation. IEEE Trans. Visualization and Computer Graphics, 5(4):308–
321, 1999.

[56] T. Masuda and N. Yokoya. A robust method for registration and segmentation
of multiple range images. Computer Vision and Image Understanding, 61(3):295–
307, 1995.

[57] G. Medioni, M. S. Lee, and C. K. Tang. A Computational Framework for Seg-
mentation and Grouping. Elsevier Science B.V., 2000.

[58] D. M. Mount. ANN Programming Manual. Department of Computer Science and
Institute for Advanced Computer Studies, University of Maryland, College Park,
Maryland.

[59] J. Neider, T. Davis, and M. Woo. OpenGL Programming Guide. Addison-Wesley
Publishing Company, 1993.

[60] Y. Ohtake, A. Belyaev, and I. Bogaevski. Polyhedral surface smoothing with
simultaneous mesh regularization. In Proc. Geometric Modeling and Processing,
pages 229–237, 2000.

[61] J. O’Rourke. Computational Geometry in C. Cambridge University Press, second
edition, 1998.

[62] D. L. Page, A. Koschan, Y. Sun, J. K. Paik, and M. A. Abidi. Robust crease
detection and curvature estimation of piecewise smooth surfaces from triangle
mesh approximations using normal voting. In Proc. IEEE Computer Society Conf.
on Computer Vision and Pattern Recognition, pages 162–167, 2001.

[63] D. L. Page, Y. Sun, A. Koschan, J. K. Paik, and M. A. Abidi. Normal vector
voting: crease detection and curvature estimation on large, noisy meshes. To
appear in Graphical Models, 2003.

[64] D. L. Page, Y. Sun, A. Koschan, J. K. Paik, and M. A. Abidi. Simultaneous mesh
simplification and noise smoothing of range images. In Proc. IEEE Int’l Conf. on
Image Processing, volume III, pages 821–824, 2002.

[65] Perceptron Inc., 23855 Research Drive, Farmington Hills, Michigan 48335. LASAR
Hardware Manual, 1993.

[66] R. Pito. Mesh integration based on co-measurements. In Proc. IEEE Int’l Conf.
on Image Processing, pages 397–400, 1996.

156



[67] R. J. Prokop and Anthony P. Reeves. A survey of moment-based techniques for
unoccluded object representation and recognition. CVGIP: Graphical Models and
Image Processing, 54(5):438–460, September 1992.

[68] K. Pulli. Multiview registration for large data sets. In Proc. Int’l Conf. on Recent
Advances in 3D Digital Imaging and Modeling, pages 160–168, 1999.

[69] K. Pulli, T. Duchamp, H. Hoppe, J. McDonald, L. Shapiro, and W. Stuetzle.
Robust meshes from multiple range maps. In Proc. Int’l Conf. on Recent Advances
in 3D Digital Imaging and Modeling, pages 205–211, 1997.

[70] M. E. Rettmann, X. Han, C. Xu, and J. L. Prince. Automated sulcal segmentation
using watersheds on the cortical surface. NeuroImage, 15:329–344, 2002.

[71] RIEGL Laser Measurement Systems. Laser Mirror Scanner LMS-Z210, Technical
Documentation and User’s Instructions, 2000.

[72] J. R. Roerdink and A. Meijster. The watershed transform: definitions, algorithms
and parallelization strategies. Fundamenta Informaticae, 41:187–228, 2001.

[73] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp algorithm. In Proc. Int’l
Conf. on Recent Advances in 3D Digital Imaging and Modeling, pages 145–152,
2001.

[74] M. Rutishauser, M. Stricker, and M. Trobina. Merging range images of arbitrarily
shaped objects. In Proc. IEEE Computer Society Conf. on Computer Vision and
Pattern Recognition, pages 573–580, 1994.

[75] A. D. Sappa and M. A. Garcia. Incremental multiview integration of range images.
In Proc. IEEE Int’l Conf. on Pattern Recognition, pages 546–549, 2000.

[76] J. Serra. Image Analysis and Mathematical Morphology. Academic Press, 1982.

[77] J. A. Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces
in Computational Geometry, Fluid Mechanics, Computer Vision and Material
Sciences. Cambridge University Press, second edition, 1998.

[78] J. A. Sethian. Fast marching methods. SIAM Review, 41(2):199–235, 1999.

[79] C. A. Shaffer. A Practical Introduction to Data Structure and Algorithm Analysis.
Prentice-Hall, 1997.

[80] J. H. Shin, Y. Sun, J. K. Paik, and M. A. Abidi. Adaptive regularized noise
smoothing of dense range image using directional laplacian operators. In Proc.
SPIE, The International Society for Optical Engineering, volume 4298, pages 119–
126, 2001.

157



[81] M. Soucy and D. Laurendeau. A general surface approach to the integration of
a set of range views. IEEE Trans. Pattern Anal. Machine Intell., 17(4):344–358,
April 1995.

[82] F. Stein and G. Medioni. Structural indexing: Efficient 3-D object recognition.
IEEE Trans. Pattern Anal. Machine Intell., 14(2):125–145, February 1992.

[83] R. L. Stevenson and E. J. Delp. Viewpoint invariant recovery of visual surface
from sparse data. IEEE Trans. Pattern Anal. Machine Intell., 14(9):257–270,
September 1992.

[84] Y. Sun and M. A. Abidi. Surface matching by 3D point’s fingerprint. In Proc.
IEEE Int’l Conf. on Computer Vision, volume II, pages 263–269, 2001.

[85] Y. Sun, C. Dumont, and M. A. Abidi. Mesh-based integration of range and color
images. In SPIE’s 14th International Symposium on Aerospace/Defense Sensing,
Simulation, and Controls, volume 4051, pages 110–117, 2000.

[86] Y. Sun, D. L. Page, J. K. Paik, A. Koschan, and M. A. Abidi. Triangle mesh-based
surface modeling using adaptive smoothing and implicit texture integration. In
Proc. First Int’l Symposium on 3D Data Processing Visualization and Transmis-
sion, pages 588–597, 2002.

[87] Y. Sun, D. L. Page, J. K. Paik, A. Koschan, and M. A. Abidi. Triangle meshes-
based edge detection and its application to surface segmentation and adaptive
surface smoothing. In Proc. IEEE Int’l Conf. on Image Processing, volume III,
pages 825–828, 2002.

[88] Y. Sun, J. K. Paik, A. Koschan, and M. A. Abidi. 3D reconstruction of indoor
and outdoor scenes using a mobile range scanner. Accepted by IEEE Int’l Conf.
on Pattern Recognition 2002.

[89] Y. Sun, J. K. Paik, A. Koschan, and M. A. Abidi. Surface modeling using multi-
view range and color images. Accepted by The Journal of Integrated Computer-
Aided Engineering.

[90] Y. Sun, J. K. Paik, A. Koschan, D. L. Page, and M. A. Abidi. Point’s fingerprint:
a new 3D object representation scheme for surface registration. In revision, IEEE
Trans. Systems, Man and Cybernetics, Part B.

[91] Y. Sun, J. K. Paik, J. R. Price, and M. A. Abidi. Dense range image smoothing
using adaptive regularization. In Proc. IEEE Int’l Conf. on Image Processing,
volume II, pages 744–747, 2000.

[92] C. Tang and Gerard Medioni. Robust estimation of curvature information from
noisy 3D data for shape description. In Proc. IEEE Int’l Conf. on Computer
Vision, pages 426–433, 1999.

158



[93] G. Taubin. A signal processing approach to fair surface design. In Proc. SIG-
GRAPH, pages 351–358, 1995.

[94] J. Thirion. Extremal points: Definition and application to 3D image registra-
tion. In Proc. IEEE Computer Society Conf. on Computer Vision and Pattern
Recognition, pages 587–592, 1994.

[95] E. Trucco, A. Fusiello, and V. Roberto. Robust motion and correspondence of
noisy 3-D point sets with missing data. Pattern Recognition Letter, 20(9):889–898,
September 1999.

[96] G. Turk and M. Levoy. Zippered polygon meshes form range images. In Proc.
SIGGRAPH, pages 311–318, 1994.

[97] N. M. Vaidya and K. L. Boyer. Discontinuity-preserving surface reconstruction us-
ing stochastic differential equations. Computer Vision and Image Understanding,
72(3):257–270, December 1998.

[98] L. Vincent and P. Soille. Watershed in digital spaces: an efficient algorithm based
on immersion simulation. IEEE Trans. Pattern Anal. Machine Intell., 13(6):583–
598, 1991.

[99] J. Vollmer, R. Mencl, and H. Muller. Improved Laplacian smoothing of noisy
surface meshes. In Computer Graphics Forum(Proc. Eurographics 1999), pages
131–138, 1999.

[100] Y. Wang, B. Peterson, and L. Staib. Shape-based 3D surface correspondence using
geodesic and local geometry. In Proc. IEEE Computer Society Conf. on Computer
Vision and Pattern Recognition, volume II, pages 663–668, 2000.

[101] R. T. Whitaker. A level-set approach to 3D reconstruction from range data. Int’l
J. Computer Vision, 29(3):203–231, 1998.

[102] H. Woo, E. Kang, S. Wang, and K. H. Lee. A new segmentation method for point
cloud data. International Journal of Machine Tools and Manufacture, 42:167–178,
2002.

[103] K. Wu and M. D. Levine. 3D part segmentation using simulated electrical charge
distributions. IEEE Trans. Pattern Anal. Machine Intell., 19(11):1223–1235,
1997.

[104] H. Yahia, E. Huot, I. Herlin, and I. Cohen. Geodesic distance evolution of surfaces:
a new method for matching surfaces. In Proc. IEEE Computer Society Conf. on
Computer Vision and Pattern Recognition, volume I, pages 644–651, 2000.

[105] S. M. Yamany and A. A. Farag. Free-form surface registration using surface
signatures. In Proc. IEEE Int’l Conf. on Computer Vision, pages 1098–1104,
1999.

159



[106] S. M. Yamany, A. A. Farag, and A. El-Bialy. Free-form surface recognition and
recognition using surface signatures. In Proc. IEEE Int’l Conf. on Image Process-
ing, pages 457–461, 1999.

[107] J. H. Yi and D. M. Chelberg. Discontinuity-preserving and viewpoint invariant
reconstruction of visible surface using a first order regularization. IEEE Trans.
Pattern Anal. Machine Intell., 17(6):624–629, June 1995.

[108] Y. Yu, A. Ferencz, and J. Malik. Extracting objects from range and radiance
images. IEEE Trans. Visualization and Computer Graphics, 7(4):351–364, 2001.

[109] D. Zhang. Harmonic Shape Images: A 3D Free-Form Surface Representation and
Its Application in Surface Matching. PhD thesis, Carnegie Mellon University,
1999.

[110] D. Zhang and M. Hebert. Harmonic maps and their applications in surface match-
ing. In Proc. IEEE Computer Society Conf. on Computer Vision and Pattern
Recognition, volume II, pages 524–530, 1999.

[111] Y. Zhang, Y. Sun, S. Sarraf, J. R. Price, and M. A. Abidi. Impact of intensity edge
map on segmentation of noisy range images. In Proc. SPIE, The International
Society for Optical Engineering, volume 3958, pages 260–269, 2000.

[112] H. K. Zhao, S. Osher, B. Merriman, and M. Kang. Implicit and non-parametric
shape reconstruction from unorganized points using variational level set method.
Computer Vision and Image Understanding, 80:295–319, 2000.

160



Appendix

161



Appendix A

Laser Range Scanners

Laser range finders make more accurate measurements than stereo vision-based tech-

niques in digitizing surfaces of real 3D objects. In this research, several laser range

scanners are used for 3D reconstruction, including PERCEPTRON Laser System [65],

RIEGL-Z210 Laser Mirror Scanner [71], COLEMAN Scanner, and IVP RANGER 3D

Profiling System [43]. Most laser range scanners available today are based on time-of-

flight and laser triangulation, which are explained as follows.

A.1 Scanners Based on Time-of-Flight

The scanners based on the time-of-flight send out laser beam and detect the reflection.

By measuring the light traveling time, the distance between the scanner and the ob-

ject where the laser hits can be calculated. PERCEPTRON, RIEGL, and COLEMAN

scanners fall into this category. Being one of the major scanners employed in this re-
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search, the RIEGL system is described here as an example of the scanners based on

time-of-flight.

Fig. A.1(a) shows the RIEGL 3D-Laser Mirror Scanner LMS-Z210 [71]. The 3D

images are gained by performing a number of independent laser range measurements

in different, but well-defined angular directions. These range data together with the

associated angles form the basis of the 3D images. The scanner consists of a laser range

finder unit and a two axis beam scanning mechanism.

An electrical pulse generator periodically drives a semiconductor laser diode sending

out infrared light pulses, which are collimated by transmitter lens. Via the receiver lens,

part of the echo signal reflected by the target hits a photodiode, which generates an

electrical receiver signal. The time interval between transmitted and received pulses are

counted by means of a quartz-stabilized clock frequency. The calculated range value is

fed into the internal microcomputer which processes the measured data. Figs. A.1(b)

and A.1(c) show the principle of the scanner operation.

The scanner directs the laser beam for range measurement in a precisely defined

position. A 3D image is obtained by scanning a number of lines which are composed

of a number of pixels. To scan a vertical line, the angular deflection of the laser beam

is realized by a rotating polygon mirror wheel. The frame scanner mechanism relies

on rotating the optical head together with the fast line scan mechanism, accomplished

by mounting both the line scanner mechanism and the optical head on a rotating ta-

ble. The components one to six in Fig. A.1(b) represent range finder electronics, laser
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Figure A.1: Laser range scanners based on time-of-flight. (a) RIEGL LMS-Z210 Laser
Mirror Scanner. (b) RIEGL scanner operating principle. (c) Measurement principle of
a pulsed range finder.
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beam, rotating mirror, optical head, parallel port for data communicator, computer,

and software for sensor configuration and data acquisition.

Although the measurement from laser range scanners has a higher accuracy than

stereo vision-based systems, the acquired range signals are, however, still corrupted by

noise. Noise may come from the error introduced by the motor that drives the rotating

table. Even the slightest vibration of the system causes a certain amount of error in

the acquired 3D geometry. Both the error in detecting the reflected pulses and the

round-up error from the clock in the time measurement unit contribute to the total

measurement error. The accuracy degrades for long distance measurement due to the

weak echo signal. The accuracy also depends on the target material. Black objects tend

to absorb the light, and specular objects tend to reflect the light. In the extreme cases,

the echo signal cannot be detected and the measurement fails.

The measurement error of RIEGL LMS-Z210 has a standard deviation of 5 cm for

retroreflecting targets in a distance up to 700 m, or for natural targets in a distance

up to 450 m. The standard deviation is 2.5 cm for natural targets at a distance up to

350 m. The performance of the scanner also depends on the weather. For example, in

bright sunlight, the operational range of the scanner is considerably shorter than under

an overcast sky.
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A.2 Scanners Based on Laser Triangulation

Many active range imaging techniques use a triangulation scheme where the scene is

illuminated from one direction and viewed from another. The illumination angle, the

viewing angle, and the baseline between the illuminator and the viewer (sensor) are the

triangulation parameters.

The most common active triangulation methods include illumination with a single

spot, a sheet of light, and coded light, as seen in Fig. A.2. The single-spot technique

requires advanced mechanics to allow the spot to reach the whole scene. The coded-light

system requires a high-intensity projector that can switch between patterns as fast as

the sensor can integrate images. In the case of sheet-of-light systems, the projection

of the light can be done with one single scanning mirror which is considerably simpler

than the projector design for spatially coded light, or the two mirror arrangement for

single spot illumination. Actually, in most sheet-of-light systems the sheet of light is

not swept at all. Instead the apparatus itself or the scene is moving. For example, the

IVP RANGER System used in this research, which is based on sheet-of-light projection

as shown in Fig. A.2(b), uses a conveyor belt to move the object so that the whole scene

can be reached by the light, as seen in Fig. A.3(a). To make a sheet of light, the sharp

laser spot-light passes through a lens and the lens spreads the light into a sheet in one

dimension.

The high speed of electromagnetic waves makes time-of-fight methods difficult to

use for high accuracy range imaging since small differences in range have to be resolved
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Figure A.2: Laser range scanners based on triangulation. (a) Single-spot range imaging.
(b) Sheet-of-light range imaging. (c) Coded-light range imaging.
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Figure A.3: IVP RANGER 3D Profiling System. (a) IVP Ranger scanner in use. (b)
Description of the System’s setup.

by extremely fine discriminations in time. Therefore, it is more appropriate to use a

triangulation-based scanner to achieve high accuracy for scanning small objects. Ac-

tually, range imaging based on triangulation is only effective for short range distances

because the baseline should be at least in the same order of magnitude as the range

distance, and a large baseline for long distance scan will make the system too big to use.

In this research, the RANGER System is used for surface modeling of small parts with

millimeter accuracy, and the RIEGL scanner is used for 3D reconstruction of indoor

and outdoor scenes with centimeter accuracy.

For triangulation-based scanners, the limited resolution of the sensor limits the rang-

ing accuracy. For a popular setup in Fig. A.3(b), if angle α increases, the accuracy
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decreases since a small range interval ∆r on the object will be projected on a smaller

interval ∆s on the sensor. Also if the angle α increases, the focus of the line decreases

since a larger focal depth is required. To obtain high resolution the laser sheet should

cover several pixels, so that an accurate estimate of the peak position can be found.

However, a thick laser sheet may cause ambiguity in range determination. Because the

system relies on the sensor seeing the sheet of light shed on the object, strong back-

ground illumination also affects the measurement accuracy, especially when a filter is

not used. Similar to RIEGL scanner, the performance of RANGER System is also

sensitive to the target material; accuracy decreases for black or specular objects.
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Appendix B

Simplification of the

Area-Decreasing Stabilizer

This appendix proves that the minimizer of an area integration of the square-root of

a function is equivalent to that of the same area integration of the function without

the square root. In other words, justification is shown that the minimizer of (3.14) is

equivalent to that of (3.17).

Define

ξiN0+j =
√
EijGij − F 2

ij and ηiN0+j = 1, (B.1)
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for i < M0, j < N0, and

ξk = ηk = 0 (B.2)

for k > M0N0. Using the Cauchy-Schwarz inequality, we obtain

∞∑
j=1

|ξjηj | ≤
√√√√ ∞∑

k=1

|ξk|2
√√√√ ∞∑

m=1

|ηm|2, (B.3)

where
∑∞

j=1 |ξj |2 < ∞ and
∑∞

j=1 |ηj |2 < ∞ because only a finite number of terms are

nonzero. This then yields

M0N0∑
i,j

√
EijGij − F 2

ij ≤
√√√√M0N0

M0N0∑
i,j

(EijGij − F 2
ij), (B.4)

which shows that the minimizer of (3.17) implies that of (3.14).
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