
1

Robust Dynamic CPU Resource Provisioning
in Virtualized Servers

Evagoras Makridis, Kyriakos Deliparaschos, Evangelia Kalyvianaki,
Argyrios Zolotas, Senior Member, IEEE , and Themistoklis Charalambous, Member, IEEE

Abstract—We present robust dynamic resource allocation mechanisms to allocate application resources meeting Service Level
Objectives (SLOs) agreed between cloud providers and customers. In fact, two filter-based robust controllers, i.e. H∞ filter and
Maximum Correntropy Criterion Kalman filter (MCC-KF), are proposed. The controllers are self-adaptive, with process noise variances
and covariances calculated using previous measurements within a time window. In the allocation process, a bounded client mean
response time (mRT) is maintained. Both controllers are deployed and evaluated on an experimental testbed hosting the RUBiS (Rice
University Bidding System) auction benchmark web site. The proposed controllers offer improved performance under abrupt workload
changes, shown via rigorous comparison with current state-of-the-art. On our experimental setup, the Single-Input-Single-Output
(SISO) controllers can operate on the same server where the resource allocation is performed; while Multi-Input-Multi-Output (MIMO)
controllers are on a separate server where all the data are collected for decision making. SISO controllers take decisions not
dependent to other system states (servers), albeit MIMO controllers are characterized by increased communication overhead and
potential delays. While SISO controllers offer improved performance over MIMO ones, the latter enable a more informed decision
making framework for resource allocation problem of multi-tier applications.

Index Terms—Resource provisioning, virtualized servers, CPU allocation, CPU usage, RUBiS, Robust prediction, H∞ filter, MCC-KF,
Kalman filter.

F

1 INTRODUCTION

C LOUDS often employ multiple geographically dis-
tributed data centers to allow application deployment

in various locations around the world for reduced response
times. A data center contains tens of thousands of server
machines located in a single warehouse to reduce opera-
tional and capital costs. Within a single data center, modern
cloud applications are typically deployed over multiple
servers to cope with resource requirements. The task of
allocating resources to applications is referred to as re-
source management. However, resource management remains
a challenge, as cloud applications often exhibit highly vari-
able and unpredicted workload demands. To cope with
the most demanding and rare workloads, over-provision of
application resources has been common practice in resource
management. Although simplistic, this has led to substan-
tial under-utilization of data centers (see, e.g., [1]), since
practitioners devote disjoint groups of server machines to a
single application. The advent of virtualization has enabled
a highly configurable environment for application deploy-
ment. A server machine can be partitioned into multiple
Virtual Machines (VMs), each providing an isolated server
environment capable of hosting a single application or parts
of it in a secure and resource assured manner. Resource
allocation to VMs can be changed at runtime to dynamically

• E. Makridis and T. Charalambous are with the Dept. of Electr. Eng. and
Autom., Aalto Univ. E-mail: name.surname@aalto.fi

• K. Deliparaschos is with the Dept. of Electr. Eng., Comp. Eng. and
Inform., Cyprus Univ. of Technology. E-mail: k.deliparaschos@cut.ac.cy

• E. Kalyvianaki is with the Dept. of Comp. Sci. and Tech., Univ. of
Cambridge. E-mail: ek264@cam.ac.uk

• A. Zolotas is with the Sch. of Aerosp., Transp. and Manufact., Cranfield
University. E-mail: a.zolotas@cranfield.ac.uk

match virtualized application workload demands. Virtual-
ization enables server consolidation where a single physical
server can run multiple VMs while sharing its resources and
running different applications within the VMs for better
utilization of the existing resources [2]. Studies show that
server consolidation increases data center utilization, thus
reducing energy consumption and operational costs [3].

The main challenge of server consolidation is how to
dynamically adjust the allocation of VM resources so as to
match the demands of virtualized applications, meet their
Service Level Objectives (SLOs) and to achieve increased
server utilization. Towards this end, different autonomic
resource management methods have been proposed to dy-
namically allocate resources across virtualized applications
having diverse workload and highly fluctuating workload
demands. Autonomic resource management in a virtual-
ized environment using control-based techniques has re-
cently gained significant attention (see [4]–[7] and references
therein). An advantage of such techniques over previously
used heuristics is that one can derive formal guarantees
[8], [9]. One common approach for controlling application
performance is to control its CPU utilization within the VM.

1.1 Related Work

Works presented in [10], [11] were among the first to connect
response times with the control of application CPU utiliza-
tion within the VM. The use of control-based techniques has
emerged as a natural approach for resource provisioning in
virtualized environments, with controllers being designed
to continuously update the maximum CPU allocated to each
VM, based on CPU utilization measurements. For example,

e805814
Text Box
IEEE Transactions on Services Computing, Available online 15 January 2020DOI: 10.1109/TSC.2020.2966972

e805814
Text Box
© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

2

Padala et al. [12] present a two-layer non-linear controller to
regulate the virtualized component utilization of multi-tier
applications. In [13] and [10], the authors use offline system
identification to directly control the application response
times through runtime resource CPU allocation. In partic-
ular, the relationship between the response times and the
CPU allocations, in regions where it is measured to be linear,
is modelled. However, as this relationship is application-
specific and relies on offline identification performance
models, it cannot be applied when multiple applications are
running concurrently, nor can it be readily adjusted to new
conditions. Maggio et al. in [14] propose a simple dynamic
heartbeat rate model for automating core allocation based
on deadline metrics from the application to meet the desired
goal specified. Specifically, they introduce a control scheme
using the dynamic heartbeat rate model to monitor and
control computer software applications by expressing and
measuring the error from their desired goals. In contrast
to [14], a budget constrained approach is proposed by Zhu
and Agrawal in [15], in which they develop a feedback con-
trol based approach for maximizing the Quality of Service
(QoS) of an application while keeping within specified time
and resource budget constraints.

However, for the dynamical parameter adaptation of
their feedback control, the authors used an application-
specific model. Another similar control technique was pro-
posed by the authors in [16] i.e., a mechanism for monitor-
ing and auto-scaling of resources at the VM and container
level using a discrete-time feedback controller. Lakew et al.
in [17] proposed two different models (i.e., queue length
based and inverted response time) to detect and allocate
the appropriate capacity required for virtualized applica-
tions. Work in [18] used a layered queueing model which
describes the relationship between resource allocation and
application’s performance for adding or removing resources
to meet user-defined SLOs. In particular, a feedback con-
troller based on the aforementioned model was used to
dynamically adjust the number of vCPUs for single VMs
(thus they did not consider a MIMO case capturing inter-
resource couplings between VMs). Work in [19] presented
an elasticity controller which monitors resource usage of a
running VM via Auto-Regressive (AR) model proposed in
[20] that predicts the next CPU usage. Although the scaling
approach presented for both single VM and for two VMs,
independent controllers were used not considering resource
allocation interplay between the two tiers.

MIMO feedback controllers have also been considered;
see, for example, [21] and [22]. These controllers make global
decisions by coupling the resource usage of all components
of multi-tier server applications. In addition, the resource
allocation problem across consolidated virtualized applica-
tions under conditions of contention have been considered
in [12], [23]: when some applications demand more re-
sources than physically available, then the controllers share
the resources among them, while respecting the user-given
priorities. Kalyvianaki et al. [22], [24] were the first to for-
mulate the CPU allocation problem as a state prediction one
and propose adaptive Kalman-based controllers to predict
the CPU utilization and maintain the CPU allocation to a
user-defined threshold. Even though the standard Kalman
filter (KF) provides an optimal estimate when the noise is

Gaussian, it may perform poorly if the noise characteristics
are non-Gaussian. Another work done in [25], proposed
a Key Performance Indicator (KPI)-agnostic methodology
to design vertical elasticity controllers (i.e., MIMO Model
Predictive Controller) to adjust cloud resources (amount of
CPU cores and memory) for applications in order to meet
their predefined performance requirements.

1.2 Motivation and Contributions
Cloud service providers, however, encounter abrupt vary-
ing loads that deteriorate cloud elasticity on handling peak
demands and potential unpredictable system faults and
failures [26]. To anticipate abrupt workload changes in
order to maintain a certain allocation headroom - above the
utilization - and satisfy a given SLO, self-adaptive (e.g., [27])
and robust control techniques for CPU resource provision-
ing are desired. Here, we use robust filters to predict the
random CPU utilizations of a two-tier virtualized server
application and, therefore, provide the CPU allocations
needed dynamically to satisfy a certain upper bound on the
mRT. In particular, two controllers for the state estimation
of the CPU resources are proposed: (a) an H∞ filter to
minimize the maximum error caused by the uncertainties
in the model and (b) the Maximum Correntropy Criterion
Kalman Filter which measures the similarity of two random
variables using information of high-order signal statistics.
The paper’s contributions are summarized below:
• An adaptiveH∞ filter and MCC-KF (SISO and MIMO) to

improve robustness in the state estimation problem. The
filters track CPU resource utilization and adapt the state
estimation based on previous observations and noises.
Both filters are designed and evaluated via experimental
setup using real-data CPU resource demands.

• A generic, dynamic CPU allocation is presented to il-
lustrate how our proposed approaches address resource
provisioning in virtualized servers. It is demonstrated
that this type of controllers show improved performance
under saturation periods and sudden workload changes.

1.3 Organization
The rest of the paper is organized as follows. Section 2 intro-
duces client mean request response times and system per-
formance assessment metric. Section 3 discusses the model
for characterizing CPU utilization dynamics. The proposed
robust controllers are discussed in Section 4, and the ex-
perimental setup given in Section 5. Control performance,
compared with other state-of-the-art solutions and statistical
analysis are presented in Section 6. Section 7 highlights
remarks of the proposed SISO and MIMO controllers, while
conclusions and future research direction are presented in
Section 8.

2 SERVER APPLICATION PERFORMANCE

One of the most widely used metrics for measuring server
performance is the client mean request response times (mRT).
It is difficult to predict the values of the mRT of server
applications across operating regions, and different applica-
tions and workloads. However, it is known to have certain
characteristics [28]. In particular, its values can be divided
into three regions:

3

(a) when the application has abundant resources and,
therefore, all requests are served as they arrive and
the response times are kept low;

(b) when the utilization approaches 100% (e.g. around
70-80%) the mRT increases above the low values
from the previous region, due to the fact that there
are instances in which the requests increase abruptly;

(c) when resources are scarce and very close to 100%,
since requests compete for limited resources, they
wait in the input queues for long and, as a result,
their response times increase dramatically to rela-
tively high values.

In this work, the response time of every type of request
was captured calculating the time difference between the
request and its response, as Fig. 1 shows. All requests were
issued to our RUBiS cluster and specifically to the web
server, through the Client Emulator that was deployed on
a separate physical machine. When all requests were com-
pleted, a mean value of the response times of the requests
within a time interval of 1s was calculated in order to have
an estimate of the mRT over time. Note that in the results
for the experiments presented in Section 6, the mRT is
smoothed over the sampling/control interval.

client
(browser)

request

response

web server
VM

database server
VM

RUBiS

data

Fig. 1: Request-to-response path.

To maintain a good server performance, the operators
aim for CPU utilization below 100% of the machine capacity
by a certain value (usually called headroom). Headroom
values are chosen such that they form the boundary between
the second and third mRT regions. At such values the server
is well provisioned and response times are kept low. If the
utilization exceeds the boundary due to increased workload
demands, operators should increase server resources.

Firstly, we measure the server’s performance when 100%
of resources is provisioned, without any controller adjusting
the allocation of resources, in order to extract what is the re-
quired headroom. In this work, we consider a Browsing Mix
workload type, in order to specify the server’s performance
while the number of clients varies. The top plot of Fig. 2
shows the mean response times (mRT) with number of
clients increasing in steps of 100 until mRT crosses the 0.5s
level. Clearly, the mRT increases rapidly when the number
of clients exceeds 1350 and the SLO is violated.

Initially, with an increasing number of clients, the mRT
stays low, albeit when the number of clients exceeds 1200
the mRT increases above the low values. Note that the QoS
threshold of 0.5s is exceeded when the number of clients,
simultaneously issue requests to the server is about 1350.

The bottom plot of Fig. 2 shows the average CPU usage
per component while the number of clients increases. As
shown in this figure, the database server demand is lower
than the web server’s one with the same number of clients.
The error bars in the bottom plot of Fig. 2 show one standard
deviation above and below the mean CPU usage. When
the number of clients exceeds 1350, the web server’s CPU

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.5

1

number of clients (×100)

m
R
T

(s
) average mRT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

50

100

number of clients (×100)

u
ti
li
za
ti
on

(%
)

web server
database

Fig. 2: Top: mean Response Times (mRT), bottom: average CPU
usage per component; for different workloads.

usage becomes the bottleneck and even though the database
server does not use 100% of its resources, it remains (almost)
constant. Hence, it is important to establish the required
resources for all the involved components comprising the
requests.

3 SYSTEM MODEL

3.1 Notation
Note that R and R+ represent the real and the nonnegative
real numbers, respectively. Vectors, matrices and sets, are
denoted by lowercase, uppercase and calligraphic uppercase
letters, respectively. AT and A−1 denote the transpose and
inverse of matrix A, respectively. The identity matrix is
represented by I . Also, x̂k|k−1 and x̂k|k denote the a priori
and a posteriori estimates of random value/vector xk for
time instant k. Pk denotes the matrix P at time instant k.
E{·} represents the expectation of its argument. Given any
vector norm ‖ · ‖, a weighted vector norm can be written as
‖x‖Q , ‖Qx‖, where Q is an arbitrary nonsingular matrix.

3.2 SISO System
The time-varying CPU utilization per component is mod-
eled as a random walk given by the following linear stochas-
tic difference equation as introduced in [22], [24], [29], [30]:

xk+1 = xk + wk, (1)

where xk ∈ [0, 1] is the CPU utilization (i.e., the percentage
of the total CPU capacity actually used by the applica-
tion component during time interval k). The independent
random process wk is the process noise which models the
utilization between successive intervals caused by workload
changes (e.g., requests being added to or removed from
the server) it is often assumed to be normally distributed
[22], [24], but it can also be a distribution of finite support
[29]. A similar simple model was introduced in [14], where
the authors try to keep the model as simple and generic as
possible, and improve the control performance by means of
feedback control. In contrast, the authors in [31] adopted

4

the autoregressive-moving-average (ARMA) model using
system identification to find the relationship between mRT
and the total CPU allocation in a multi-tier application.
However, in this work we keep the simple model given in
(1), without making any application-specific assumptions,
as it is the case in [31].

The total CPU utilization of a VM which is actually
observed by the Xen Hypervisor, yk ∈ [0, 1], is given by

yk = xk + vk, (2)

where the independent random variable vk is the utilization
measurement noise which models the utilization difference
between the measured and the actual utilization; vk, as
it is the case with wk, is often assumed to be normally
distributed [22], [24], but it can also be a distribution of finite
support [29]. Note that yk models the observed utilization
in addition to any usage noise coming from other sources,
such as the operating system, to support the application.

3.3 MIMO System
For the MIMO system, the dynamics of all the components
(VMs) can be written compactly as

xk+1 = Axk + wk, (3a)
yk = Cxk + vk, (3b)

where xk ∈ [0, 1]nx is the system’s state vector represent-
ing the actual total CPU capacity percentages used by the
application components during time interval k. The process
and measurement noise vectors, wk ∈ Rnx and vk ∈ Rny , are
stochastic disturbances with zero mean and finite second-
order matrices Wk and Vk, respectively. The observed state
xk of the system by the Xen Hypervisor is yk ∈ Rny . Matrix
A shows the interdependencies between different VMs and
matrix C captures what is actually the Xen Hypervisor
observing. In the case where the CPU utilizations at the VMs
are independent, matrices A and C are identity matrices.

3.4 CPU Allocation
By ak ∈ R+ we denote the CPU capacity of a physical
machine allocated to the VM (i.e., the maximum amount
of resources a VM can use). The purpose of a designed
controller is to control the allocation of the VM running
a server application while observing its utilization in the
VM, maintaining good server performance in the presence
of workload changes. This is achieved by adjusting the
allocation to values above the utilization. In other words,
in all filters that we design in this paper, the resource
utilization is predicted and the resource allocation is chosen
such that a pre-specified headroom is maintained in order
to guarantee the SLO, which in this case is to have the
mRT lower than 0.5s. For each time interval k, the desired
relationship between the two quantities is given by:

ak = max {amin,min{(1 + h)xk, amax}} , (4)

where h ∈ (0, 1) represents the headroom (i.e., how much
extra resources are provided above the actual CPU utiliza-
tion) amin is the minimum CPU allocated at any given time
(if allocation goes very small, then even small usage may
lead to high mRT), and amax is the maximum CPU that

can be allocated. To maintain good server performance, the
allocation ak should adapt to the utilization xk.

Let Yk represent the set of all observations up to time
k. Let the a posteriori and a priori state estimates be denoted
by x̂k|k = E {xk|Yk} and x̂k+1|k = E {xk+1|Yk}, respec-
tively; hence, x̂k+1|k is the predicted CPU utilization for
time interval k + 1. In order to approach the desired CPU
allocation, as given in (4), the CPU allocation mechanism
uses the prediction of the usage and is thus given by

ak+1 = max
{
amin,min{(1 + h)x̂k+1|k, amax}

}
. (5)

3.5 Computation of Variances/Covariances
To estimate the variance of the process noise at time step k,
Wk, using real-data for each component, we use a sliding
window approach in which the variance of the data belong-
ing in a sliding window of size T steps at each time step k
is computed. Initially, the variance is chosen based on some
prior information. T steps after the process is initiated, and
T CPU usages have been stored, the variance is estimated.

While the mean of a random-walk-without-a-drift is still
zero, the covariance is non-stationary. For example, for the
SISO case,

var{xk} = var{wk−1 + wk−2 + ...}
= var{wk−1}+ var{wk−2}+ . . .+ var{w0}
=Wk−1 +Wk−2 + . . .W0.

Taking the difference between two observations (i.e., zk ,
yk − yk−1) gives

zk = xk − xk−1 + vk − vk−1 = wk−1 + vk − vk−1.

The variance of the difference between observations is thus

var{zk} = var{wk−1 + vk − vk−1} =Wk−1 + Vk − Vk−1.

While the experiment is running, the last T CPU usages are
stored and used for updating the variance at each step k.
Computing the variance based on the difference between
observations, we get:

var{zk−T+1 + . . .+ zk} = var{zk−T+1}+ . . .+ var{zk}
=Wk−T + Vk−T+1 − Vk−T + . . .+Wk−1 + Vk − Vk−1.

The measurement noise variance Vk was set to a small value
because we observed that the measurement is relatively
accurate since the CPU usage is captured every 1s. In other
words, our measurements of the CPU usage are relatively
very close to the real ones. This fact let us pin the measure-
ment noise variance to a fixed value (herein Vk = 1). As a
result, the variance of the difference breaks down to

var{zk−T+1 + . . .+ zk} =Wk−T + . . .+Wk−1. (6)

Hence, using (6) and assuming that the variance does not
change (much) over a time horizon T , the estimate of the
variance at time k, denoted by Ŵ SISO

k , is given by:

Ŵ SISO
k =

1

T
var{zk−T+1 + . . .+ zk}

=
1

T

∑k
t=k−T+1 z

2
t

T
−
(∑k

t=k−T+1 zt

T

)2
 . (7)

5

The process noise covariance of the components is cal-
culated using a similar methodology mutatis mutandis as the
variances. At this point, we need to capture each compo-
nent’s CPU usage and store it somewhere centrally (e.g., on
the MIMO controller node) in order to compute the covari-
ances using the sliding window approach, as before. The
estimate of the covariance ŴMIMO

k for the two components
of our system is given by:

ŴMIMO
k

(a)
= cov{z1,t, . . . , z1,k , z2,t, . . . , z2,k}

=

(∑k
t=k−T+1 (z1,t − µz1) (z2,t − µz2)

T

)
, (8)

where µz1 and µz2 denote the mean CPU usages for the web
server and database server components, respectively, for a
window of size T , and are given by

µz1 =

(∑k
t=k−T+1 z1,t

T

)
and µz2 =

(∑k
t=k−T+1 z2,t

T

)
,

while z1,t and z2,t denote the differences between observed
CPU utilizations at time instant t and t − 1 of the first and
the second component of the application, respectively.

Remark 1. Note that the size of the sliding window, T , is
chosen to be large enough so that it captures the variance
of the random variable, but also it is small enough so that
it can also track the change in variance due to changes
in the dynamics of the requests. Numerical investigation
helps in choosing the sliding window T ; see Section 6.

Note also that each VM can be controlled either locally or
via a remote physical machine. Using the locally controlled
VM as a SISO system, the estimate of the VM’s variance
can be obtained, but the noise covariances with respect to
other applications cannot be obtained. Using a remotely
controlled VM to host the MIMO controller, the noise co-
variances of the whole system can be estimated via (8).

4 CONTROLLER DESIGN

This work emphasizes robust dynamic resource provision-
ing that accounts for model uncertainties and non-Gaussian
noise. Two robust controllers are proposed in order to
predict and hence allocate the CPU resources in a realistic
scenario for each VM that constitutes the RUBiS application.
More specifically:
• H∞ filter: This controller minimizes the worst-case esti-

mation error of the CPU allocation and provides robust
state estimation. It can be modeled either as a SISO filter
to control a single VM or as MIMO filter to control all
VMs of a multi-tier application.

• MCC-KF: This controller is an enhanced KF version
that utilizes the Maximum Correntropy Criterion for the
state estimation of the CPU resources. Note the MCC-KF
measures the similarity of two random variables using
information of high-order signal statistics, essentially
handling cases of non-Gaussian noises (which are not
directly handled by the standard KF).

4.1 H∞ Filter

H∞ filters, called minimax filters, minimize the worst-case
estimation error hence facilitates better robustness for the
state estimation problem. In this work, we adopt a game
theoretic approach to H∞ filters proposed in [32] and thor-
oughly described in [33, Chapter 11]. The cost function for
our problem formulation is given by:

J =

∑N−1
k=0 ‖xk − x̂k|k‖22

‖x0 − x̂0|0‖2P−1
0|0

+
∑N−1
k=0

(
‖wk‖2W−1

k

+ ‖vk‖2V −1
k

) (9)

where P0|0 ∈ RN×N , Wk ∈ RN×N and Vk ∈ RN×N

are symmetric, positive definite matrices defined by the
problem specifications (i.e., P0|0 is the initial error covari-
ance matrix, Wk and Vk are the process and measurement
covariance matrices for time interval k, respectively), x̂k|k is
the estimate of the CPU allocation. The direct minimization
of J in (9) is not tractable and, therefore, a performance
bound is chosen (i.e., J < 1/θ, θ > 0) and attempt to
find an estimation strategy (controller, in this case) that
satisfies the bound. In our problem, the target is to keep
the mRT below a certain threshold (e.g., less than 0.5s).
Therefore, θ is tuned such that the desired mRT is less than
a certain user-specified threshold (i.e., so that the designed
controller satisfies the desired target). The choice of θ will be
investigated in Section 6. Considering (9), the steady-state
H∞ filter bounds the following cost function:

J = lim
N→∞

∑N−1
k=0 ‖xk − x̂k|k‖22∑N−1

k=0

(
‖wk‖2W−1

k

+ ‖vk‖2V −1
k

) . (10)

Let Gx̂e be the system that has e = [w v]T as its input
and x̂ as its output. Since the H∞ filter makes cost (10)
less than 1/θ for all wk and vk, then according to [33,
Equation (11.109)]:

‖Gx̂e‖2∞ = sup
ζ

‖x− x̂‖22
‖w‖2W−1 + ‖v‖2V −1

≤ 1

θ
, (11)

where ζ is the phase of ‖w‖2W−1 + ‖v‖2V −1 comprised by
the sampling time of the system and the frequency of the
signals. Since we want the mRT to be less than a certain
value (usually around 1 second), we have to keep the CPU
usage to less than a threshold set by our mRT model.
Therefore, using (11) we want:

sup
ζ

‖D‖22
‖w‖2W−1 + ‖v‖2V −1

≤ 1

θ
, (12)

which is equivalent to:

θ ≤ inf
ζ

‖w‖2W−1 + ‖v‖2V −1

‖D‖22
. (13)

where D is a diagonal matrix with the allowable error for
each component along the diagonal.

Let the a posteriori (updated) and a priori (predicted) error
covariances be given by

Pk|k = E
{
(xk − x̂k|k)(xk − x̂k|k)T |Yk

}
,

Pk+1|k = E
{
(xk − x̂k+1|k)(xk − x̂k+1|k)

T |Yk
}
.

6

The necessary condition ensuring a positive definite Pk|k
and system stability is retained for the H∞ filter is:

I − θPk|k−1 + CTV −1k CPk|k−1 � 0. (14)

To design the controller we consider inequalities (13)
and (14).

The equations for the H∞ filter are summarized below
[33]. For the prediction phase:

x̂k|k−1 = Ax̂k−1|k−1, (15a)

Pk|k−1 = APk−1|k−1A
T +Wk. (15b)

For the cost function (9), the update phase of the H∞ filter is
given by:

Kk = Pk|k−1[I − θPk|k−1 + CTV −1k CPk|k−1]
−1CTV −1k

(15c)
x̂k|k = x̂k|k−1 +Kk(yk − Cx̂k|k−1) (15d)

Pk|k = Pk|k−1[I − θPk|k−1 + CTV −1k CPk|k−1]
−1 (15e)

where Kk is the gain matrix.
The KF gain is less than the H∞ filter gain for θ > 0,

meaning that the H∞ filter relies more on the measurement
and less on the system model. As θ → 0, the H∞ filter
gain and KF gain coincide [33]. For a comparison between
Kalman and H∞ filters see [34].

4.2 Maximum Correntropy Criterion Kalman Filter
Here, a new Kalman filter approach is deployed using
the Maximum Correntropy Criterion (MCC) for state esti-
mation, i.e. MCC Kalman filter (MCC-KF) [35], [36]. The
correntropy criterion measures the similarity of two random
variables using information from high-order signal statis-
tics [37]–[40]. Since the KF uses only second-order signal
information is not optimal if the process and measurement
noises are non-Gaussian noise disturbances, e.g. shot noise
or mixture of Gaussian noise.
The equations for the MCC-KF are summarized below [36].
For the prediction phase:

x̂k|k−1 = Ax̂k−1|k−1, (16a)

Pk|k−1 = APk−1|k−1A
T +Wk, (16b)

and for the update phase:

Lk =
Gσ
(
‖ yk − Cx̂k|k−1‖V −1

k

)
Gσ
(
‖ x̂k|k−1 −Ax̂k−1|k−1‖P−1

k|k−1

) , (16c)

Kk = (P−1k|k−1 + LkC
TV −1k C)−1LkC

TV −1k , (16d)

x̂k|k = x̂k|k−1 +Kk(yk − Cx̂k|k−1), (16e)

Pk|k = (I −KkC)Pk|k−1(I −KkC)
T +KkVkK

T
k , (16f)

where Gσ is the Gaussian kernel, i.e.,

Gσ(‖ xi − yi ‖) = exp

(
−‖ xi − yi ‖

2

2σ2

)
with kernel size σ1. Note that Lk is called the minimized
correntropy estimation cost function andKk is the Kalman gain
(as in the H∞ filter).

1. The kernel bandwidth σ serves as a parameter weighting the
second and higher-order moments; for a very large σ (compared to
the dynamic range of the data), the correntropy will be dominated by
the second-order moment [35].

4.3 Resource Provisioning Algorithm

Irrespective of which filter is being used, a generic algorithm
for dynamically provisioning of CPU resources of any cloud
application is given in Algorithm 1.
• Input: Firstly, the minimum (amin) and maximum (amax)

allocations for the VM components, the sliding window
width T for the computation of the variances and covari-
ances as well as the θ and σ parameters for the H∞ and
MCC-K filters, respectively, are inputs to the system.

• Initialization: Initial values for the process and measure-
ment noise matrices and for the initial error covariance
matrix must be declared in advance.

• At each time step k, the observed utilization, using the
Xen Hypervisor, is set as the control input signal.
• Step 1 (Variance/Covariance Computation:) Calcu-

lates the variances and/or the covariances of T passed
utilizations using the approach in Section 3.5 in order
to estimate the process covariance error Ŵk at each
time instance k.

• Step 2 (Filtering): Using the statistics from the previ-
ous step, the filter updates the state while it computes
the Lk, Kk, x̂k|k and Pk|k for each time instance k.
Right after, the filter predicts the next state of the
system with computing the x̂k+1|k, Pk+1|k. With this
process, the ak+1 is computed and it can be exported
as the new allocation for the next step k + 1.

• Step 3 (Output): The new predicted allocation ak+1 is
adapted in the appropriate VM using Xen scheduler.

Algorithm 1 Dynamic Resource Provisioning.

1: Input: amin, amax, h, T , θ (for the H∞ filter), σ (for the
MCC-KF),

2: Initialization: W0, V0 (Vk = 1 ∀k), P0|0
3: for each time step k do
4: Data: yk
5: variances/covariances
6: Compute Ŵk for SISO and MIMO controllers ac-

cording to (7) and (8), respectively
7: filter
8: Update phase:
9: Compute Lk (for the MCC-KF), Kk, x̂k|k, Pk|k

10: Prediction phase:
11: Compute x̂k+1|k, Pk+1|k
12: CPU allocation:
13: Compute ak+1 using (5)
14: end for
15: Output: CPU allocation ak+1.

5 EXPERIMENTAL SETUP

The main target is to continuously provision each virtual-
ized application with enough CPU resources to adequately
serve its incoming requests from a variable workload. The
purpose of the Dom0 component is to monitor the CPU
usage by the percentage of CPU cycles of each VM running
on the Hypervisor. The controller utilizes the CPU measure-
ments in order to predict the CPU usage for the next time
interval and hence determine the CPU allocation, which is
then fed back to to the Hypervisor to set the new allocation.

7

Fig. 3: Resource allocation manager architecture.

Our experimental setup is divided into two different in-
frastructure installations. One for the SISO controller model
and one for the MIMO controller model. To evaluate the
performance of each control system, we set up a small-scale
data center in order to host the RUBiS auction site as the
cloud application. The data center consists of two physical
blade servers with Intel Xeon 5140 and 1.0GB of RAM,
running Debian 8 Jessie Linux distribution with 3.16.0-4-
amd64 kernel and Xen 4.4.1 Virtualization technology. Note
that Xen Hypervisor was also has been widely used for
experimental evaluations in the literature; for example, [22],
[15] and [41]. These physical machines are used for hosting
the VMs of the two-tier RUBiS benchmark application. Each
physical machine, namely PM1 and PM2, hosts a VM run-
ning on Debian Jessie 8 Linux with Apache 2.4.10 web server
and MySQL 5.5.55 database respectively. Note that, this
infrastructure does not reflect the performance of modern
servers, but it adequately serves our purpose of studying the
performance of the controllers over RUBiS workload. For
each physical machine we created a couple of configurations
on the Xen Credit Scheduler overriding the default time-
slice and rate-limit values. The default values for the Credit
Scheduler are 30ms for the time-slice and 1ms for the rate-
limit. We set rate-limit unchanged at its default value and
time-slice at 10ms, since we determined experimentally that
reducing the time-slice value increased the performance of
the RUBiS application.

5.1 Benchmark Application - RUBiS
Rice University Bidding System (RUBiS), an auction site
benchmark, implements the core functionality of an auction
site (i.e., selling, browsing and bidding). It is modeled
after ebay.com and involves a client-browser emulator, a
web server, an application server and a database. It was
originally used to evaluate application design patterns and
application servers performance scalability. In our work,
RUBiS is hosted on a two-tier application model (web
server, database), while the Client Emulator generates the
workload for the RUBiS application. Several RUBiS imple-
mentations exist using Java Servlets, PHP, and Enterprise
Java Bean (EJB) technologies. It has provisions for selling,
browsing and bidding items, allowing for different sessions
for different types of users in the form of visitor, buyer
and seller to be implemented. RUBiS auction site defines
26 types of actions that can be performed through the

client’s Web browser. In our work, the clients were modeled
using the Client Emulator which is mentioned below. The
MySQL database contains 7 tables used to store bids, buy
now, categories, comments, items, regions and users. With
cloud computing increasingly attracting the attention of
researchers, RUBiS became the classic real-data benchmark
for resource management problems [12], [21]–[23], [41].

5.2 Client Emulator

The Client Emulator is hosted on a third physical machine
(PM3) which is dedicated for generating the RUBiS auction
site workload. A Java code is responsible for generating the
workload and creating user sessions to send HTTP requests
to the RUBiS auction site for the purpose of emulating the
client’s behavior. The original version of Client Emulator
provides visual statistics for throughput, response times
and other information for the sessions. However, in our
experiments we modified the original Client Emulator’s
source code in order to capture the response time of each
completed request and as a next step to calculate the mRT
each second or time interval. For more information about
the workload generation see [42].

5.3 Resource Allocation Control

All controllers presented in this work were added on the
base project code called ViResA2, first developed for the
synthetic data generation and the performance evaluation
of the controllers in [30] and later for the real-data perfor-
mance evaluation of the H∞ and MCC-KF SISO controllers
in [41]. The performance of the dynamic CPU allocation
is evaluated using the mRT, which is measured at the
Client-side of our prototype RUBiS server application, as
the performance metric. The goal of the controllers is to
adapt the CPU resource allocations of a single VM (SISO)
or group of VMs (MIMO) in exchange for saving resources
for other applications that are hosted on the same physical
machine. An overview of the SISO system’s architecture is
shown in the left plot of Fig. 4. On this setup, the web
server component and the database server component com-
municate with each other via HTTP requests, as shown in
Fig. 1. Each VM of this setup is controlled in parallel via the
SISO model while keeping them isolated from each other.
However, changes in the demand affect both components
in a relative way because each request follows a path from
client to web server to database server and back, as shown
in Fig. 1. Hence, the SISO system is not able to calculate the
correlation between the two components. The CPU usage
measurements are recorded every 1s using the Xen Hyper-
visor through Domain-0, which also hosts the controllers
for each component. In contrast, in the MIMO case shown
in the right plot of Fig. 4, a centralized controller running
on a remote machine (i.e., an external physical machine
(PM4) over the network), estimates the states for all the
components and adjusts the allocations, while it accounts
the inter-resource couplings which are calculated using the
covariance computation method mentioned in Section 3.5.

2. ViResA (Virtualized [server] Resource Allocation) is a base project
code hosted in Bitbucket (https://bitbucket.org) as a private Git repos-
itory. For download requests, please contact authors.

8

Fig. 4: System architecture (Left: SISO case, Right: MIMO case).

For both cases, the CPU usage measurements are recorded
every 1s using the Xen Hypervisor through Domain-0, and
the predicted allocations are updated every 5s.

6 PERFORMANCE EVALUATION

6.1 Evaluation Metrics

The following evaluation metrics are included for a more
rigorous assessment compared to the basic performance
metric (i.e., mRT).
• Completed Requests (CR): the total number of com-

pleted requests for all users during the full time duration
of each experiment.

• Average CPU usage: the average CPU usage of the web
server component (VM1) and database server component
(VM2) for the full time duration of each experiment.

• SLO Obedience (SLOO): the ratio of the requests with
mRT below the QoS threshold (e.g., mRT ≤ 0.5s) over
the total number of completed requests (CR).

• Average mRT (AmRT): the average mRT for the full
time duration of each experiment.

6.2 Sliding Window

As discussed in Section 3.5, the size of sliding window, T , is
chosen carefully such as to be adequately large for capturing
the variance of the random variable, but at the same time
small enough for tracking the change in variance due to
changes in the dynamics of the requests. For choosing the
sliding window size T , we run a number of experiments
for different values of T and observe the behavior of the
variance, while recording the CPU usage of the web server
component under a workload applied on RUBiS application.
The workload initiates with 500 clients sending requests.
At sampling point 20, another 500 clients are inserted to
the workload for almost another 30 samples (one sample
corresponds to 5s). Then, at sampling point 100 the number
of clients sending requests to RUBiS rise up from 500 to
1500 clients for 10 samples. Finally, at sampling point 150,
1200 clients send requests to RUBiS for 30 more samples.
The workload of this experiment provides a thorough CPU

usage variability thus making the dynamics of the system
detectable for different values of window sizes.

From the left plot of Fig. 5 it is easy to see that for
T = 1 the change in variance is too noisy and sensitive
to mild workload changes which can be observed by the
abruptness and the sharpness of the standard deviation. For
T = 10 (right plot of Fig. 5), we can see that the variance is
not following the variability of the workload and if it does
to a certain extent, this is delayed considerably. The best
response of the variance is given for T = 5 (center plot of
Fig. 5), in which case it is less sensitive to mild changes
and it captures large and abrupt variabilities. To reduce
the communication and computational overhead, for the
experiments in this work we choose the window size to be 5
sampling points (T = 5) as it is large enough to capture the
variance of the random variable and small enough to track
the change in variance due to the changes in the dynamics
of the requests.

6.3 Headroom

Let parameter c denote the desired CPU utilization to CPU
allocation ratio (i.e., c = 1/(1 + h) where h is the headroom
as used in and defined right after (4)). The mRT with respect
to parameter c for all the filters are shown in Fig. 6.In
this evaluation, we set a stable workload of 1000 clients
sending requests simultaneously to the RUBiS auction site.
Each measurement is derived from experiments where c
has values of 0.7, 0.8, 0.9 and 0.95 which are enough to
present the behavior of mRT as parameter c grows. With
c → 1 more resources are available for other applications
to run, but the mRT of requests is increasing which results
to decreasing performance of the RUBiS benchmark (This is
due to the headroom approaching 0 hence fewer resources
remain for RUBiS to use). Referring to Fig. 6, both SISO and
MIMO controllers can allocate resources without significant
increase of mRT when c < 0.8. Note the mRT grows expo-
nentially once c > 0.8 (however, mRT values are relatively
low due to conducting the current experiment with a static
number of clients). Note that: (i) a higher static number of
clients sending requests to RUBiS does not always lead to
a higher mRT value; (ii) workloads with relatively smooth

9

0 100 200

40

60

80

100

0

10

20

sample point

ut
ili

za
ti

on
(%

)

0 100 200

40

60

80

100

0

10

20

sample point
0 100 200

40

60

80

100

0

10

20

sample point

st
.d

ev
ia

ti
on

(σ
)

Fig. 5: Standard deviation (σ) of the web server CPU usage signal (black dotted line) for different window sizes (T) (left: T = 1,
center: T = 3, right: T = 10).

dynamics can use larger c parameter value with negligible
impact on mRT; (iii) abrupt workloads with high frequency
dynamics require smaller c parameter value to allow system
adaptation to abrupt CPU usage changes.

Hence, we select parameter c = 0.8 for future experi-
ments as the workload will be more dynamic and aggres-
sive. Such a large value of parameter c facilitates sufficient
resource availability for other applications to run on the
same physical machine.

0.7 0.8 0.9 0.95
0

0.05

0.1

0.15

m
R
T

(s
)

Kalman
H∞
MCC-KF

0.7 0.8 0.9 0.95
0

0.05

0.1

0.15

c parameter

m
R
T

(s
)

Kalman
H∞
MCC-KF

Fig. 6: mRT with respect to c parameter (Top: SISO controllers,
bottom: MIMO controllers). Note mRT increases as c tends to
unity.

6.4 Experiment Configuration

The experiments run in total for 250s, an interval adequate
enough to evaluate the system’s performance. Specifically,
two different workload patterns are generated for the exper-
iments, namely Workload 1 (WL1) and Workload 2 (WL2).
Both workloads are initiated with 700 clients sending re-
quests to the RUBiS application. At sampling points 10 and
30 another 500 clients are inserted to each workload for
about 15 samples. The RUBiS Client Emulator deployed
on PM3, sends HTTP requests to the RUBiS application
during the entire time of the experiments. The workload
type for RUBiS application is set to Browsing Mix (BR),
where each client waits for a think time 3 following a negative
exponential distribution with a mean of 7 seconds (WL1) or

3. Time between two sequential requests of an emulated client. Thor-
ough discussion and experiments are presented in [43]

a custom think time (WL2) which is included in the default
RUBiS workload files, in order to send the next request.

Each experiment that follows (see Fig. 8- 13) has the c
parameter set to 0.8. All CPU measurements for the utiliza-
tion and the allocations are exported from each component
through the Xen Hypervisor. The CPU usage measurements
are recorded every 1s and after the completion of one
sample (i.e., 5s) the mean value of the previous interval is
forwarded to the controllers to take action. Using this sam-
pling approach, the control action is applied every 5s in such
a way that the high frequency variations of the workload are
smoothed and better responses to workload increases are
achieved [44]. For the control schemes, the initial value of
the error covariance matrix, P0, the variance of the process
noise, W , and the variance of the measurement noise, V are
set to 10, 4, and 1 respectively. The values of the process
and measurement noises are updated on-line whenever the
interval k uses the sliding window approach, mentioned in
Section 3.5. The sliding window width T is set to 5 samples,
which correspond to 25s.

6.5 Parameter tuning

Both the H∞ and MCC-KF require parameter tuning, i.e.
θ and σ, respectively. The parameter values are selected
via experiments with the workload WL1 described in Sec-
tion 6.4. Fig. 7 presents the average mRT for the total
duration of each experiment with respect to θ and σ value
for H∞ and MCC-KF (SISO and MIMO models).

Fig. 7 (top histogram) illustrates the different average
mRT values when the H∞ controller tracks the CPU uti-
lization of each component. For the SISO case, there is a
small difference on the mRT for various θ values, however
for small values (i.e., 0.1, 0.3) the controller provides extra
allocated resources due to under/over estimated gain val-
ues. For 0.5 or 0.7 it tracks the CPU utilization accurately.
Thus, θ = 0.7 is chosen to maintain CPU utilization tracking
as accurate as possible. For the MIMO case, when θ = 0.1
the average mRT is relatively low (0.246s), while for θ being
0.3, 0.5 or 0.7, the average mRT increases due to higher gain
(this results to less accurate CPU usage tracking). Thus, to
keep CPU usage tracking using theH∞ filter non-aggressive
(for the experiments) θ = 0.1 is selected.

The bottom histogram of Fig. 7 presents the average
mRT for each experiment with respect to σ value for both
SISO and MIMO. For the SISO case, when σ equal to 1, 10,
100 and 1000, the average mRT is 0.165s, 0.204s, 0.228s and
0.243s, respectively, while for the MIMO case, the average
mRT is 0.171s, 0.155s, 0.256s, and 0.283s, respectively. It is
observed that for both cases and for an increasing value of

10

0.1 0.3 0.5 0.7
0

0.1

0.2

0.3 0.258
0.245 0.249 0.2450.246

0.281
0.258

0.27

theta (θ)

m
R
T

(s
)

SISO MIMO

1 10 100 1000
0

0.1

0.2

0.3

0.165

0.204
0.228

0.243

0.171
0.155

0.256
0.283

sigma (σ)

m
R
T

(s
)

SISO MIMO

Fig. 7: mRT with respect to tuning parameters (Top: θ for H∞,
and bottom: σ for MCC-KF).

σ, the average mRT also increases. This is due to the fact
that for low values of σ, the correntropy is dominated by
higher-order moments and the estimation does not converge
for our setup. According to (5), when (1 + h)x̂k+1|k exceeds
100%, the allocation will saturate at the upper bound (i.e.,
100%) and, hence, the mRT will remain low due to the
abundance of resources. For higher values of σ (e.g., σ = 100
or σ = 1000), the usage estimation converges to finite
values close to the actual usage. As a result the allocation is
maintained (through our allocation mechanism) at levels for
which the mRT lies within the SLO. Thus, σ = 100 seems a
good choice for the experiments.

6.6 SISO controllers
Kalman filters are the current state-of-the-art approach for
the CPU resource provisioning problem. Fig. 8(a), 8(b) show
CPU usages-allocations of both the web server and database
server components for the KF. Fig. 8(c) shows the mRT of
the RUBiS application requests over time. The KF predicts
and adjusts CPU allocations for a duration of 50 samples on
both components separately, which facilitates appropriate
CPU usage tracking. However, abrupt CPU changes leads
to high increase of mRT of the RUBiS application.

The H∞ SISO controllers are implemented on both RU-
BiS application components (see Section 5.3). As θ → 0
the H∞ gain approaches that of the Kalman gain. For our
workload profile and experimental testbed, θ = 0.7 for
the SISO controller and c = 0.8. Fig. 9(a) and 9(b) show
the CPU usages-allocations of both the web server and
database server components using the H∞ filter. Fig. 9(c)
presents the mRT of the RUBiS application requests over
time. In this experiment, the H∞ SISO filter predicts and
adjusts the CPU allocations for a duration of 50 samples
on both components separately. Evaluation is based on the
same workload presented in Section 6.4. Note that, the H∞
filter proposed in [29] was evaluated only via simulation
using synthetic data. Also, in [41] theH∞ filter was applied
only on the web server component while the database
component was statically fully allocated. Hence, different

to the aforementioned works, the H∞ filter presented here
is evaluated via a real testbed for the first time. Overall,
the H∞ SISO filter performs well during task of resource
allocation since it provides extra resources to the application
to maintain low mRT.

Fig. 10(a), 10(b) presents CPU usages-allocations for
both web and database servers for the MCC-KF filter, and
Fig. 10(c) shows the mRT of the RUBiS application requests.
As in the case of theH∞ test, the MCC-KF operates well un-
der sudden CPU usage changes and the mRT is low except
during periods of workload injection. During all other times,
the mRT stays low due to the remaining amount of CPU
resources being sufficient for serving a stable workload.

Controller Kalman H∞ MCC-KF Workload
Compl. requests 34044 34061 34152

WL1Avg. VM1 CPU% 62.8 57.6 63.1
Avg. VM2 CPU% 17.3 17.4 17.4
Avg. mRT (s) 0.260 0.224 0.246
SLO obedience 89.0% 90.0% 88.9%
Compl. requests 36020 36561 36498

WL2Avg. VM1 CPU% 64.1 64.8 65.4
Avg. VM2 CPU% 18.6 18.8 18.6
Avg. mRT (s) 0.908 0.789 0.792
SLO obedience 58.6% 59.6% 59.6%

TABLE 1: SISO control evaluation (workloads WL1, WL2).

Table 1 presents SISO controller evaluation. For both work-
loads (WL1 and WL2) the H∞ and the MCC-KF perform
well (the H∞ performing slightly better) and are superior
compared to the KF. For example, under WL1 the KF offers
an average mRT of 0.260s, while theH∞ filter and MCC-KF
filter offer average mRT of 0.224s and 0.246s, respectively
(similarly for WL2).

6.7 MIMO controllers

Although the Kalman MIMO controller was previously
evaluated in [22] and in [24], this work provides a though
comparison with the other two MIMO controllers. Fig. 11(a)
and 11(b) present CPU usages-allocations for both com-
ponents during Kalman MIMO controller prediction and
CPU resource allocation. Fig. 11(c) shows the RUBiS ap-
plication mRT using the KF. Fig. 11(a) and 11(b), at sam-
ple point 10, shows that the web server utilizations affect
directly the database utilizations showing the correlation
and inter-component resource couplings between the VMs.
An abrupt web server utilization change causes a direct
database utilization change, hence affecting mRT. Under
stable workload regions the KF optimally allocates resources
with unaffected mRT.

Fig. 12(a) and 12(b) present CPU usages-allocations for
both components when the H∞ MIMO is used. The H∞
MIMO controller runs on a remote physical machine in
order to predict and control the states of the system for
both components to capture the inter-resource couplings.
Fig. 12(c) shows RUBiS application mRT over time.

Fig. 13(a), 13(b), and 13(c) present results for the MCC-
KF MIMO controller experiment. Kernel size σ of the corren-
tropy criterion is set to 100 to provide sufficient weight in
the second and higher-order MCC-KF statistics. The MCC-
KF MIMO controller runs on a remote physical machine
in order to estimate the states and control the allocation of

11

0 10 20 30 40 50
0

20
40
60
80
100

sample point

ut
ili

za
ti

on
(%

)

usage

allocation

(a)

0 10 20 30 40 50
0
20
40
60
80

100

sample point

ut
ili

za
ti

on
(%

)

usage

allocation

(b)

0 10 20 30 40 50

0.5
1

1.5
2

2.5
3

sample point

m
R
T

(s
)

(c)

Fig. 8: Kalman - SISO filter. Fig. 8(a): CPU usage and allocation of the web server component. Fig. 8(b): CPU usage and allocation
of the database server component. Fig. 8(c): mRT with respect to time for RUBiS application.

0 10 20 30 40 50
0

20
40
60
80
100

sample point

ut
ili

za
ti

on
(%

)

usage

allocation

(a)

0 10 20 30 40 50
0
20
40
60
80

100

sample point

ut
ili

za
ti

on
(%

)

usage

allocation

(b)

0 10 20 30 40 50

0.5
1

1.5
2

2.5
3

sample point

m
R
T

(s
)

(c)

Fig. 9: H∞- SISO filter. Fig. 9(a): CPU usage and allocation of the web server component. Fig. 9(b): CPU usage and allocation of
the database server component. Fig. 9(c): mRT with respect to time for RUBiS application.

0 10 20 30 40 50
0

20
40
60
80
100

sample point

ut
ili

za
ti

on
(%

)

usage

allocation

(a)

0 10 20 30 40 50
0
20
40
60
80

100

sample point

ut
ili

za
ti

on
(%

)

usage

allocation

(b)

0 10 20 30 40 50

0.5
1

1.5
2

2.5
3

sample point

m
R
T

(s
)

(c)

Fig. 10: MCC-KF - SISO filter. Fig. 10(a): CPU usage and allocation of the web server component. Fig. 10(b): CPU usage and
allocation of the database server component. Fig. 10(c): mRT with respect to time for RUBiS application.

the system for both components (see Section 5.3). Fig. 13(c)
shows the MCC-KF MIMO controller achieved mRT.

Controller Kalman H∞ MCC-KF Workload
Cmpl. requests 34053 34402 34332

WL1Avg. VM1 CPU% 58.4 61.3 61.1
Avg. VM2 CPU% 17.6 18.0 17.8
Avg. mRT (s) 0.309 0.270 0.290
SLO obedience 87.2% 88.1% 88.1%
Compl. requests 36140 36523 36441

WL2Avg. VM1 CPU% 64.1 59.9 62.0
Avg. VM2 CPU% 18.4 18.5 18.8
Avg. mRT (s) 0.896 0.834 0.835
SLO obedience. 59.2% 61.7% 61.0%

TABLE 2: MIMO control evaluation (workloads WL1, WL2).

Table 2 assesses MIMO controllers under workloads WL1
and WL2. The trend is similar to that of SISO, in this context
the MCC-KF and H∞ filters offer better performance (the
H∞ being slightly better) than the KF. Note that the KF
cannot predict accurately the next state of the system in
abrupt workload changes giving the lowest SLO obedience
and highest average mRT. Referring to Fig. 14, SISO control
gives lower average mRT and higher SLO obedience. H∞

offers the best performance with the lowest average mRT
and highest SLO obedience. MCC-KF control follows with
a slightly higher average mRT. The KF offers the worst
performance with the highest average mRT and lowest total
SLO obedience.

Kalman H∞ MCC-KF
0

0.1

0.2

0.3

0.4

0.26
0.224

0.246

0.39

0.27
0.29

m
R
T

(s
)

SISO MIMO

Kalman H∞ MCC-KF

60

80

100
89 90 88.987.2 88.1 88.1

SL
O

ob
ed

ie
nc

e
(%

)

SISO MIMO

Fig. 14: Top: mRT; bottom: SLO obedience.

12

0 10 20 30 40 50
0

20
40
60
80
100

sample point

ut
ili

za
ti

on
(%

)

usage

allocation

(a)

0 10 20 30 40 50
0
20
40
60
80

100

sample point

ut
ili

za
ti

on
(%

)

usage

allocation

(b)

0 10 20 30 40 50

0.5
1

1.5
2

2.5
3

sample point

m
R
T

(s
)

(c)

Fig. 11: Kalman - MIMO filter. Fig. 11(a): CPU usage and allocation of the web server component. Fig. 11(b): CPU usage and
allocation of the database server component. Fig. 11(c): mRT with respect to time for RUBiS application.

0 10 20 30 40 50
0
20
40
60
80
100

sample point

ut
ili

za
ti

on
(%

)

usage

allocation

(a)

0 10 20 30 40 50
0
20
40
60
80

100

sample point

ut
ili

za
ti

on
(%

)

usage

allocation

(b)

0 10 20 30 40 50

0.5
1

1.5
2

2.5
3

sample point

m
R
T

(s
)

(c)

Fig. 12: H∞- MIMO filter. Fig. 12(a): CPU usage and allocation of the web server component. Fig. 12(b): CPU usage and allocation
of the database server component. Fig. 12(c): mRT with respect to time for RUBiS application.

0 10 20 30 40 50
0

20
40
60
80
100

sample point

ut
ili

za
ti

on
(%

)

usage

allocation

(a)

0 10 20 30 40 50
0
20
40
60
80

100

sample point

ut
ili

za
ti

on
(%

)

usage

allocation

(b)

0 10 20 30 40 50

0.5
1

1.5
2

2.5
3

sample point

m
R
T

(s
)

(c)

Fig. 13: MCC-KF - MIMO filter. Fig. 13(a): CPU usage and allocation of the web server component. Fig. 13(b): CPU usage and
allocation of the database server component. Fig. 13(c): mRT with respect to time for RUBiS application.

6.8 Statistical Analysis

Here the Student’s t-test is used to investigate performance
improvement of the proposed solutions compared to the
current state-of-the-art (KF). In this work, the sample sets
contain average mRT values captured during abrupt work-
load changes obtained from experiments using similar con-
figuration as explained in Section 6.4 for the MIMO case.

Group Parameter Value

Kalman filter - H∞
t-statistic (t) 5.8101
degrees of freedom (df) 98
p-value (p) 7.7669×10−8

Kalman filter - MCC-KF
t-statistic (t) 4.3067
degrees of freedom (df) 98
p-value (p) 3.9065×10−5

H∞- MCC-KF
t-statistic (t) -1.7481
degrees of freedom (df) 98
p-value (p) 0.0836

TABLE 3: Student’s t-test results.

Frequent abrupt workload changes were employed to
build enough samples for analysis (50 samples). The sample
sets (i.e., X1, X2 and X3 for the KF, the H∞ and the MCC-
KF respectively), are independent samples from normal

distributions as each experiment does not affect the others.
To assess significant differences between two samples, we
firstly define two hypotheses: (a) Null Hypothesis (H0)
- no significant difference between the two samples; (b)
Alternative Hypothesis (Ha) - significant difference between
the two samples. The degrees of freedom, t-statistic, and the
p-value follow in Table 3.

Kalman (X1) H∞ (X2) MCC-KF (X3)
3

4

5

m
R
T

(s
)

Fig. 15: Statistical results. Means: µX1 = 4.346, µX2 = 3.810,
µX3 = 3.954; standard deviation: σX1 = 0.501, σX2 = 0.416,
σX3 = 0.409.

A significance level of α = 0.05 is assumed, and the null
hypothesis (H0) rejected for both groups: KF-H∞, and KF-

13

(MCC-KF) due to p < α. However, the null hypothesis is
not rejected for group H∞-(MCC-KF) since p > α. Thus,
significant difference between the two proposed filters and
the KF applies, while for the H∞-(MCC-KF) group does
not apply. From Fig. 15 - which shows mean and standard
deviation of mRT samples - and from the t-test results, one
concludes that the H∞ and MCC-KF perform significantly
better (i.e., lower average mRT during abrupt workload
changes) compared to the KF.

7 REMARKS

In addition, the following remarks are highlighted:
1) Robust state estimation performs well in predicting

abrupt workload changes even when the process noise
is non-Gaussian which is usually the case in practical
implementations (cloud applications demand).

2) SISO controllers consider no inter-component resource
couplings due to their independent action on each phys-
ical machine. Also, no delays are experienced as no mes-
sage exchanging with other physical machines applies.

3) SISO control enables each cloud application component
to host a different controller based on workload variation
(e.g. KF for smooth CPU usage components, H∞ or
MCC-KF for abrupt ones).

4) MIMO controllers encompass inter-component resource
couplings via the covariance calculation process.

5) MIMO controllers are installed on remote servers which
may experience network delays that can hinder appli-
cation performance. However, as modern cloud applica-
tions are hosted on multi-tier applications, MIMO control
is preferable to centrally estimate the allocations of each
component while considering resource couplings.

8 CONCLUSIONS AND FUTURE DIRECTIONS

This paper presented a rigorous study of SISO and MIMO
models comprising adaptive robust controllers for the CPU
resource allocation problem of VMs and satisfying certain
QoS requirements. The controllers aimed to adjust the CPU
resources based on observations of previous CPU utiliza-
tions. Tests were performed on a two-tier cloud application
experimental platform. The proposed controllers offer im-
proved performance under abrupt and random workload
changes compared to the current state-of-the-art. Results
show that (a) SISO controllers perform better than MIMO;
(b) H∞ and MCC-KF offer improved performance than the
KF for abrupt workloads; (c)H∞ and MCC-KF have similar
performance for both SISO and MIMO models. The pro-
posed robust controllers successfully reduce average mRT
while keeping SLO violations low.

The system in this work addresses only CPU capacity,
and resource needs are coupled across multiple dimensions
(i.e., compute, storage, and network bandwidth). Hence,
workload consolidation is required while catering for re-
source coupling in multi-tier virtualized applications to pro-
vide timely allocations for abrupt workload changes. On-
going research investigates system identification/learning
to extract coupling information between resource needs for
workload consolidation while meeting SLOs.

REFERENCES

[1] E. R. Masanet, R. E. Brown, A. Shehabi, J. G. Koomey, and
B. Nordman, “Estimating the Energy Use and Efficiency Potential
of U.S. Data Centers,” Proc. of the IEEE, vol. 99, no. 8, pp. 1440–
1453, Aug 2011.

[2] S. Bhowmik, Cloud Computing. Cambridge University Press, 2017.
[3] T. H. Nguyen, M. Di Francesco, and A. Yla-Jaaski, “Virtual ma-

chine consolidation with multiple usage prediction for energy-
efficient cloud data centers,” IEEE Trans. on Services Comp., 2017.

[4] A. Ullah, J. Li, Y. Shen, and A. Hussain, “A control theoretical
view of cloud elasticity: taxonomy, survey and challenges,” Cluster
Computing, May 2018.

[5] J. Zhang, H. Huang, and X. Wang, “Resource provision algorithms
in cloud computing: A survey,” Journal of Network and Computer
Applications, vol. 64, pp. 23–42, 2016.

[6] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Elasticity in
cloud computing: state of the art and research challenges,” IEEE
Trans. on Services Computing, vol. 11, no. 2, pp. 430–447, 2018.

[7] S. Shevtsov, M. Berekmeri, D. Weyns, and M. Maggio, “Control-
Theoretical Software Adaptation: A Systematic Literature Re-
view,” IEEE Transactions on Software Engineering, vol. 44, no. 8, pp.
784–810, Aug 2018.

[8] A. Filieri, M. Maggio, K. Angelopoulos, N. D’Ippolito,
I. Gerostathopoulos, A. B. Hempel, H. Hoffmann, P. Jamshidi,
E. Kalyvianaki, C. Klein, F. Krikava, S. Misailovic, A. V. Pa-
padopoulos, S. Ray, A. M. Sharifloo, S. Shevtsov, M. Ujma, and
T. Vogel, “Software engineering meets control theory,” in Proc. of
the Int’l Symp. on Softw. Eng. for Adaptive and Self-Managing Syst.,
ser. SEAMS ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 71–82.

[9] A. Filieri, M. Maggio, K. Angelopoulos, N. D’ippolito,
I. Gerostathopoulos, A. B. Hempel, H. Hoffmann, P. Jamshidi,
E. Kalyvianaki, C. Klein, F. Krikava, S. Misailovic, A. V. Pa-
padopoulos, S. Ray, A. M. Sharifloo, S. Shevtsov, M. Ujma, and
T. Vogel, “Control strategies for self-adaptive software systems,”
ACM Trans. Autonom. Adapt. Syst., vol. 11, no. 4, pp. 24:1–24:31,
Feb. 2017.

[10] X. Zhu, Z. Wang, and S. Singhal, “Utility-Driven Workload Man-
agement using Nested Control Design,” in Proc. of the American
Control Conf. (ACC), 2006, pp. 6033–6038.

[11] Z. Wang, X. Liu, A. Zhang, C. Stewart, X. Zhu, T. Kelly, and
S. Singhal, “AutoParam: Automated Control of Application-Level
Performance in Virtualized Server Environments,” in Proc. of the
IEEE Int’l Workshop on Feedback Control Implementation and Design
in Computing Systems and Networks (FeBID), 2007.

[12] P. Padala, K. Shin, X. Zhu, M. Uysal, Z. Wang, S. Singhal, A. Mer-
chant, and K. Salem, “Adaptive Control of Virtualized Resources
in Utility Computing Environments,” in Proc. of the Europ. Conf. on
Computer Syst. (EuroSys), 2007, pp. 289–302.

[13] Z. Wang, X. Zhu, and S. Singhal, “Utilization and SLO-Based
Control for Dynamic Sizing of Resource Partitions,” in Proc. of
the IFIP/IEEE Int’l Workshop on Distributed Systems: Operations and
Management (DSOM), October 2005, pp. 133–144.

[14] M. Maggio, H. Hoffmann, M. D. Santambrogio, A. Agarwal, and
A. Leva, “Controlling software applications via resource allocation
within the heartbeats framework,” in 49th IEEE Conf. on Decision
and Control (CDC). IEEE, 2010, pp. 3736–3741.

[15] Q. Zhu and G. Agrawal, “Resource provisioning with budget con-
straints for adaptive applications in cloud environments,” IEEE
Trans. on Services Computing, vol. 4, no. 5, pp. 497–511, 2012.

[16] L. Baresi, S. Guinea, A. Leva, and G. Quattrocchi, “A discrete-
time feedback controller for containerized cloud applications,”
in Proceedings of the 2016 24th ACM SIGSOFT Int’l Symposium on
Foundations of Software Engineering. ACM, 2016, pp. 217–228.

[17] E. B. Lakew, C. Klein, F. Hernandez-Rodriguez, and E. Elmroth,
“Towards faster response time models for vertical elasticity,” in
2014 IEEE/ACM 7th Int’l Conf. on Utility and Cloud Computing.
IEEE, 2014, pp. 560–565.

[18] S. Spinner, S. Kounev, X. Zhu, L. Lu, M. Uysal, A. Holler, and
R. Griffith, “Runtime vertical scaling of virtualized applications
via online model estimation,” in 2014 IEEE 8th Int’l Conf. on Self-
Adaptive and Self-Organizing Systems. IEEE, 2014, pp. 157–166.

[19] L. Yazdanov and C. Fetzer, “Vertical scaling for prioritized vms
provisioning,” in 2012 Second Int’l Conf. on Cloud and Green Com-
puting. IEEE, 2012, pp. 118–125.

14

[20] P. A. Dinda and D. R. O’Hallaron, “Host load prediction using
linear models,” Cluster Computing, vol. 3, no. 4, pp. 265–280, 2000.

[21] E. Kalyvianaki, T. Charalambous, and S. Hand, “Resource Provi-
sioning for Multi-Tier Virtualized Server Applications,” Computer
Measurement Group (CMG) Journal, vol. 126, pp. 6–17, 2010.

[22] E. Kalyvianaki, T. Charalambous, and S. Hand, “Self-Adaptive
and Self-Configured CPU Resource Provisioning for Virtualized
Servers using Kalman Filters,” in Proc. of the 6th Int’l Conf. on
Autonom. Comput. (ICAC). NY, USA: ACM, 2009, pp. 117–126.

[23] P. Padala, K.-Y. Hou, K. G. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, and A. Merchant, “Automated Control of Multiple
Virtualized Resources,” in Proc. of the 4th ACM Europ. Conf. on
Comp. Syst. (EuroSys ’09). NY, USA: ACM, 2009, pp. 13–26.

[24] E. Kalyvianaki, T. Charalambous, and S. Hand, “Adaptive re-
source provisioning for virtualized servers using Kalman filters,”
ACM Trans. on Autonom. and Adapt. Syst., vol. 9, no. 2, pp. 10:1–
10:35, July 2014.

[25] E. B. Lakew, A. V. Papadopoulos, M. Maggio, C. Klein, and E. Elm-
roth, “Kpi-agnostic control for fine-grained vertical elasticity,” in
Proceedings of the 17th IEEE/ACM Int’l Symposium on Cluster, Cloud
and Grid Computing. IEEE Press, 2017, pp. 589–598.

[26] D. C. Marinescu, Cloud Computing: Theory and Practice, 1st ed. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2013.

[27] S. Shevtsov, D. Weyns, and M. Maggio, Self-Adaptation of Software
Using Automatically Generated Control-Theoretical Solutions. Singa-
pore: Springer Singapore, 2019, pp. 35–55.

[28] L. Kleinrock, Queueing Systems, Volume 1, Theory. Wiley-
Interscience, 1975.

[29] T. Charalambous and E. Kalyviannaki, “A min-max framework
for CPU resource provisioning in virtualized servers using H∞
Filters,” in IEEE Conf. on Decision and Control (CDC), Dec. 2010, pp.
3778–3783.

[30] K. M. Deliparaschos, T. Charalambous, E. Kalyvianaki, and
C. Makarounas, “On the use of fuzzy logic controllers to comply
with virtualized application demands in the cloud,” in European
Control Conf. (ECC), June 2016, pp. 649–654.

[31] P. Xiong, Z. Wang, S. Malkowski, Q. Wang, D. Jayasinghe, and
C. Pu, “Economical and robust provisioning of n-tier cloud work-
loads: A multi-level control approach,” in 2011 31st Int’l Conf. on
Distributed Computing Systems. IEEE, 2011, pp. 571–580.

[32] R. N. Banavar, “A game theoretic approach to linear dynamic
estimation,” Ph.D. dissertation, Texas Univ., Austin, July 1992.

[33] D. Simon, Optimal State Estimation: Kalman, H-infinity, and Nonlin-
ear Approaches. John Wiley & Sons, 2006.

[34] H. Poveda, E. Grivef, G. Ferré, and N. Christov, “Kalman vs H∞
filter in terms of convergence and accuracy: Application to carrier
frequency offset estimation,” in Proc. of the 20th European Signal
Processing Conf. (EUSIPCO), Aug 2012, pp. 121–125.

[35] B. Chen, X. Liu, H. Zhao, and J. C. Principe, “Maximum corren-
tropy Kalman filter,” Automatica, vol. 76, pp. 70–77, 2017.

[36] R. Izanloo, S. A. Fakoorian, H. S. Yazdi, and D. Simon, “Kalman
filtering based on the maximum correntropy criterion in the pres-
ence of non-Gaussian noise,” in Annual Conf. on Information Science
and Systems (CISS), Mar. 2016, pp. 500–505.

[37] W. Liu, P. P. Pokharel, and J. C. Principe, “Correntropy: A localized
similarity measure,” in Neural Networks, 2006. IJCNN’06. Int’l Joint
Conf. on. IEEE, 2006, pp. 4919–4924.

[38] W. Liu, P. P. Pokharel, and J. C. Príncipe, “Correntropy: Properties
and Applications in Non-Gaussian Signal Processing,” IEEE Trans.
on Signal Processing, vol. 55, no. 11, Nov 2007.

[39] R. He, W. S. Zheng, and B. G. Hu, “Maximum Correntropy
Criterion for Robust Face Recognition,” IEEE Trans. on Pattern
Anal. and Machine Intell., vol. 33, no. 8, pp. 1561–1576, Aug. 2011.

[40] A. Singh and J. C. Principe, “Using Correntropy As a Cost Func-
tion in Linear Adaptive Filters,” in Proc. of the 2009 Int’l Joint Conf.
on Neural Networks, ser. IJCNN’09. Piscataway, NJ, USA: IEEE
Press, 2009, pp. 1699–1704.

[41] E. Makridis, K. Deliparaschos, E. Kalyvianaki, and T. Charalam-
bous, “Dynamic CPU Resource Provisioning in Virtualized Servers
using Maximum Correntropy Criterion Kalman Filters,” in IEEE
Int’l Conf. on Emerg. Tech. and Factory Autom. (ETFA), Sept. 2017.

[42] C. Amza, A. Chandra, A. L. Cox, S. Elnikety, R. Gil, K. Rajamani,
W. Zwaenepoel, E. Cecchet, and J. Marguerite, “Specification and
Implementation of Dynamic Web Site Benchmarks,” in Proc. of the
5th Ann. IEEE Int’l Workshop on Workload Charact. (WWC-5), 2002,
pp. 3–13.

[43] A. Bahga and V. K. Madisetti, “Synthetic workload generation for
cloud computing applications,” Journal of Software Engineering and
Applications, vol. 4, no. 07, p. 396, 2011.

[44] E. Kalyvianaki, “Resource provisioning for virtualized server ap-
plications,” Univ. of Cambridge, Computer Lab., Tech. Rep., 2009.

Evagoras Makridis received his BSc degree
in Electrical Engineering from Cyprus Univ. of
Technology, Cyprus. Since September 2018, he
is a MSc student in the Autonomous Systems
program provided by EIT Digital Master School
at the Dept. of Electr. Eng. and Autom., School
of Electr. Eng., Aalto Univ.

His research interests focus on cloud control,
autonomous and controlled systems.

Kyriakos Deliparaschos, BEng Electron. Eng.
from De Montfort Univ. (DMU), MSc Mechatron-
ics from DMU and Nat. Tech. Univ. of Athens
(NTUA), PhD from NTUA. He is special teaching
staff at EECEI Dept., Cyprus Univ. of Technol.
(CUT), and also Res. Assoc. (RA) at NTUA’s IRA
Lab. He was Postdoc. Res. Fellow with CTVR
group, Trinity College Dublin and RA with the
RCDS Lab., MEMSE Dept. of CUT. His research
interests are in high performance computing,
embedded and cyber-physical systems, HW ac-

celerators, mobile robots and robot-assisted surgery, cloud computing
and fault tolerance control.

Evangelia Kalyvianaki is a Senior Lecturer
(Assistant/Associate Professor) in the Dept. of
Comp. Sci. and Tech. at Univ. of Cambridge and
member of the SRG/netos group. Before, she
was a Lecturer at the Dept. of Comp. Sci. at
City Univ. London and a Postdoctoral researcher
in the Dept. of Comp., Imperial College Lon-
don. She obtained her PhD from the Comp.
Lab. (SRG/netos group) in Cambridge Univ. She
holds an MSc and a BSc degrees from the
Comp. Sci. Dept. of the Univ. of Crete, Greece.

Her research interests span the areas of cloud computing, big data
processing, autonomic computing, and systems research in general.

Argyrios Zolotas (SM’11), Univ. of Leeds
(B.Eng Hons Class I), Loughborough Univ.
(PhD), Univ. of Leicester (MSc, Distinction). He
is Reader at Cranfield Univ., he was with Univ.
of Lincoln, Univ. of Sussex, Loughborough Univ.,
and Imperial College London. He was visiting
Prof. at Grenoble INP in May-June 2018. His
research interests are in advanced control, sys-
tems autonomy, digital engineering.

Themistoklis Charalambous received his BA
and MEng in Electrical and Information Sciences
from the Univ. of Cambridge. He completed his
PhD studies in the Control Lab., Univ. of Cam-
bridge. He worked as Research Associate at
Imperial College London, as a Visiting Lecturer
at the Dept. of Electr. and Comp. Eng., Univ.
of Cyprus, as a Postdoctoral Researcher at the
Dept. of Autom. Control of the School of Electr.
Eng. at the Royal Institute of Technology (KTH)
and the Dept. of Electr. Eng. at Chalmers Univ.

of Tech. Since 2017, he is an Assistant Professor at the School of Electr.
Eng., Aalto Univ. His primary research targets the design and analysis of
networked control systems that are stable, scalable and energy efficient.

	Introduction
	Related Work
	Motivation and Contributions
	Organization

	Server application performance
	System model
	Notation
	SISO System
	MIMO System
	CPU Allocation
	Computation of Variances/Covariances

	Controller design
	H Filter
	Maximum Correntropy Criterion Kalman Filter
	Resource Provisioning Algorithm

	Experimental Setup
	Benchmark Application - RUBiS
	Client Emulator
	Resource Allocation Control

	Performance Evaluation
	Evaluation Metrics
	Sliding Window
	Headroom
	Experiment Configuration
	Parameter tuning
	SISO controllers
	MIMO controllers
	Statistical Analysis

	Remarks
	Conclusions and Future Directions
	References
	Biographies
	Evagoras Makridis
	Kyriakos Deliparaschos,
	Evangelia Kalyvianaki
	Argyrios Zolotas
	Themistoklis Charalambous

