2,620 research outputs found

    A sensorless state estimation for a safety-oriented cyber-physical system in urban driving : deep learning approach

    Get PDF
    In today's modern electric vehicles, enhancing the safety-critical cyber-physical system CPS 's performance is necessary for the safe maneuverability of the vehicle. As a typical CPS, the braking system is crucial for the vehicle design and safe control. However, precise state estimation of the brake pressure is desired to perform safe driving with a high degree of autonomy. In this paper, a sensorless state estimation technique of the vehicle's brake pressure is developed using a deep-learning approach. A deep neural network DNN is structured and trained using deep-learning training techniques, such as, dropout and rectified units. These techniques are utilized to obtain more accurate model for brake pressure state estimation applications. The proposed model is trained using real experimental training data which were collected via conducting real vehicle testing. The vehicle was attached to a chassis dynamometer while the brake pressure data were collected under random driving cycles. Based on these experimental data, the DNN is trained and the performance of the proposed state estimation approach is validated accordingly. The results demonstrate high-accuracy brake pressure state estimation with RMSE of 0.048 MPa.Published versio

    New trends in electrical vehicle powertrains

    Get PDF
    The electric vehicle and plug-in hybrid electric vehicle play a fundamental role in the forthcoming new paradigms of mobility and energy models. The electrification of the transport sector would lead to advantages in terms of energy efficiency and reduction of greenhouse gas emissions, but would also be a great opportunity for the introduction of renewable sources in the electricity sector. The chapters in this book show a diversity of current and new developments in the electrification of the transport sector seen from the electric vehicle point of view: first, the related technologies with design, control and supervision, second, the powertrain electric motor efficiency and reliability and, third, the deployment issues regarding renewable sources integration and charging facilities. This is precisely the purpose of this book, that is, to contribute to the literature about current research and development activities related to new trends in electric vehicle power trains.Peer ReviewedPostprint (author's final draft

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    Research and Implement of PMSM Regenerative Braking Control for Electric Vehicle

    Get PDF
    As the society pays more and more attention to the environment pollution and energy crisis, the electric vehicle (EV) development also entered in a new era. With the development of motor speed control technology and the improvement of motor performance, although the dynamic performance and economical cost of EVs are both better than the internal-combustion engine vehicle (ICEV), the driving range limit and charging station distribution are two major problems which limit the popularization of EVs. In order to extend driving range for EVs, regenerative braking (RB) emerges which is able to recover energy during the braking process to improve the energy efficiency. This thesis aims to investigate the RB based pure electric braking system and its implementation. There are many forms of RB system such as fully electrified braking system and blended braking system (BBS) which is equipped both electric RB system and hydraulic braking (HB) system. In this thesis the main research objective is the RB based fully electrified braking system, however, RB system cannot satisfy all braking situation only by itself. Because the regenerating electromagnetic torque may be too small to meet the braking intention of the driver when the vehicle speed is very low and the regenerating electromagnetic torque may be not enough to stop the vehicle as soon as possible in the case of emergency braking. So, in order to ensure braking safety and braking performance, braking torque should be provided with different forms regarding different braking situation and different braking intention. In this thesis, braking torque is classified into three types. First one is normal reverse current braking when the vehicle speed is too low to have enough RB torque. Second one is RB torque which could recover kinetic energy by regenerating electricity and collecting electric energy into battery packs. The last braking situation is emergency where the braking torque is provided by motor plugging braking based on the optimal slip ratio braking control strategy. Considering two indicators of the RB system which are regenerative efficiency and braking safety, a trade-off point should be found and the corresponding control strategy should be designed. In this thesis, the maximum regenerative efficiency is obtained by a braking torque distribution strategy between front wheel and rear wheel based on a maximum available RB torque estimation method and ECE-R13 regulation. And the emergency braking performance is ensured by a novel fractional-order integral sliding mode control (FOISMC) and numerical simulations show that the control performance is better than the conventional sliding mode controller

    Testialustan suunnittelu hybridiajoneuvojen hardware-in-the-loop simulaatioihin

    Get PDF
    Recent changes to vehicle type-approval regulations have increased demand for testing methods, which better represent real-world driving conditions. Hardware-in-the-Loop (HIL) simulation is seen as an attractive alternative for pure simulations and real-world operation measurements. The goal of this work was to provide a functional testbed for engine testing, as well as for HIL simulations of Hybrid Electric Vehicles (HEVs). In addition, a state-of-the-art review of HIL was considered an important goal of the work. The theory behind HIL, and real-time systems in general, is depicted using a wide variety of examples from automotive applications relating to hybrid power sources. The knowledge gained from the literature was used to design and build a testbed in a form of an engine dynamometer. The testbed can be used to emulate rotational forces, such as load torques on a driveshaft. The testbed’s fast hardware connections enable real-time testing. The scope of the design was in mechanical design and in specification of the hardware components. Initial Internal Combustion Engine (ICE) steady-state and transient tests were done to partially validate the testbed. However, the performance was assessed to not be at an acceptable level. For example, only speed tracking passed the non-road transient cycle tracking assessment. Torque tracking and the derived power curves failed the assessment narrowly. However, the test results indicate that with proper tuning of the control software, the system performance should get better. The system response was slow at this point, but the transient behavior itself was fast. Also, in steady-state, torque and speed ripple were low. Only the preparations for HIL simulation were carried out, since the testbed was not validated to be functional enough for the much more demanding HIL tests. The preparations involved building a simulation model of a series-parallel hybrid Refuse-Collecting Vehicle (RCV), which is to be used for the verification of the designed system’s HIL capabilities. The model was independently verified to be suitable to be used for the physical tests.Viimeaikaiset muutokset ajoneuvojen tyyppihyväksyntään ovat lisänneet tarvetta testausmetodeille, jotka paremmin vastaavat oikean elämän ajo-olosuhteita. HIL-simulaatio nähdään houkuttelevana vaihtoehtona pelkälle simulaatiolle sekä ajoneuvon ajonaikaisille mittauksille. Tämän työn tavoitteena on tarjota toimiva testilaite moottoridynamometritestaukseen sekä hybridiajoneuvojen HIL-simulaatioihin. Lisäksi, HIL:in nykytilanteen kuvausta pidettiin tärkeänä työn tavoitteena. HIL:in, ja yleisemmin reaaliaikaisen testauksen, tausta ja teoria selvitettiin laaja alaisesti käyttäen esimerkkejä hybridivoimanlähteisiin liittyvistä ajoneuvoalan käyttökohteista. Kirjallisuutta hyödyntäen, testipenkki suunniteltiin ja rakennettiin. Testipenkkiä voidaan käyttää emuloimaan pyöriviä voimia, kuten vetoakseliin kohdistuvia vääntöjä. Testipenkin nopeat yhteydet mahdollistavat reaaliaikaisen testauksen. Suunnittelu oli rajattu pääasiassa mekaaniseen suunnitteluun ja komponenttien määrittelyyn. Sähkö- ja ohjelmistosuunnittelu määriteltiin yleisellä tasolla. Alustavat polttomoottorilla tehdyt vakaiden ajopisteiden ja transienttiajojen testit toteutettiin testipenkin osittaiseksi validoinniksi. Kuitenkin, laitteen suorituskyky ei yltänyt halutulle tasolle. Esimerkiksi, ainoastaan nopeusseuranta läpäisi transienttiajo testin, mutta vääntö- ja voimaseurannat epäonnistuivat täpärästi. Tulokset kuitenkin osoittavat luottamusta siitä että testipenkki saadaan aikanaan halutulle tasolle ohjelmistopuolen kontrollereja säätämällä. Tällä hetkellä systeemin vasteaika on liian pitkä, vaikka muuten dynamiikka on nopeaa. Lisäksi, vakaissa ajopisteissä vääntö- ja nopeushuojunta ovat alhaisia. Ainoastaan valmistelut HIL-simulaatiota varten saatiin toteutettua, sillä testipenkkiä ei saatu reaaliaikasta testausta vaativalle tasolle. Valmistelut sisälsivät hybridijäteauton simulaatiomallin rakentamisen, jota tullaan aikanaan käyttämään testipenkin HIL toimivuuden validointiin. Simulaatiomalli varmistettiin itsenäisenä toimivaksi, ja siten soveltuvaksi tuleviin fyysisiin testiajoihin

    Propulsion Control Technology Development Needs to Address NASA Aeronautics Research Mission Goals for Thrusts 3a and 4

    Get PDF
    The Commercial Aero-Propulsion Control Working Group (CAPCWG), consisting of propulsion control technology leads from The Boeing Company, GE Aviation, Honeywell, Pratt & Whitney, Rolls-Royce, and NASA (National Aeronautics and Space Administration) Glenn Research Center, has been working together over the past year to identify propulsion control technology areas of common interest that we believe are critical to achieving the challenging NASA Aeronautics Research goals for Thrust 3a: Ultra-Efficient Commercial Vehicles - Subsonic Transports, and Thrust 4: Transition to Alternative Propulsion and Energy. This paper describes the various propulsion control technology development areas identified by CAPCWG as most critical for NASA to invest in. For Thrust 3a these are: i) Integrated On-Board Model Based Engine Control and Health Management; ii) Flexible and Modular Networked Control Hardware and Software Architecture; iii) Intelligent Air/Fuel Control for Low Emissions Combustion; and iv) Active Clearance Control. For Thrust 4a, the focus is on Hybrid Electric Propulsion (HEP) for single aisle commercial aircraft. The specific technology development areas include: i) Integrated Power and Propulsion System Dynamic Modeling for Control; ii) Control Architectures for HEP; iii) HEP Control Verification and Validation; and iv) Engine/Airplane Control Integration. For each of the technology areas, the discussion includes: problem to be solved and how it relates to NASA goals, and the challenges to be addressed in reducing risk

    Challenges of micro/mild hybridisation for construction machinery and applicability in UK

    Get PDF
    In recent years, micro/mild hybridisation (MMH) is known as a feasible solution for powertrain development with high fuel efficiency, less energy use and emission and, especially, low cost and simple installation. This paper focuses on the challenges of MMH for construction machines and then, pays attention to its applicability to UK construction machinery. First, hybrid electric configurations are briefly reviewed; and technological challenges towards MMH in construction sector are clearly stated. Second, the current development of construction machinery in UK is analysed to point out the potential for MMH implementation. Thousands of machines manufactured in UK have been sampled for the further study. Third, a methodology for big data capturing, compression and mining is provided for a capable of managing and analysing effectively performances of various construction machine types. By using this method, 96% of data memory can be reduced to store the huge machine data without lacking the necessary information. Forth, an advanced decision tool is built using a fuzzy cognitive map based on the big data mining and knowledge from experts to enables users to define a target machine for MMH utilization. The numerical study with this tool on the sampled machines has been done and finally realized that one class of heavy excavators is the most suitable to apply MMH technology

    Fuel Cell Renewable Hybrid Power Systems

    Get PDF
    Climate change is becoming visible today, and so this book—through including innovative solutions and experimental research as well as state-of-the-art studies in challenging areas related to sustainable energy development based on hybrid energy systems that combine renewable energy systems with fuel cells—represents a useful resource for researchers in these fields. In this context, hydrogen fuel cell technology is one of the alternative solutions for the development of future clean energy systems. As this book presents the latest solutions, readers working in research areas related to the above are invited to read it
    corecore