1,651 research outputs found

    Robust dynamic CPU resource provisioning in virtualized servers

    Get PDF
    We present robust dynamic resource allocation mechanisms to allocate application resources meeting Service Level Objectives (SLOs) agreed between cloud providers and customers. In fact, two filter-based robust controllers, i.e. H∞ filter and Maximum Correntropy Criterion Kalman filter (MCC-KF), are proposed. The controllers are self-adaptive, with process noise variances and covariances calculated using previous measurements within a time window. In the allocation process, a bounded client mean response time (mRT) is maintained. Both controllers are deployed and evaluated on an experimental testbed hosting the RUBiS (Rice University Bidding System) auction benchmark web site. The proposed controllers offer improved performance under abrupt workload changes, shown via rigorous comparison with current state-of-the-art. On our experimental setup, the Single-Input-Single-Output (SISO) controllers can operate on the same server where the resource allocation is performed; while Multi-Input-Multi-Output (MIMO) controllers are on a separate server where all the data are collected for decision making. SISO controllers take decisions not dependent to other system states (servers), albeit MIMO controllers are characterized by increased communication overhead and potential delays. While SISO controllers offer improved performance over MIMO ones, the latter enable a more informed decision making framework for resource allocation problem of multi-tier applications

    Understanding the Computational Requirements of Virtualized Baseband Units using a Programmable Cloud Radio Access Network Testbed

    Full text link
    Cloud Radio Access Network (C-RAN) is emerging as a transformative architecture for the next generation of mobile cellular networks. In C-RAN, the Baseband Unit (BBU) is decoupled from the Base Station (BS) and consolidated in a centralized processing center. While the potential benefits of C-RAN have been studied extensively from the theoretical perspective, there are only a few works that address the system implementation issues and characterize the computational requirements of the virtualized BBU. In this paper, a programmable C-RAN testbed is presented where the BBU is virtualized using the OpenAirInterface (OAI) software platform, and the eNodeB and User Equipment (UEs) are implemented using USRP boards. Extensive experiments have been performed in a FDD downlink LTE emulation system to characterize the performance and computing resource consumption of the BBU under various conditions. It is shown that the processing time and CPU utilization of the BBU increase with the channel resources and with the Modulation and Coding Scheme (MCS) index, and that the CPU utilization percentage can be well approximated as a linear increasing function of the maximum downlink data rate. These results provide real-world insights into the characteristics of the BBU in terms of computing resource and power consumption, which may serve as inputs for the design of efficient resource-provisioning and allocation strategies in C-RAN systems.Comment: In Proceedings of the IEEE International Conference on Autonomic Computing (ICAC), July 201

    Performance-oriented Cloud Provisioning: Taxonomy and Survey

    Full text link
    Cloud computing is being viewed as the technology of today and the future. Through this paradigm, the customers gain access to shared computing resources located in remote data centers that are hosted by cloud providers (CP). This technology allows for provisioning of various resources such as virtual machines (VM), physical machines, processors, memory, network, storage and software as per the needs of customers. Application providers (AP), who are customers of the CP, deploy applications on the cloud infrastructure and then these applications are used by the end-users. To meet the fluctuating application workload demands, dynamic provisioning is essential and this article provides a detailed literature survey of dynamic provisioning within cloud systems with focus on application performance. The well-known types of provisioning and the associated problems are clearly and pictorially explained and the provisioning terminology is clarified. A very detailed and general cloud provisioning classification is presented, which views provisioning from different perspectives, aiding in understanding the process inside-out. Cloud dynamic provisioning is explained by considering resources, stakeholders, techniques, technologies, algorithms, problems, goals and more.Comment: 14 pages, 3 figures, 3 table

    DEPAS: A Decentralized Probabilistic Algorithm for Auto-Scaling

    Full text link
    The dynamic provisioning of virtualized resources offered by cloud computing infrastructures allows applications deployed in a cloud environment to automatically increase and decrease the amount of used resources. This capability is called auto-scaling and its main purpose is to automatically adjust the scale of the system that is running the application to satisfy the varying workload with minimum resource utilization. The need for auto-scaling is particularly important during workload peaks, in which applications may need to scale up to extremely large-scale systems. Both the research community and the main cloud providers have already developed auto-scaling solutions. However, most research solutions are centralized and not suitable for managing large-scale systems, moreover cloud providers' solutions are bound to the limitations of a specific provider in terms of resource prices, availability, reliability, and connectivity. In this paper we propose DEPAS, a decentralized probabilistic auto-scaling algorithm integrated into a P2P architecture that is cloud provider independent, thus allowing the auto-scaling of services over multiple cloud infrastructures at the same time. Our simulations, which are based on real service traces, show that our approach is capable of: (i) keeping the overall utilization of all the instantiated cloud resources in a target range, (ii) maintaining service response times close to the ones obtained using optimal centralized auto-scaling approaches.Comment: Submitted to Springer Computin

    Deliverable JRA1.1: Evaluation of current network control and management planes for multi-domain network infrastructure

    Get PDF
    This deliverable includes a compilation and evaluation of available control and management architectures and protocols applicable to a multilayer infrastructure in a multi-domain Virtual Network environment.The scope of this deliverable is mainly focused on the virtualisation of the resources within a network and at processing nodes. The virtualization of the FEDERICA infrastructure allows the provisioning of its available resources to users by means of FEDERICA slices. A slice is seen by the user as a real physical network under his/her domain, however it maps to a logical partition (a virtual instance) of the physical FEDERICA resources. A slice is built to exhibit to the highest degree all the principles applicable to a physical network (isolation, reproducibility, manageability, ...). Currently, there are no standard definitions available for network virtualization or its associated architectures. Therefore, this deliverable proposes the Virtual Network layer architecture and evaluates a set of Management- and Control Planes that can be used for the partitioning and virtualization of the FEDERICA network resources. This evaluation has been performed taking into account an initial set of FEDERICA requirements; a possible extension of the selected tools will be evaluated in future deliverables. The studies described in this deliverable define the virtual architecture of the FEDERICA infrastructure. During this activity, the need has been recognised to establish a new set of basic definitions (taxonomy) for the building blocks that compose the so-called slice, i.e. the virtual network instantiation (which is virtual with regard to the abstracted view made of the building blocks of the FEDERICA infrastructure) and its architectural plane representation. These definitions will be established as a common nomenclature for the FEDERICA project. Other important aspects when defining a new architecture are the user requirements. It is crucial that the resulting architecture fits the demands that users may have. Since this deliverable has been produced at the same time as the contact process with users, made by the project activities related to the Use Case definitions, JRA1 has proposed a set of basic Use Cases to be considered as starting point for its internal studies. When researchers want to experiment with their developments, they need not only network resources on their slices, but also a slice of the processing resources. These processing slice resources are understood as virtual machine instances that users can use to make them behave as software routers or end nodes, on which to download the software protocols or applications they have produced and want to assess in a realistic environment. Hence, this deliverable also studies the APIs of several virtual machine management software products in order to identify which best suits FEDERICA’s needs.Postprint (published version
    corecore