619 research outputs found

    Empowering Non-Terrestrial Networks with Artificial Intelligence: A Survey

    Get PDF
    6G networks can support global, ubiquitous and seamless connectivity through the convergence of terrestrial and non-terrestrial networks (NTNs). Unlike terrestrial scenarios, NTNs pose unique challenges including propagation characteristics, latency and mobility, owing to the operations in spaceborne and airborne platforms. To overcome all these technical hurdles, this survey paper presents the use of artificial intelligence (AI) techniques in learning and adapting to the complex NTN environments. We begin by providing an overview of NTNs in the context of 6G, highlighting the potential security and privacy issues. Next, we review the existing AI methods adopted for 6G NTN optimization, starting from machine learning (ML), through deep learning (DL) to deep reinforcement learning (DRL). All these AI techniques have paved the way towards more intelligent network planning, resource allocation (RA), and interference management. Furthermore, we discuss the challenges and opportunities in AI-powered NTN for 6G networks. Finally, we conclude by providing insights and recommendations on the key enabling technologies for future AI-powered 6G NTNs

    A Survey on Security and Privacy of 5G Technologies: Potential Solutions, Recent Advancements, and Future Directions

    Get PDF
    Security has become the primary concern in many telecommunications industries today as risks can have high consequences. Especially, as the core and enable technologies will be associated with 5G network, the confidential information will move at all layers in future wireless systems. Several incidents revealed that the hazard encountered by an infected wireless network, not only affects the security and privacy concerns, but also impedes the complex dynamics of the communications ecosystem. Consequently, the complexity and strength of security attacks have increased in the recent past making the detection or prevention of sabotage a global challenge. From the security and privacy perspectives, this paper presents a comprehensive detail on the core and enabling technologies, which are used to build the 5G security model; network softwarization security, PHY (Physical) layer security and 5G privacy concerns, among others. Additionally, the paper includes discussion on security monitoring and management of 5G networks. This paper also evaluates the related security measures and standards of core 5G technologies by resorting to different standardization bodies and provide a brief overview of 5G standardization security forces. Furthermore, the key projects of international significance, in line with the security concerns of 5G and beyond are also presented. Finally, a future directions and open challenges section has included to encourage future research.European CommissionNational Research Tomsk Polytechnic UniversityUpdate citation details during checkdate report - A

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    Edge Computing for IoT

    Full text link
    Over the past few years, The idea of edge computing has seen substantial expansion in both academic and industrial circles. This computing approach has garnered attention due to its integrating role in advancing various state-of-the-art technologies such as Internet of Things (IoT) , 5G, artificial intelligence, and augmented reality. In this chapter, we introduce computing paradigms for IoT, offering an overview of the current cutting-edge computing approaches that can be used with IoT. Furthermore, we go deeper into edge computing paradigms, specifically focusing on cloudlet and mobile edge computing. After that, we investigate the architecture of edge computing-based IoT, its advantages, and the technologies that make Edge computing-based IoT possible, including artificial intelligence and lightweight virtualization. Additionally, we review real-life case studies of how edge computing is applied in IoT-based Intelligent Systems, including areas like healthcare, manufacturing, agriculture, and transportation. Finally, we discuss current research obstacles and outline potential future directions for further investigation in this domain.Comment: 19 pages, 5 figures, Book Chapter In: Donta, P.K., Hazra, A., Lov\'en, L. (eds) Learning Techniques for the Internet of Things. Springer, Cha

    Resource Allocation in Networking and Computing Systems: A Security and Dependability Perspective

    Get PDF
    In recent years, there has been a trend to integrate networking and computing systems, whose management is getting increasingly complex. Resource allocation is one of the crucial aspects of managing such systems and is affected by this increased complexity. Resource allocation strategies aim to effectively maximize performance, system utilization, and profit by considering virtualization technologies, heterogeneous resources, context awareness, and other features. In such complex scenario, security and dependability are vital concerns that need to be considered in future computing and networking systems in order to provide the future advanced services, such as mission-critical applications. This paper provides a comprehensive survey of existing literature that considers security and dependability for resource allocation in computing and networking systems. The current research works are categorized by considering the allocated type of resources for different technologies, scenarios, issues, attributes, and solutions. The paper presents the research works on resource allocation that includes security and dependability, both singularly and jointly. The future research directions on resource allocation are also discussed. The paper shows how there are only a few works that, even singularly, consider security and dependability in resource allocation in the future computing and networking systems and highlights the importance of jointly considering security and dependability and the need for intelligent, adaptive and robust solutions. This paper aims to help the researchers effectively consider security and dependability in future networking and computing systems.publishedVersio

    Modern computing: vision and challenges

    Get PDF
    Over the past six decades, the computing systems field has experienced significant transformations, profoundly impacting society with transformational developments, such as the Internet and the commodification of computing. Underpinned by technological advancements, computer systems, far from being static, have been continuously evolving and adapting to cover multifaceted societal niches. This has led to new paradigms such as cloud, fog, edge computing, and the Internet of Things (IoT), which offer fresh economic and creative opportunities. Nevertheless, this rapid change poses complex research challenges, especially in maximizing potential and enhancing functionality. As such, to maintain an economical level of performance that meets ever-tighter requirements, one must understand the drivers of new model emergence and expansion, and how contemporary challenges differ from past ones. To that end, this article investigates and assesses the factors influencing the evolution of computing systems, covering established systems and architectures as well as newer developments, such as serverless computing, quantum computing, and on-device AI on edge devices. Trends emerge when one traces technological trajectory, which includes the rapid obsolescence of frameworks due to business and technical constraints, a move towards specialized systems and models, and varying approaches to centralized and decentralized control. This comprehensive review of modern computing systems looks ahead to the future of research in the field, highlighting key challenges and emerging trends, and underscoring their importance in cost-effectively driving technological progress
    corecore