3,863 research outputs found

    An Interpretable Deep Hierarchical Semantic Convolutional Neural Network for Lung Nodule Malignancy Classification

    Full text link
    While deep learning methods are increasingly being applied to tasks such as computer-aided diagnosis, these models are difficult to interpret, do not incorporate prior domain knowledge, and are often considered as a "black-box." The lack of model interpretability hinders them from being fully understood by target users such as radiologists. In this paper, we present a novel interpretable deep hierarchical semantic convolutional neural network (HSCNN) to predict whether a given pulmonary nodule observed on a computed tomography (CT) scan is malignant. Our network provides two levels of output: 1) low-level radiologist semantic features, and 2) a high-level malignancy prediction score. The low-level semantic outputs quantify the diagnostic features used by radiologists and serve to explain how the model interprets the images in an expert-driven manner. The information from these low-level tasks, along with the representations learned by the convolutional layers, are then combined and used to infer the high-level task of predicting nodule malignancy. This unified architecture is trained by optimizing a global loss function including both low- and high-level tasks, thereby learning all the parameters within a joint framework. Our experimental results using the Lung Image Database Consortium (LIDC) show that the proposed method not only produces interpretable lung cancer predictions but also achieves significantly better results compared to common 3D CNN approaches

    Double-Weighting for Covariate Shift Adaptation

    Full text link
    Supervised learning is often affected by a covariate shift in which the marginal distributions of instances (covariates xx) of training and testing samples ptr(x)\mathrm{p}_\text{tr}(x) and pte(x)\mathrm{p}_\text{te}(x) are different but the label conditionals coincide. Existing approaches address such covariate shift by either using the ratio pte(x)/ptr(x)\mathrm{p}_\text{te}(x)/\mathrm{p}_\text{tr}(x) to weight training samples (reweighted methods) or using the ratio ptr(x)/pte(x)\mathrm{p}_\text{tr}(x)/\mathrm{p}_\text{te}(x) to weight testing samples (robust methods). However, the performance of such approaches can be poor under support mismatch or when the above ratios take large values. We propose a minimax risk classification (MRC) approach for covariate shift adaptation that avoids such limitations by weighting both training and testing samples. In addition, we develop effective techniques that obtain both sets of weights and generalize the conventional kernel mean matching method. We provide novel generalization bounds for our method that show a significant increase in the effective sample size compared with reweighted methods. The proposed method also achieves enhanced classification performance in both synthetic and empirical experiments

    Adversarial Discriminative Domain Adaptation

    Full text link
    Adversarial learning methods are a promising approach to training robust deep networks, and can generate complex samples across diverse domains. They also can improve recognition despite the presence of domain shift or dataset bias: several adversarial approaches to unsupervised domain adaptation have recently been introduced, which reduce the difference between the training and test domain distributions and thus improve generalization performance. Prior generative approaches show compelling visualizations, but are not optimal on discriminative tasks and can be limited to smaller shifts. Prior discriminative approaches could handle larger domain shifts, but imposed tied weights on the model and did not exploit a GAN-based loss. We first outline a novel generalized framework for adversarial adaptation, which subsumes recent state-of-the-art approaches as special cases, and we use this generalized view to better relate the prior approaches. We propose a previously unexplored instance of our general framework which combines discriminative modeling, untied weight sharing, and a GAN loss, which we call Adversarial Discriminative Domain Adaptation (ADDA). We show that ADDA is more effective yet considerably simpler than competing domain-adversarial methods, and demonstrate the promise of our approach by exceeding state-of-the-art unsupervised adaptation results on standard cross-domain digit classification tasks and a new more difficult cross-modality object classification task

    Domain Adaptation and Privileged Information for Visual Recognition

    Get PDF
    The automatic identification of entities like objects, people or their actions in visual data, such as images or video, has significantly improved, and is now being deployed in access control, social media, online retail, autonomous vehicles, and several other applications. This visual recognition capability leverages supervised learning techniques, which require large amounts of labeled training data from the target distribution representative of the particular task at hand. However, collecting such training data might be expensive, require too much time, or even be impossible. In this work, we introduce several novel approaches aiming at compensating for the lack of target training data. Rather than leveraging prior knowledge for building task-specific models, typically easier to train, we focus on developing general visual recognition techniques, where the notion of prior knowledge is better identified by additional information, available during training. Depending on the nature of such information, the learning problem may turn into domain adaptation (DA), domain generalization (DG), leaning using privileged information (LUPI), or domain adaptation with privileged information (DAPI).;When some target data samples are available and additional information in the form of labeled data from a different source is also available, the learning problem becomes domain adaptation. Unlike previous DA work, we introduce two novel approaches for the few-shot learning scenario, which require only very few labeled target samples, and even one can be very effective. The first method exploits a Siamese deep neural network architecture for learning an embedding where visual categories from the source and target distributions are semantically aligned and yet maximally separated. The second approach instead, extends adversarial learning to simultaneously maximize the confusion between source and target domains while achieving semantic alignment.;In complete absence of target data, several cheaply available source datasets related to the target distribution can be leveraged as additional information for learning a task. This is the domain generalization setting. We introduce the first deep learning approach to address the DG problem, by extending a Siamese network architecture for learning a representation of visual categories that is invariant with respect to the sources, while imposing semantic alignment and class separation to maximize generalization performance on unseen target domains.;There are situations in which target data for training might come equipped with additional information that can be modeled as an auxiliary view of the data, and that unfortunately is not available during testing. This is the LUPI scenario. We introduce a novel framework based on the information bottleneck that leverages the auxiliary view to improve the performance of visual classifiers. We do so by introducing a formulation that is general, in the sense that can be used with any visual classifier.;Finally, when the available target data is unlabeled, and there is closely related labeled source data, which is also equipped with an auxiliary view as additional information, we pose the question of how to leverage the source data views to train visual classifiers for unseen target data. This is the DAPI scenario. We extend the LUPI framework based on the information bottleneck to learn visual classifiers in DAPI settings and show that privileged information can be leveraged to improve the learning on new domains. Also, the novel DAPI framework is general and can be used with any visual classifier.;Every use of auxiliary information has been validated extensively using publicly available benchmark datasets, and several new state-of-the-art accuracy performance values have been set. Examples of application domains include visual object recognition from RGB images and from depth data, handwritten digit recognition, and gesture recognition from video

    Robust Regression for Safe Exploration in Control

    Get PDF
    We study the problem of safe learning and exploration in sequential control problems. The goal is to safely collect data samples from an operating environment to learn an optimal controller. A central challenge in this setting is how to quantify uncertainty in order to choose provably-safe actions that allow us to collect useful data and reduce uncertainty, thereby achieving both improved safety and optimality. To address this challenge, we present a deep robust regression model that is trained to directly predict the uncertainty bounds for safe exploration. We then show how to integrate our robust regression approach with model-based control methods by learning a dynamic model with robustness bounds. We derive generalization bounds under domain shifts for learning and connect them with safety and stability bounds in control. We demonstrate empirically that our robust regression approach can outperform conventional Gaussian process (GP) based safe exploration in settings where it is difficult to specify a good GP prior
    • …
    corecore