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Abstract

Domain Adaptation and Privileged Information for Visual Recognition

Saeid Motiian

The automatic identification of entities like objects, people or their actions in visual data, such
as images or video, has significantly improved, and is now being deployed in access control, social
media, online retail, autonomous vehicles, and several other applications. This visual recognition
capability leverages supervised learning techniques, which require large amounts of labeled training
data from the target distribution representative of the particular task at hand. However, collecting
such training data might be expensive, require too much time, or even be impossible. In this
work, we introduce several novel approaches aiming at compensating for the lack of target training
data. Rather than leveraging prior knowledge for building task-specific models, typically easier
to train, we focus on developing general visual recognition techniques, where the notion of prior
knowledge is better identified by additional information, available during training. Depending
on the nature of such information, the learning problem may turn into domain adaptation (DA),
domain generalization (DG), leaning using privileged information (LUPI), or domain adaptation
with privileged information (DAPI).

When some target data samples are available and additional information in the form of labeled
data from a different source is also available, the learning problem becomes domain adaptation.
Unlike previous DA work, we introduce two novel approaches for the few-shot learning scenario,
which require only very few labeled target samples, and even one can be very effective. The first
method exploits a Siamese deep neural network architecture for learning an embedding where visual
categories from the source and target distributions are semantically aligned and yet maximally
separated. The second approach instead, extends adversarial learning to simultaneously maximize
the confusion between source and target domains while achieving semantic alignment.

In complete absence of target data, several cheaply available source datasets related to the target
distribution can be leveraged as additional information for learning a task. This is the domain
generalization setting. We introduce the first deep learning approach to address the DG problem,
by extending a Siamese network architecture for learning a representation of visual categories that
is invariant with respect to the sources, while imposing semantic alignment and class separation to
maximize generalization performance on unseen target domains.

There are situations in which target data for training might come equipped with additional
information that can be modeled as an auxiliary view of the data, and that unfortunately is not
available during testing. This is the LUPI scenario. We introduce a novel framework based on
the information bottleneck that leverages the auxiliary view to improve the performance of visual
classifiers. We do so by introducing a formulation that is general, in the sense that can be used
with any visual classifier.

Finally, when the available target data is unlabeled, and there is closely related labeled source
data, which is also equipped with an auxiliary view as additional information, we pose the question
of how to leverage the source data views to train visual classifiers for unseen target data. This is
the DAPI scenario. We extend the LUPI framework based on the information bottleneck to learn
visual classifiers in DAPI settings and show that privileged information can be leveraged to improve
the learning on new domains. Also, the novel DAPI framework is general and can be used with
any visual classifier.



Every use of auxiliary information has been validated extensively using publicly available bench-
mark datasets, and several new state-of-the-art accuracy performance values have been set. Ex-
amples of application domains include visual object recognition from RGB images and from depth
data, handwritten digit recognition, and gesture recognition from video.
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Chapter 1

Introduction

1.1 Problem Definition

In the past few years, computer vision technology has reached the attention of the masses

because of the widespread use of different cameras, from cellphone to surveillance cameras to more

advanced imaging sensors. Computer vision deals with acquiring, processing, and understanding

images in order to solve different tasks. Computer vision has a wide range of applications including

video gaming [16], in the food industry [17], robotics [18, 19, 20], biomedical [21, 22], and many

more [23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41].

This dissertation focuses on the visual recognition task. Visual recognition analyses images/videos

and provides insights into their visual content. Extensive amount of work has been done in the

past to develop robust classifiers that can learn from data how to perform a visual recognition

task, from shallow models [42, 43, 44] to deep models [45, 46, 47]. The typical approach requiers

collecting enough training samples and their corresponding labels from the target distribution (the

one that test samples come from). If we can collect such training pairs, we can obtain very good

performance even for very hard tasks (e.g., 1000-class classification task [48]). However, collecting

such training pairs might be expensive, impossible, or require too much time. On the other hand,

there might be additional information that either is already available given the task at hand (prior

knowledge) or could be cheaply collected to compensate for not having enough training data. For

instance, in digit classification, if an image is slightly translated or rotated it still represents the

same digit. This prior knowledge indicates that the visual classifier should be invariant to transla-
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tions and rotations [49]. [49] reviewed several works using prior knowledge for SVM and we refer

the interested reader to [50, 51] for using prior knowledge in deep convolutional networks.

In this study, we focus on different types of additional information that can be collected and

used in training. Depending on the nature of such information, the learning problem may turn into

several groups:

• Additional information of the target distribution: Supervised learning, is the machine

learning task of learning a model from labeled training data, and is used for visual recogni-

tion with promising results [48, 46]. These approaches rely on a fundumental assumption:

training (source) data is made of independent identiacal distributed (i.i.d.) samples from the

same distribution as the testing (target) data. However, this is an oversimplified scenario

because most of the time there is a covariate shift [52] (see Figure 1.1) between the source

domain distribution and the target domain distribution. Consider a task where training

data and testing data come from slightly different domains (i.e. distributions). In this case

plain supervised methods would be suboptimal. The issue could be addressed by collecting

additional information about the testing/target distribution such as: (1) some unlabeled or

very few labeled samples from the target distribution, or (2) more datasets which are closely

related to the target distribution.

In the first case, we could use the available source dataset together with the given target

samples to train a model to be robust on the target distribution. This technique is called

domain adaptation (DA) [53] in the literature. In the second case, the technique would be

to use the available source datasets to train a model with good generalization properties on

an unknown target domain, which is called domain generalization (DG) [54].

• Additional information of the source distribution: Sometimes collecting more target

data does not necessarily improve the generalization ability of computer vision models [55].

On the other hand, it may be possible to collect some additional information about the avail-

able source dataset such as attributes or depth data which will be discussed in Section 1.2.3.

In the literature, leveraging this additional information is called learning using privileged

information (LUPI) [56]. Since privileged/extra information is only available in training,

this technique is different from multi-view learning [57, 58] as we will discuss later.
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• Additional information of both source and target distributions: This can be seen

as the combination of DA and LUPI, when both target samples and privileged information

is available in training. We call this domain adaptation with privileged information

(DAPI) [59].

1.2 Motivation and Challenges

In this dissertation, we are looking for learning data representations in an embedding space to

address the problems outlined in Section 1.1, and improve the performance of visual recognition

on target data. We discuss the above problems by considering two practical examples. First, let’s

assume that we are interested in developing a cellphone application to recognize objects [60] and

we have access to public datasets such as LabelMe [61] and ImageNet [48]. Since testing images

come from cellphone cameras, they are slightly different than the training images. Therefore,

traditional supervised methods are in a position of weakness. For the second example, imagine if

we were interested in training a robot to interact with the environment. Since the scene of a testing

environment may be different from training scenes because of lighting, background, etc, traditional

supervised methods may perform poorly. In the next sections, we will discuss some techniques to

address these examples.

1.2.1 Domain Adaptation

Domain adaptation is one of the most important techniques for solving the covariate shift

problem. It is useful whenever we have access only to unlabeled target data or few labeled target

data as additional information, because it may be expensive to label or collect them, respectively.

In this case, the typical approach is to use available datasets (source data), representative of a

closely related task, together with given additional information to train visual recognition models

that work well on target domains.

Consider the first example in Section 1.2. Domain adaptation can be useful in this case if we

are given some images taken from cellphone cameras in addition to the availabe datasets (LabelMe

and ImageNet). Domain adaptation can be either supervised [62, 63], unsupervised [64, 65], or

semi-supervised [66, 67, 68].
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Unsupervised domain adaptation (UDA) is attractive because it does not require target data

to be labeled. Conversely, supervised domain adaptation (SDA) requires labeled target data. UDA

mostly tries to minimize the distribution mismatch between source and target datasets, while SDA

takes into account the distribution alignment between corresponding classes. UDA expects large

amounts of target data in order to be effective. Moreover, given the same amount of target data,

SDA typically outperforms UDA, as we will later explain.

Since UDA tries to minimize source and target distributions without considering the alignment

of the same classes and the separation of different classes in the two distributions, it is in a position of

weakness compared to SDA. Therefore, especially when target data is scarce, it is more attractive

to use SDA, also because limited amounts of target data are likely to not be very expensive to

label. Although domain adaptation can be used for different applications, for example speech

processing [69, 70], this dissertation focuses on domain adaptation for visual recognition. Instead

of the term “supervised domain adaptation”, we may use “few-shot domain adaptation” in this

dissertation to stress the fact that we have very few target samples per class during training.

1.2.2 Domain generalization

Sometimes target data are not available and may come from a lot of different distributions.

Consider the robot example in Section 1.2, testing scenes widely vary from case to case. In this

situation, domain generalization (DG) could be more helpful. In absence of target data, DG exploits

several cheaply available datasets (sources) as additional information, representing different specific

but closely related tasks. It then attempts to learn by combining data sources in a way that produces

visual classifiers that are less sensitive to the specific target data that will need to be processed. DG

leads to training visual classifiers that are more robust to distribution changes. This is challenging

because DG needs to throw away nuisances in source distributions and only keeps the relevant

information.

1.2.3 Learning Using Privileged Information

Sometimes even if we have enough source data, the performance of visual recognition models

may still not be very efficient because of unpredictable characterization of target domains [55].

Imagine a case where some additional information is available in training which is missing in
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Source Target

Figure 1.1: Domain Adaptation for Visual Recognition. The final goal is to train a model to work
well in the target dataset. However, if there are not enough target samples to train the model, the
typical approach is to use available datasets (source data), representative of a closely related task.

testing. Consider the robot example again when we are given additional information in training

like depth information of the training scenes, or physical interactions of the robot with the training

enviroment [71].

Also consider the cellphone application example, for an object recognition task, a labeled image

sample of the main data view, representing the source domain, might have been annotated also

with attributes describing semantic properties of depicted objects, or with a bounding box that

specifies the location of the target object, or with image tags describing the context of the image.

In testing, only the main view is available because users can only use their cellphones cameras.

Another instance is when dealing with multi-sensory or multimodal data. For example, when

processing streams from RGB plus depth sensors, or from multispectral sensors. Visual recognition

should leverage data from all the modalities, or data views. However, a view might be missing,

possibly due to a sensor malfunction, or to a limited transmission bandwidth, or because we are

processing a backlog of historical data where not all the views were recorded.

The main question here is can we train a visual recognition model that is more robust to main

data view changes in testing when we are given additional information during training? The answer
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x  :  Motion x*  :  Color x  :  Image
Black:   No
White:   Yes
Brown:  No
             .
             .
             .
Water:   Yes

x*  :  Attributes
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Figure 1.2: Visual recognition with auxiliary data. Visual recognition entails learning classifiers
based on a main data view (e.g., motion information for recognizing actions, or image information for
recognizing animals and objects, or video information for gesture recognition). LUPI tries to leverage
an additional/auxiliary data view during training (e.g., color for actions, skeleton data for gestures,
attributes for animals, and bounding boxes for objects), for learning a better visual classifier.

is “yes”. It is possible to learn a shared embedding space using the given views (information) in

training which is more robust to main data view changes in testing. Typically, this problem

is addressed by processing the available data views with classifiers trained on the same views.

However, the missing view at testing time can be seen as additional information, available only

during training. This additional information is an auxiliary data view of the image/video sample.

This paradigm, improving visual recognition based on a main data view, by leveraging the auxil-

iary view available only during training, is called Learning Using Privileged Information (LUPI) [56].

See Figure 1.2. LUPI does not minimize the covariate shift between source and target domains,

however it leads to models that are more robust to the variability of the target domain.

LUPI has received limited attention. It is different from domain adaptation and transfer

learning [72, 13] because of the existence of auxiliary views in training and not existence of tar-

get data in training. Indeed, the problem is more related to multi-view and multi-task learn-

ing [73, 74, 75, 76, 77]. However, rather than having all views or task labels available or predicted

during testing, here one view is missing and a single task label is predicted. The fact that the

auxiliary view is missing is what makes this problem challenging, because it cannot be combined

like the others in multi-view learning.
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Training Testing

Main View

Auxiliary View Main View

Labeld Samples from Source Distribution

Unlabeld Samples from Target Distribution

Testing Samples from Target DistributionMain View

Figure 1.3: Domain Adaptation with Privileged Information. In this scenario, additional information
from both source and target distributions are available in training. Since target data distribution and
source data distribution differ by a covariate shift, the classifier trained only on the main view of the
source distribution is suboptimal. Labeled paired source auxiliary/privileged data (e.g., depth data)
can be used, along with unlabeled target data, to improve visual recognition on the target domain.

1.2.4 Domain Adaptation with Privileged Information

Imagine the LUPI paradigm while we are also given some labeled or unlabeled target data in

training as additional information. Consider the cellphone application example, when in training

we are given some images from cellphones together with available source datasets (ImageNet and

LabelMe) and some auxiliary views (e.g. object attributes or corresponding object bounding boxes).

The question here is can we minimize the covariate shift while leveraging auxiliary views? The

problem outlined above has received very limited attention. It is different from domain adaptation

and transfer learning [72], because of the presence of the auxiliary view as part of the source. It is

also different from the LUPI paradigm (explained above), because of the presence of main target

data in training. Compared to multi-view and multi-task learning [73, 74, 75, 76, 77], instead,

rather than having all views or task labels available or predicted during testing, here one view is

missing, and a single task label is predicted based on a biased view. Therefore, the asymmetry

of the missing auxiliary view already poses a challenge (because it cannot be combined like the

others in multi-view learning), which becomes even greater when there is a mismatch between the

distributions of the source main view and the target view.
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1.3 Contributions and Dissertation Structure

In this dissertation, we introduce algorithms for each of the problems we explained in the pre-

vious section. Chapter 2, which is from our ICCV 2017 paper [5], addresses the domain adaptation

and domain generalization problems. Chapter 3 proposes a domain adaptation method based on

adversarial learning and draws from our NIPS 2017 paper [78]. Chapter 4 addresses the LUPI

problem and comes mostly from our CVPR 2016 paper [79]. Chapter 5 draws significantly from

our work published in ECCV 2016 [80] and addresses the domain adaptation with privileged infor-

mation problem.

1.3.1 Chapter 2

In general, domain adaptation methods attempt to minimize the domain shift between source

and target domains using three different strategies. The first one tries to find a mapping between

source and target distributions [13, 81]. In testing, a target image is first mapped to the source

distribution and is then passed to a pre-trained model on source data. The second strategy seeks

to learn embedding functions to a shared latent space for source and target distributions [82, 83].

Computer vision models will be trained using source data (and also labeled target data if available)

in the shared latent space. The third strategy mainly focuses on regularizing a classifier trained on

a source distribution to work well on a target distribution [84, 85].

The second strategy is more popular because it can leverage deep models with a siamese struc-

ture [86]. Siamese architectures are powerful networks to find the shared latent space for different

tasks and have been used before for domain adaptation [4]. Specifically, unsupervised domain adap-

tation methods with siamese structures attempt to minimize the covariate shift between source and

target domains. To do so, covariate shifts between two domains are often measured with the Max-

imum Mean Discrepancy (MMD) [3] criteria. MMD is popular because it can be used in stochastic

gradient optimization and can be easily combined with kernels. Supervised domain adaptation

methods [62] with siamese structures mostly find a shared embedding space such that the distances

between corresponding classes in source and target domains are minimum, because they have access

to the labeled target data. This leads to better performance compared to unsupervised methods.

In this chapter, we assume a scenario where only very few target labeled data per class is
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available in training. This supervised setting becomes more attractive than the unsupervised setting

because of the presence of labeled data and when collecting large amount of data is not feasible.

We are also interested in siamese networks. Our main challenge is having scarce target data.

Therefore, we cannot effectively compute distances between corresponding class distributions in

source and target domains. Another challenge is the separation between different classes in the

shared embedding space, which is missing in the domain adaptation literature.

Therefore, the main idea in this chapter is to exploit the siamese architecture to learn an

embedding subspace that is discriminative, and where mapped visual domains are semantically

aligned and yet maximally separated. Since alignment and separation of semantic probability

distributions is difficult because of the lack of data, we found that by reverting to point-wise

surrogates of distribution distances and similarities provides an effective solution. In addition, the

approach has a high speed of adaptation, which requires an extremely low number of labeled target

training samples, even one per category can be effective. We also extend our proposed model to

domain generalization. For both applications the experiments show very promising results.

1.3.2 Chapter 3

In this chapter, we proposed a method for addressing the supervised domain adaptation using

adversarial learning [87] for the first time in the literature. This is important because adversarial

learning has shown promising results in different tasks including unsupervised domain adapta-

tion [88, 89, 90]. Here we use adversarial learning to train networks such that embedded samples

from different distributions are not distinguishable. We consider the task where very few labeled

target data are available in training. With this assumption, it is not possible to use the standard

adversarial loss used in [88, 89, 90], because the training target data would be insufficient. We

address that problem by modifying the usual pairing technique used in many applications such as

learning similarity metrics [86, 91, 92] and domain adaptation (Chapter 2). Our pairing technique

encodes domain labels as well as class labels of the training data (source and target samples), pro-

ducing four groups of pairs. We then introduce a multi-class discriminator with four outputs and

design an adversarial learning strategy to find a shared feature space. Our method also encourages

the semantic alignment of classes, while other adversarial UDA approaches do not.
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1.3.3 Chapter 4

We explore the visual recognition problem from a main data view when an auxiliary data view

is available during training. This is important because it allows improving the training of visual

classifiers when paired additional data is cheaply available, and it improves the recognition from

multi-view data when there is a missing view at testing time. The problem is challenging because

of the intrinsic asymmetry caused by the missing auxiliary view during testing.

This problem has been addressed before for some specific tasks or for some specific classifiers [56,

93, 10]. One LUPI implementation is the SVM+ [56, 93], which uses the privileged data as a proxy

for predicting the slack variables. The same idea has also been used in the learning to rank approach

introduced in [10].

Our approach exploits the privileged information differently. We account for privileged infor-

mation during training by extending the information bottleneck (IB) method [8], and by combining

it with risk minimization. This information theoretic framework learns how to compress the source

domain for doing prediction in a way that is as informative of the privileged source domain as

possible, regardless of the type of classifier used, and without tying privileged information to slack

variables. We use this principle to design a large-margin classifier with an efficient optimization

in the primal space. We extensively compare our method with the state-of-the-art on different

visual recognition datasets, and with different types of auxiliary data, and show that the proposed

framework has a very promising potential.

1.3.4 Chapter 5

We address the unsupervised domain adaptation problem for visual recognition when an aux-

iliary data view is available during training. This is important because it allows improving the

training of visual classifiers on a new target visual domain when paired additional source data is

cheaply available. The problem is challenging because of the intrinsic asymmetry caused by the

missing auxiliary view during testing and from which discriminative information should be carried

over to the new domain. We jointly account for the auxiliary view during training and for the

domain shift by extending the information bottleneck method, and by combining it with risk mini-

mization. In this way, we establish an information theoretic principle for learning any type of visual
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classifier under this particular settings. We use this principle to design a multi-class large-margin

classifier with an efficient optimization in the primal space. We extensively compare our method

with the state-of-the-art on several datasets, by effectively learning from RGB plus depth data to

recognize objects and gender from a new RGB domain.

The only work addressing the same problem as ours is [59], and extended in [94] for web data.

They jointly learn a multiclass large-margin classifier, as well as two projections for the main and the

auxiliary views, respectively. This is done while maximizing the correlation among views, as well as

minimizing the distribution mismatch according to the MMD. On the other hand, we extend the IB

method into a general principle that handles the auxiliary view as well as the distribution mismatch

from a single information theoretic point of view. Computationally, this entails the estimation of

only one projection, rather than two. It allows handling source data points with missing auxiliary

view, and we also provide an implementation of a large-margin multiclass classifier in the primal

space for improved computational efficiency.

1.4 Related work

Domain Adaptation. Visual recognition algorithms are trained with data from a source domain,

and when they are tested on a target domain with marginal distribution that differs from the source,

we experience the visual domain adaptation (DA) problem (also known as dataset bias [95, 55, 96],

or covariate shift [52]), and observe a performance decrease. Let us assume that we are given a

training dataset made of pairs Ds = {(xsi , ysi )}Ni=1. The feature xsi ∈ X is a realization from a

random variable Xs, and the label ysi ∈ Y is a realization from a random variable Y s. In addition,

we are also given the training data Dt = {(xti, yti)}Mi=1, where xti ∈ X is a realization from a random

variable Xt, and the labels yti ∈ Y. At this point yti for some or all t may not be available.

We assume that there is a covariate shift [52] between Xs and Xt, i.e., there is a difference

between the probability distributions ps(x) and pt(x) (ps(x) 6= pt(x)). The earlier works on domain

adaptation have an assumption on conditional distributions: ps(y|x) = pt(y|x). This is one of the

most widely used assumptions in domain adaptation and corresponds to weight-sharing in deep

networks. In the dissertation, we are only interested in p(y|x), which is useful for the classification

task. Domain adaptation models can be grouped into three categories:

• Mapping from source to target. The first one includes those models that try to find a
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mapping between source and target distributions [13, 81, 97, 66, 98, 99]. The earlier works on

domain adaptation usually follow this strategy. [52], which first addressed the covariate shift,

proposed to re-weight the log-likelihood of each training instance (x, y) using pt(x)
ps(x) . Let us

assume that we are interested in the classification/regression task using the function f , which

comes from a set of possible functions F , given some target training pairs. The ultimate goal

of a learning algorithm is to find a hypothesis h∗ among a fixed class of functions H for which

the risk is minimal. The risk associated with hypothesis h(x) is defined as the expectation

of the loss function (`):

R(h;L, pt) = E(x,y)∼pt [`(f(x), y)] , (1.1)

where pt(x, y) is the joint probability over Xt and Y . The samples of the target domain are

either too small to provide a reliable approximation of the expected risk, or some or even all

of their labels may not be available. Therefore, using the source pairs is the typical approach.

Considering our main assumption (ps(y|x) = pt(y|x)), it is easy to show that (1.1) can be

rewritten as:

R(h;L, pt) = E(x,y)∼ps [
pt(x, y)

ps(x, y)
`(f(x), y)] , (1.2)

This shows that it is possible to train a visual recognition model for target domain by

properly weighting the source samples. The re-weighting function can be rewritten as:

ω(x, y) =
pt(x, y)

ps(x, y)
=
pt(x)

ps(x)

pt(y|x)

ps(y|x)
=
pt(x)

ps(x)
. (1.3)

[52] discussed estimating ps(x) and pt(x) using parametric or nonparametric methods.

Since density estimation may suffer from the curse of dimensionality [60], it is better to

directly learn the weights without estimating the source or the target marginal distribu-

tions. Let’ s put ω(x)ps(x) = pt(x) and the goal now is to find a weighting function ω∗(x)

that minimize a distance between ω(x)ps(x) and pt(x). Among different distance metrics,

Maximum Mean Discrepancy (MMD) [3] has shown very good performance in domain adap-
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tation [100, 101, 102]. Empirical MMD can be computed by

MMDemp(Xs, Xt) = || 1
N

N∑
n=1

k(xns , .)−
1

M

M∑
m=1

k(xmt , .)||H , (1.4)

where N and M are the total numbers of source and target data and k(., .) denotes a kernel

function associated with the Reproducing Kernel Hilbert Space (RKHS)H. MMD is powerful

but has limitations. For example, it is hard to find an optimum kernel. Despite some methods

which have tried to address some of the issues of MMD such as [60], re-weighting the source

data fell out of favor until very recently. In the past, source re-weighting has been done at

feature level but due to the rapid development in deep learning, re-weighting can be seen as

a mapping from source data to the target data in an original space level (i.e. raw pixels).

Let’s assume that xt = G(xs), where G(.) is a mapping from the source distribution to the

target distribution that preserves the content (it is closly similar to ω(x)). If we can find

such a mapping function, (1.1) can be rewritten as:

R(h;L, pt) = E(x,y)∼ps [`(f(G(x)), y)] , (1.5)

allowing to use the source samples to train a visual recognition model for the target domain.

G(.) can be perfectly obtained by using adversarial learning [87] and can perform distributions

alignment in raw pixel space, translating source data to the style of a target domain. The

challenge here would be how to encourage the model to preserve semantic information during

the distribution alignment. This issue arises from the fact that we cannot obtain a pair of

(xs, xt) in training to learn a good H(.). [103] trains a mapping function to map a source

image into a target image by enforcing consistency in the embedding space. [104] uses an

L-1 reconstruction loss to force the generated target images to be similar to their original

source images. [103, 104] are suitable for tasks with small shift. CycleGAN [105] introduced

cycle-consistency to reconstruct the original image from the mapped image. CyCADA [106]

adapts representations at both the pixel-level and feature-level while enforcing local and

global structural consistency through pixel cycle-consistency and semantic losses. There are

some other methods following a similar idea [107, 108]. This category requires enough training
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Figure 1.4: Siamese Networks. (a) A siamese network contains two identical sub-networks. Although
the sub-network can be implemented by any machine learning model, convolutional neural networks
(CNN) are usually used because of their performance. Depending on the task at hand, we can
use different loss functions. For the verification task, the Contrastive loss [1] or the Triplet loss [2]
are good options. (b) For domain adaptation, several distance metrics can be used in order to
minimize the distance between the source and target distributions or samples such as MMD [3],
correlation alignment [4], and the Contrastive loss [5]. Also, it is necessary to train the siamese
network parameters by jointly minimizing a classification loss and an adaptation loss

target data and therefore is suitable for unsupervised domain adaptation.

• Finding a shared latent space. When we do not have access to enough target samples

in training, finding a mapping from source to target or estimating the true weights for re-

weighting the source samples becomes challenging. Therefore, it is better to map source and

target samples to a latent space such that the source and target domains are distributed

in the same way (or confused) in that space while the discriminative information has been

preserved [83, 109, 110, 111, 79]. If the source and target domains are maximally confused in

the latent space, it is safe to assume that p(y|z) is shared by the source and target domains,

where z ∈ Z represents a feature representation in the shared latent space. In other words,

we can use the same classifier, trained on source samples, for target samples which is the

main assumption made by this category of approaches.

[112] finds two projections from source and target to the latent space using canonical

correlation analysis (CCA). [113] proposes an approach for cross-view action recognition

by projecting the action descriptors extracted from source view and those extracted from

target view to virtual views in an unsupervised fashion. [114] tries to learn some transfer

components across domains in a Reproducing Kernel Hilbert Space (RKHS) using Maximum

Mean Discrepancy (MMD) such that data distributions in different domains are close to each

other in that space. [82] minimizes the distribution mismatch between the labeled source

images and unlabeled target images, and incorporates this criterion into the objective function

of sparse coding to make the new representations robust to the distribution difference.
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Among algorithms for learning similarity metric, siamese networks [115, 86] work well for

different tasks, and when used with deep convolutional neural networks (CNN) [45, 46], they

perform well [116, 117]. A siamese network contains two identical sub-networks joined at their

outputs (see Figure 1.4). Depending on the type of task at hand, we can use different functions

for joining the sub-networks outputs. Recently, siamese networks have been used for domain

adaptation. Since we focus on the classification task, the classification loss needs to be added

to the siamese network loss, Figure 1.4. Since all the network weights are shared between

source and target domains, the conditional distributions are identical p(Y |Xs) = p(Y |Xt).

In [62], unlabeled and sparsely labeled target domain data are used to optimize for domain

invariance to facilitate domain transfer while using a soft label distribution matching loss.

In [4] (CORAL), which is a deep UDA approach, unlabeled target data is used to

learn a nonlinear transformation that aligns correlations of layer activations in deep neural

networks. CORAL minimizes the distance between the second-order statistics (covariances)

of the source and target samples in feature space:

lCORAL(Xs, Xt, F ) =
1

4d2
||CS − CT ||2F , (1.6)

where ||.||2F denotes the squared Frobenius norm, CS and CT denote the feature covariance

matrices, and d is the dimension of the feature space. End-to-end domain adaptation can be

done by jointly minimizing (1.6) and a classification loss on labeled samples.

Some approaches went beyond the siamase weight-sharing (p(y|xs) 6= p(y|xt) but p(y|z)

is still shared between two domains) and used coupled networks for DA. [118], which is a deep

UDA approach and can be seen as a SDA after fine-tuning, uses a two-streams architecture,

for source and target, with related but not shared weights. It consistently outperforms

networks with shared weights in the same setting. To better model the shift and introduce

more flexibility in the model, [118] proposes an L2 and an exponential regularizer between

the source and target weights:

rw(θsj , θ
t
j) = ||ajθsj + bj − θtj ||22 , (1.7)
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Figure 1.5: ADDA. (a) ADDA first trains a source model using labeled source image examples. (b)
It then performs adversarial adaptation by learning a target model such that a discriminator cannot
reliably predict source and target samples’ domain labels. In testing, target model can be used with
source classifier.

rw(θsj , θ
t
j) = exp(||ajθsj + bj − θtj ||22)− 1 , (1.8)

where θsj and θtj denote the weights of the corresponding parameters of the source and target

networks, respectively.

[63], which is a SDA approach, uses two CNN streams, for source and target, fused at the

classifier level. It uses the 16-layer VGG model as the base networks, and features from the

fully connected layers fc7 of each network are used to compute second or even higher order

scatter tensors; one per network stream per class. During adaptation, [63] aligns the scatters

of the two network streams of the same class (within-class scatters) while maintaining good

separation of the between-class scatters. Our approach presented in Chapter 2 is similar to

[63]. Instead of minimizing the distribution distances (second or even higher order scatter

tensors in [63]), we minimize the point-wise surrogates of distribution distances for within-

class alignment. This is important when we have access to very few labeled target samples

in training. For the between-class separation, we do not rely only on the classifier loss but

add another loss term using point-wise similarities.

The final goal of these approaches is to maximize the confusion between the source and

target samples in the feature space. In other words, they are looking for minimizing the

distance between p(z|xs) and p(z|xt). So far we have talked about several traditional models

to minimize that distance. Recently, adversarial learning [87] has been proposed for image

generation. It contains two networks, the generator G and the discriminator D, where the
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discriminator tries to distinguish between fake and real images while the generator tries to

generate fake images to fool the discriminator. In other words, D and G play the following

two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)] + En∼pn(n)[log(1−D(G(n)))] , (1.9)

where E denotes statistical expectation, n is a sample from the known distribution pn(n). D

is a discriminator that takes an image and can classify it as real or fake. G is a generator that

takes a random noise as input and generates an image from it. D and G can be implemented

by convolutional neural networks (CNN).

During the adversarial game, the distance between the probability distribution of the

fake images and the real images decreases. Therefore, adversarial learning is becoming at-

tractive for minimizing the KL-divergence between two distributions. We have discussed the

use of adversarial learning to find a mapping from the source and target distribution for

domain adaptation in the previous section. However, it is obvious from the above discussion

that adversarial learning could also be very helpful for domain adaption in finding a shared

latent space. For domain adaptation instead, we need to use the adversarial game in the

feature space not in the image space. [89] was one of the first papers that used adversarial

learning and proposed Adversarial Discriminative Domain Adaptation (ADDA). For classi-

fication, ADDA uses three network blocks: The first and second blocks (source and target

embeddings) are responsible for embedding images of the source and target domains to their

latent representations, respectively, and can be implemented by CNNs. The first and the

second blocks are identical. The third block (classifier) is responsible for mapping from the

latent space to the label space (doing the classification), and can be implemented by some

fully connected layers. ADDA (See Figure 1.5) first learns the source embedding and the

classifier using the labels in the source domain in a feedforward fashion. It then initializes

the target embedding with the source embedding and uses the basic adversarial learning to

map the target images to the source latent space. In other words, it confuses the target

latent space with the source latent space. Similar to all other approaches in this category, it

is safe to use the classifier trained on the source domain together with the target embedding
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after maximum confusion. Since ADDA needs a lot of unlabeled target data for training, it

is a UDA method. [88] introduced a coupled generative adversarial network (CoGAN) for

learning a joint distribution of multi-domain images for different applications including UDA.

[90] introduces an approach that leverages unlabeled data to bring the source and target dis-

tributions closer by inducing a symbiotic relationship between the learned embedding and a

generative adversarial framework. These methods need a lot of unlabeled target samples in

their training. In Chapter 3, we discuss a method for addressing the supervised domain adap-

tation using adversarial learning, where we need very few labeled target samples in training.

Although our method is somewhat similar to ADDA, we provide important contributions to

adversarial learning as we discuss in Chapter 3. To the best of our knowledge, there is no

previous work which addresses the SDA problem using adversarial learning.

• Using regularizers. The third method regularizes a classifier trained on a source distri-

bution to work well on a target distribution [84, 85, 119, 120, 121, 122]. [119] adds a new

regularizer into the SVM objective function. It minimizes both the classification error over

the training examples, and the discrepancy between the adapted and original classifiers using

only the limited target labeled examples. [120] simultaneously learns a kernel function and

a robust SVM classifier by minimizing both the structural risk functional of the SVM and

the distribution mismatch of labeled and unlabeled samples between the source and target

domains. The regularizing method is suitable for SDA and shows a poorer performance

compared to shared latent space learning.

In addition to these methods, there are some other methods that do not assume any target

data in their training (zero-shot). Instead, these methods use other types of information. For

example, [123] uses descriptor of domain and [124] uses task-irrelevant data.

Domain Generalization. Domain generalization (DG) is a less investigated problem and is

addressed in two ways. DG assumes that we are given image-label pairs from several similar source

distributions. The goal of DG is to learn a mapping from the image space to the label space such

that it works well for any unseen distributions. As we show in Chapter 2, simply putting all the

image-label pairs coming from several source distributions in one dataset will be suboptimal. DG

was first discussed in [54]. [54] develops a distribution-free, kernel-based approach to solve DG by
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identifying an appropriate reproducing kernel Hilbert space and optimizing a regularized empirical

risk over the space. [125] uses an idea similar to [54] for multiclass domain generalization. [109]

learns an invariant transformation by minimizing the dissimilarity across domains, whilst preserving

the functional relationship between input and output variables. It shows that reducing dissimilarity

improves the expected generalization ability of classifiers on new domains. Our proposed DG

follows a similar idea and we try to reduce within-class dissimilarity and also increase between-

class dissimilarity.

[126], which can be used for SDA too, finds a representation that minimizes the mismatch

between domains and maximizes the separability of data. [127] learns features that are robust to

variations across domains.

There are some approaches that exploit all information from the training domains or datasets

to train a classifier or regulate its weights [128, 129, 130, 131, 132]. Specifically, [128] adjusts the

weights of the classifier to work well on an unseen dataset, and [130] fuses the score of exemplar

classifiers given any test sample. While most works use non-deep models, here we approach DG as

in the first way, and extend the proposed SDA approach (Chapter 2) by training a deep siamese

network to find a shared invariant representation where semantic alignment as well as separation

are explicitly accounted for. To the best of our knowledge, [127] is the only DG approach using deep

models, and our method is the first deep method that solves both adaptation and generalization.

Learning Using Privileged Information. In some applications main view training data can be

paired with additional information which is only available in training. If the additional information

is informative about the task at hand, it can help to better train a machine learning model on

the main view. [56] was the first work investigating this problem and named this new paradigm

as learning using privileged information (LUPI). Privileged information has other names like side

information [133] and hidden information [134, 135, 9]. Traditional supervised learning assumes

that a training dataset made of N pairs (x1, y1), · · · , (xN , yN ) is given, where the feature xi ∈ X is

a realization from a random variable X, the label yi ∈ Y is a realization from a random variable Y ,

and the pairs are i.i.d. samples from a joint probability distribution p(X,Y ). Under this setting the

goal is to learn a prediction function f : X → Y by searching over a space of admissible functions

F .

The LUPI paradigm assumes that every training data pair comes with auxiliary information,
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augmenting the training dataset to (x1, x
∗
1, y1), · · · , (xN , x∗N , yN ). The auxiliary feature x∗i ∈ X ∗

is a realization from the random variable X∗. The triplets are now i.i.d. samples from the joint

distribution p(X,X∗, Y ). Under LUPI settings, the goal is to learn a prediction function f∗ : X → Y

by searching F . Note that in order to predict a label y, at testing time f∗ uses only data from the

main space X . Therefore, the data from the auxiliary space X ∗ is only available during training,

which is why it is called privileged. From the same amount of training samples N , the LUPI

classifier f∗ will improve the performance of the traditional classifier f [136]. [56] proposed SVM+

to address this problem by modifying the SVM optimization. SVM finds the optimal separating

hyperplane, the one that makes a small number of training errors and possesses a large margin. If

the target data is separable, the hyperplane can be obtained by minimizing:

min
w,b

‖w‖2

s.t. yi(〈w, xi〉+ b) ≥ 1 , ∀i ∈ {1, · · · , N} . (1.10)

For the non-separable data one uses non-negative slack variables as follow:

min
w,b

‖w‖2+C

N∑
i=1

ξi

s.t. yi(〈w, xi〉+ b) ≥ 1− ξi , ξi ≥ 0 , ∀i ∈ {1, · · · , N} , (1.11)

where C is the usual parameter to control the slackness. SVM+ [56] uses the privileged data as a

proxy for predicting the slack variables by minimizing

min
w,b,w∗,b∗

‖w‖2+γ‖w∗‖2+C

N∑
i=1

ξi(w
∗, b∗) (1.12)

s.t. yi(〈w, xi〉+ b) ≥ 1− ξi(w∗, b∗) , ξi(w
∗, b∗) ≥ 0 , ∀i ∈ {1, · · · , N} ,

ξi(w
∗, b∗) = 〈w∗, x∗i 〉+ b∗ .

This approach is equivalent to learning an oracle that tells which sample is easy and which

one is hard to predict. There are a lot of works inspired from the oracle teacher idea. It is

used in the learning to rank approach introduced in [10], where it is shown that different types of

privileged information, such as bounding boxes, attributes, text, and annotator rationales [137] can

be used for learning a better classifier for object recognition. [138] also uses a similar framework and



Saeid Motiian Chapter 1. Introduction 21

incorporates the LUPI paradigm into mult-view learning, proposing a new SVM-based model. [139]

uses the oracle teacher framework and support vector regression for estimating the height. Inspired

by SVM+, [140] carefully defines relative attributes for SVM+ to improve the performance of age

estimation. In this case, the privileged information enables separation of outliers from inliers at

the training stage and effectively manipulates slack variables and age determination errors during

model training. [141] uses the oracle teacher framework for privileged multi-label learning.

Privileged information is becoming popular for deep learning [133], specially for action recog-

nition. In action recognition, skeleton data is very informative but hard to obtain in testing.

Therefore, there are several works using deep learning with skeleton data as privileged informa-

tion [142, 143, 144].

In computer vision auxiliary information has been incorporated into the learning process in

several forms. For example, in attribute based approaches [145, 146] labeled data is used for

training extra attribute classifiers to extract mid-level features. Similarly, [147, 148] learn to extract

mid-level features by training data from additionally annotated concepts. Our framework differs

from those because the auxiliary information can be generic, and because it is used for improving

the classifier performance in a single optimization framework, whereas attribute classifiers may be

disconnected from the main classification task. Another form of auxiliary information is given by the

structure of the hidden domain of latent models for object detection and gesture recognition [149,

150]. Compared to those approaches we use information from auxiliary labeled data.

Our approach exploits the privileged information differently. An information theoretic frame-

work learns how to compress the source domain for doing prediction in a way that is as informative

of the privileged source domain as possible, regardless of the type of classifier used, and without ty-

ing privileged information to slack variables. This is done by extending the original IB method [8],

often used for clustering [151], and also used in [152] for incorporating “negative information” that

is irrelevant for the task at hand, and that should not be learned by the representation. This is sim-

ilar to [153], where negative information is used for face recognition with discounted pose-induced

similarity.

The LUPI paradigm has recently been used for boosting [154], for object localization in a

structured prediction framework [155], for facial feature detection [10], for metric learning [156,

157], in a logistic classification framework [134], in a max-margin latent variable model [135], in
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matrix completion [158], in person re-identification [159], and in active learning [160]. In the above

methods, either the problem settings or the approaches taken are significantly different from the

information theoretic principles that are driving our program. Other recent approaches include [161,

162], which focus on the missing view problem by discriminatively learning projections to a shared

latent subspace. This approach relates more to multi-view learning, but only the main view pipeline

is used for testing, without considering the intrinsic asymmetry of the LUPI framework, as pointed

out in [9]. There they propose two principles to learn with auxiliary information based on looking

at it as additional features, or as additional labels, where they make assumptions on its informative

content. We also introduce a new principle that shares the benefits of their framework, but by

using an information theoretic approach we have no need to make distinctions between the types

of auxiliary information, and we have no need to state requirements on the information content.

Domain Adaptation with Privileged Information. This problem has received very limited

attention in the literature. The first work addressing this problem is [59, 163], and the extension for

web data [94]. They jointly learn a multi-class large-margin classifier, as well as two projections for

the main and auxiliary views, respectively. This is done while maximizing the correlation among

views, as well as minimizing the distribution mismatch according to the MMD. [164] uses the

idea of oracle teacher to learn an adaptive SVM+, combining the advantages of both the LUPI

paradigm and the domain adaptation framework. [144] leverages both a large-scale dataset and

its extra modalities, to learn a better model for temporal action detection and action classification

without needing to have access to these modalities during test time. On the other hand, we extend

the information bottleneck method into a general principle that handles the auxiliary view as

well as the distribution mismatch from a single information theoretic point of view in Chapter 5.

Computationally, this entails the estimation of only one projection, rather than two. It allows

handling source data points with missing auxiliary view, and works with any classifiers (shallow

and deep ones).
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Chapter 2

Few-Shot Domain Adaptation and

Generalization

2.1 Introduction

This chapter provides a unified framework for addressing the problem of visual supervised

domain adaptation (SDA) and domain generalization (DG) with deep models. It can work with

any network structure, and the SDA approach requires very few labeled target samples per category

in training. We may use ”few-shot domain adaptation” instead of the term ”supervised domain

adaptation” in this Chapter to stress the fact that we have very few target samples per class in

training. The main idea is to exploit the Siamese architecture to learn an embedding subspace that

is discriminative, and where mapped visual domains are semantically aligned and yet maximally

separated. The few-shot setting becomes attractive especially when only few target data samples

need to be labeled. In this scenario, alignment and separation of semantic probability distributions

is difficult because of the lack of data. We found that by reverting to point-wise surrogates of

distribution distances and similarities provides an effective solution. In addition, the approach has

a high speed of adaptation, which re- quires an extremely low number of labeled target training

samples, even one per category can be effective. Moreover, the approach is also robust to adapting

to categories that have no target labeled samples. Although domain adaptation and generalization

are closely related, adaptation techniques are not directly applied to DG, and vice versa. However,

we show that by making simple changes to our proposed train- ing loss function, and by maintaining

the same architecture, our SDA approach very effectively extends to DG.
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Figure 2.1: Deep Few-Shot domain adaptation. In training, the semantic alignment loss minimizes
the distance between samples from different domains but same class label and the separation loss
maximizes the distance between samples from different domains and class labels. At the same time,
the classification loss guarantees high classification accuracy.

Using basic principles, we analyze how visual classification is extended to handle UDA by

aligning a source do- main distribution to a target domain distribution to make the classifier

domain invariant. This leads to observing that SDA approaches improve upon UDA by making the

alignment semantic, because they can ensure the alignment of semantically equivalent distributions

from different domains. However, we go one step ahead by suggesting that semantic distribution

separation should further increase performance, and this leads to the introduction of a classification

and contrastive semantic alignment (CCSA) loss. We deal with the limited size of target domain

samples by observing that the CCSA loss relies on computing distances and similarities between

distributions (as typically done in adaptation and generalization approaches). Those are difficult

to represent with limited data. Thus, we revert to point-wise surrogates. The resulting approach

turns out to be very effective as shown in the experimental section. For both SDA and DG, the

experiments show very promising results.

2.2 Few-Shot DA with Scarce Target Data

In this section we describe the model we propose to address supervised domain adaptation

(SDA), and in the Section 2.4 we extend it to address the domain generalization problem. We are

given a training dataset made of pairs Ds = {(xsi , ysi )}Ni=1. The feature xsi ∈ X is a realization from

a random variable Xs, and the label ysi ∈ Y is a realization from a random variable Y . In addition,

we are also given the training data Dt = {(xti, yti)}Mi=1, where xti ∈ X is a realization from a random

variable Xt, and the labels yti ∈ Y. We assume that there is a covariate shift [52] between Xs and
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Figure 2.2: Deep domain generalization. In training, the semantic alignment loss minimizes the
distance between samples from different domains but the same class label and the separation loss
maximizes the distance between samples from different domains and class labels. At the same time,
the classification loss guarantees high classification accuracy. In testing, the embedding function
embeds samples from unseen distributions to the domain invariant space and the prediction function
classifies them (right). In this figure, different colors represent different domain distributions and
different shapes represent different classes.

Xt, i.e., there is a difference between the probability distributions p(Xs) and p(Xt). We say that

Xs represents the source domain and that Xt represents the target domain. Under this settings

the goal is to learn a prediction function f : X → Y that during testing is going to perform well on

data from the target domain.

The problem formulated thus far is typically referred to as supervised domain adaptation. In

this work we are especially concerned with the version of this problem where only very few target

labeled samples per class are available. We aim at handling cases where there is only one target

labeled sample, and there can even be some classes with no target samples at all.

2.2.1 Deep SDA

In the absence of covariate shift a visual classifier f is trained by minimizing a classification

loss

LC(f) = E[`(f(Xs), Y )] , (2.1)

where E[·] denotes statistical expectation and ` could be any appropriate loss function (for example

categorical cross-entropy for multi-class classification). When the distributions of Xs and Xt are

different, a deep model fs trained with Ds will have reduced performance on the target domain.

Increasing it would be trivial by simply training a new model ft with data Dt. However, Dt is small

and deep models require large amounts of labeled data.

In general, f could be modeled by the composition of two functions, i.e., f = h ◦ g. Here

g : X → Z would be an embedding from the input space X to a feature or embedding space Z,
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Figure 2.3: CCSA with the discriminator choice. The pairs in the embedding space are concatenated
and passed to the discriminator.

and h : Z → Y would be a function for predicting from the feature space. With this notation we

would have fs = hs ◦ gs and ft = ht ◦ gt, and the SDA problem would be about finding the best

approximation for gt and ht, given the constraints on the available data.

The unsupervised DA paradigm (UDA) assumes that Dt does not have labels. In that case the

typical approach assumes that gt = gs = g, and f minimizes (2.1), while g also minimizes

LCA(g) = d(p(g(Xs)), p(g(Xt))) . (2.2)

The purpose of (2.2) is to align the distributions of the features in the embedding space, mapped

from the source and the target domains. d is meant to be a metric between distributions that once

aligned, they will no longer allow to tell whether a feature is coming from the source or the target

domain. For that reason, we refer to (2.2) as the confusion alignment loss. A popular choice for

d is the Maximum Mean Discrepancy [3]. In the embedding space Z, features are assumed to be

domain invariant. Therefore, UDA methods say that from the feature to the label space it is safe

to assume that ht = hs = h.

Since we are interested in visual recognition, the embedding function g would be modeled by a

convolutional neural network (CNN) with some initial convolutional layers, followed by some fully

connected layers. In addition, the training architecture would have two streams, one for source

and the other for target samples. Since gs = gt = g, the CNN parameters would be shared as in a

Siamese architecture. In addition, the source stream would continue with additional fully connected

layers for modeling h. See Figure 2.1.
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Figure 2.4: Average classification accuracy for the M → U , U → M, and U → S tasks for different
number of labeled target samples per category (n). It shows that our model provides significant
improvement over baselines.

From the above discussion it is clear that in order to perform well, UDA needs to align effectively.

This can happen only if distributions are represented by a sufficiently large dataset. Therefore,

UDA approaches are in a position of weakness because we assume Dt to be small. Moreover,

UDA approaches have also another intrinsic limitation, which is that even with perfect confusion

alignment, there is no guarantee that samples from different domains but the same class label,

would map nearby in the embedding space. This lack of semantic alignment is a major source of

performance reduction.

SDA approaches easily address the semantic alignment problem by replacing (2.2) with

LSA(g) =
C∑
a=1

d(p(g(Xs
a)), p(g(Xt

a))) , (2.3)

where C is the number of class labels, and Xs
a = Xs|{Y = a} and Xt

a = Xt|{Y = a} are conditional

random variables. d instead is a suitable distance mesure between the distributions of Xs
a and Xt

a

in the embedding space. We refer to (2.3) as the semantic alignment loss, which clearly encourages

samples from different domains but the same label, to map nearby in the embedding space.

While the analysis above clearly indicates why SDA provides superior performance than UDA,

it also suggests that deep SDA approaches have not considered that greater performance could be

achieved by encouraging class separation, meaning that samples from different domains and with

different labels, should be mapped as far apart as possible in the embedding space. This idea means

that, in principle, a semantic alignment less prone to errors should be achieved by adding to (2.3)
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the following term

LS(g) =
∑

a,b|a6=b

k(p(g(Xs
a)), p(g(Xt

b))) , (2.4)

where k is a suitable similarity mesure between the distributions of Xs
a and Xt

b in the embedding

space, which adds a penalty when the distributions p(g(Xs
a)) and p(g(Xt

b)) come close, since they

would lead to lower classification accuracy. We refer to (2.4) as the separation loss.

Finally, we suggest that SDA could be approached by learning a deep model f = h ◦ g such

that

LCCSA(f) = LC(h ◦ g) + LSA(g) + LS(g) . (2.5)

We refer to (2.5) as the classification and contrastive semantic alignment loss. This would allow

to set gs = gt = g. The classification network h is trained only with source data, so hs = h. In

addition, to improve performance on the target domain, ht could be obtained via fine-tuning based

on the few samples in Dt, i.e.,

ht = fine-tuning(h|Dt) . (2.6)

Note that the network architecture remains the one in Figure 2.1, only with a different loss, and

training procedure.

2.2.2 Handling Scarce Target Data

When the size of the labeled target training dataset Dt is very small, minimizing the loss (2.5)

becomes a challenge. The problem is that the semantic alignment loss as well as the separation loss

rely on computing distances and similarities between distributions, and those are very difficult to

represent with as few as one data sample.

Rather than attempting to characterize distributions with statistics that require enough data,

because of the reduced size of Dt, we compute the distance in the semantic alignment loss (2.3) by

computing average pairwise distances between points in the embedding space, i.e., we compute

d(p(g(Xs
a)), p(g(Xt

a))) =
∑
i,j

d(g(xsi ), g(xtj)) , (2.7)

where it is assumed ysi = ytj = a. The strength of this approach is that it allows even a single

labeled target sample to be paired with all the source samples, effectively trying to semantically
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align the entire source data with the few target data. Similarly, we compute the similarities in the

separation loss (2.4) by computing average pairwise similarities between points in the embedding

space, i.e., we compute

k(p(g(Xs
a)), p(g(Xt

b))) =
∑
i,j

k(g(xsi ), g(xtj)) , (2.8)

where it is assumed that ysi = a 6= ytj = b.

2.3 Distance and Similarity Choices

The performance of our model also depends on the types of distances (2.7) and similarities (2.8).

We define three approaches and discussed which one may provide a better performance. For all

the choices, to balance the classification versus the contrastive semantic alignment portion of the

loss (2.5), (2.7) and (2.8) are normalized and weighted by 1− γ and (2.1) by γ.

2.3.1 First Choice - Discriminator

In the previous section we showed that creating pairs between source and target samples can be

effective for scarce target data. In other words, we can create positive pairs (when images of pairs

come from the same class label) and negative pairs (when images of pairs come from different class

labels) and minimize their distances and their similarities in the embedding space, respectively.

Inspired by recent works of the image generation task [87], we proposed to use a discriminator to

compute distances and similarities. The discriminator consists of few fully connected layers and one

output with sigmoid activation. This is important because the discriminator would give similarity

scores to input pairs from 0 to 1 (0 as least similarity and 1 as least distance). If input pairs come

from the same class, the output of the discriminator would ideally be 1. Similarly, if they come

from different classes, the output would ideally be 0. Therefore, a similarity score can be converted

to a distance score by

d(p(g(Xs
a)), p(g(Xt

a))) = 1− k(p(g(Xs
a)), p(g(Xt

a))) , (2.9)

for positive pairs.



Saeid Motiian Chapter 2. Few-Shot Domain Adaptation and Generalization 30

During the implementation, the pairs in the embedding space are concatenated and passed to

the discriminator as shown in the Figure 2.3. Since the distribution of the data in the embedding

space is unknown, we cannot find a good distance function to measure the distances in that space

(L2 norm may not be a good option). Therefore, instead of finding a distance metric, we let the

discriminator computes the distances/similarities.

2.3.2 Second Choice - Contrastive Loss

Since we are dealing with scarce target data, we want to keep the number of parameters low

(more parameters likely needs more data to be trained). Using a discriminator to compute distances

will increase the number of parameters of our model which may leads to performance reduction.

Discriminator may also suffer from the labeling of training pairs. We did not differentiate between

negative pairs as we label all of them 1. This also may cause performance reduction because some

negative pairs may require more attention (giving more penalty to the network).

To address the above limitations, we assume that

d(g(xsi ), g(xtj)) =
1

2
‖g(xsi )− g(xtj)‖2 , (2.10)

k(g(xsi ), g(xtj)) =
1

2
max(0,m− ‖g(xsi )− g(xtj)‖)2 (2.11)

where ‖·‖ denotes the Frobenius norm, and m is the margin that specifies the separability in the

embedding space. Note that with the choices outlined in (2.10) and (2.11), the loss LSA(g)+LS(g)

becomes the well known Contrastive loss as defined in [1].

These choices do not increase the number of parameters of the model, and will give more penalty

to those negative pairs that have small distances (ideally we want negative pairs to be as far as

possible). However, this method may suffer from the Euclidean distance metric.

2.3.3 Third Choice - Triplet Loss

Distances (2.7) and similarities (2.8) of our model is also can be seen as Triplet loss [2]. In this

scenario, we assume each target sample as an anchor (xti) paired with one positive source sample

(g(xs
p

i ), coming from the same class as an anchor) and one negative source sample (g(xs
n

i ), coming

from different class). With this pairing method, the loss LSA(g)+LS(g) becomes the Triplet loss [2]
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Table 2.1: Digits datasets. Classification accuracy for domain adaptation over the MNIST (M), USPS
(U), and SVHN datasets S. LB is our base model without adaptation. CCSA - n stands for our method
when we use n labeled target samples per category in training.

LB [89] [88] [90] SDA Method n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

M→ U 65.4 89.4 91.2 92.5

Fine-tuning 82.3 84.9 85.7 86.5 87.2 88.4 88.6
SADA [78] 89.1 91.3 91.9 93.3 93.4 94.0 94.4
CCSA-First 85.0 89.4 90.5 91.9 91.9 93.4 93.4
CCSA-Second 88.9 91.5 92.0 93.2 93.2 94.0 94.3
CCSA-Third 89.2 91.6 92.2 93.2 93.1 94.5 94.7

U →M 58.6 90.1 89.1 90.8

Fine-tuning 72.6 78.2 81.9 83.1 83.4 83.6 84.0
SADA [78] 81.1 84.2 87.5 89.9 91.1 91.2 91.5
CCSA-First 78.2 81.6 85.7 87.3 88.3 89.1 90.1
CCSA-Second 83.2 85.1 88.4 89.2 90.9 91.0 91.7
CCSA-Third 81.0 84.3 88.0 89.1 90.6 90.8 91.8

M→ S 25.3 - - 36.4

Fine-tuning 29.7 31.2 36.1 36.7 38.1 38.3 39.1
SADA [78] 37.7 40.5 42.9 46.3 46.1 46.8 47.0
CCSA-First 18.1 25.1 29.9 30.5 34.8 38.6 39.5
CCSA-Second 20.3 25.9 30.6 31.6 34.6 37.5 40.2
CCSA-Third 20.6 25.6 32.0 33.9 35.7 39.5 41.2

U → S 15.9 - - -

Fine-tuning 19.9 22.2 22.8 24.6 25.4 25.4 25.6
SADA [78] 27.5 29.8 34.5 36.0 37.9 41.3 42.9
CCSA-First 23.6 25.6 28.4 30.8 35.9 38.9 38.4
CCSA-Second 26.1 27.4 29.6 34.5 37.6 40.9 42.7
CCSA-Third 25.1 28.1 28.6 35.6 36.1 39.1 41.2

N∑
i

[d(g(xti), g(xs
p

i ))− d(g(xti), g(xs
n

i )) + α] , (2.12)

where α is a margin that is enforced between positive and negative pairs, N is the number of all

possible triplets, and d is Frobenius norm,. We used hard triplets selection [2] in our implementation.

2.4 Extension to Domain Generalization

In visual domain generalization (DG), D labeled datasets Ds1 , · · ·, DsD , representative of D

distinct source domains are given. The goal is to learn from them a visual classifier f that during

testing is going to perform well on data Dt, not available during training, thus representative of an

unknown target domain.

The SDA method in Section 2.2 treats source and target datasets Ds and Dt almost symmet-

rically. In particular, the embedding g aims at achieving semantic alignment, while favoring class

separation. The only asymmetry is in the prediction function h that is trained only on the source,

to be then fine-tuned on the target.

In domain generalization, we are not interested in adapting the classifier to the target domain,

because it is unknown. Instead, we want to make sure that the embedding g maps to a domain
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Table 2.2: Office dataset. Classification accuracy for domain adaptation over the 31 categories of the
Office dataset. A, W, and D stand for Amazon, Webcam, and DSLR domain. Lower Bound is our base
model without adaptation.

Unsupervised Supervised CCSA

Lower Bound [165] [65] [64] [62] [63] [78] First Second Third

A →W 61.2 ± 0.9 61.8 ± 0.4 68.5 ± 0.4 68.7 ± 0.3 82.7 ± 0.8 84.5 ± 1.7 88.1 ± 1.2 85.3 ± 1.1 88.1 ± 1.0 87.6 ± 1.2
A → D 62.3 ± 0.8 64.4 ± 0.3 67.0 ± 0.4 67.1 ± 0.3 86.1 ± 1.2 86.3 ± 0.8 88.2 ± 1.0 85.3 ± 1.5 89.2 ± 1.2 88.5 ± 1.1
W → A 51.6 ± 0.9 52.2 ± 0.4 53.1 ± 0.3 54.09 ± 0.5 65.0 ± 0.5 65.7 ± 1.7 71.1 ± 0.9 67.3 ± 1.2 72.0 ± 1.5 72.1 ± 1.0
W → D 95.6 ± 0.7 98.5 ± 0.4 99.0 ± 0.2 99.0 ± 0.2 97.6 ± 0.2 97.5 ± 0.7 97.5 ± 0.6 97.0 ± 0.8 97.6 ± 0.4 98.3 ± 0.2
D → A 58.5 ± 0.8 52.1 ± 0.8 54.0 ± 0.4 56.0 ± 0.5 66.2 ± 0.3 66.5 ± 1.0 68.1 ± 0.6 69.2 ± 0.5 71.9 ± 0.4 71.7 ± 0.5
D →W 80.1 ± 0.6 95.0 ± 0.5 96.0 ± 0.3 96.4 ± 0.3 95.7 ± 0.5 95.5 ± 0.6 96.4 ± 0.8 95.8 ± 0.9 96.4 ± 0.8 96.4 ± 0.8

Average 68.2 70.6 72.9 73.6 82.2 82.6 84.9 83.3 85.8 85.7

invariant space. To do so we consider every distinct unordered pair of source domains (u, v),

represented by Dsu and Dsv , and, like in SDA, impose the semantic alignment loss (2.3) as well

as the separation loss (2.4). Moreover, the losses are summed over every pair in order to make

the map g as domain invariant as possible. Similarly, the classifier h should be as accurate as

possible for any of the mapped samples, to maximize performance on an unseen target. This calls

for having a fully symmetric learning for h by training it on all the source domains, meaning that

the classification loss (2.1) is summed over every domain su. See Figure 2.2.

The network architecture is still the one in Figure 2.1, and we have implemented it with the

same choices for distances and similarities as those made in Section 2.2.2 as follow: Given D

labeled datasets Ds1 , · · ·, DsD , representative of D distinct source domains, the end-to-end learning

of f = h ◦ g is done by minimizing the loss function

LCCSA(f) =
1− γ
D

∑
u

LC(h ◦ g|Dsu)

+
2γ

D2 −D

∑
(u,v)

LSA(g|Dsu ,Dsv) +
∑
(u,v)

LS(g|Dsu ,Dsv)

 (2.13)

During training, because every unordered pair of domains (u, v) is considered, we control the number

of positive and negative training pairs by randomly picking a fraction of all the possible training

pairs.

2.5 Experiments

We divide the experiments into two parts, domain adaptation and domain generalization. In

both sections, we use benchmark datasets and compare our domain adaptation model and our
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Table 2.3: Office dataset. Classification accuracy for domain adaptation over the Office dataset when
only the labeled target samples of 15 classes are available during training. Testing is done on all 31
classes. A, W, and D stand for Amazon, Webcam, and DSLR domain. Lower Bound is our base model
without adaptation.

CCSA

Lower Bound [62] First Second Third

A →W 52.1 ± 0.6 59.3 ± 0.6 61.5 ± 1.2 63.9 ± 0.8 63.1 ± 0.9
A → D 61.6 ± 0.8 68.0 ± 0.5 66.1 ± 0.7 70.8 ± 0.5 70.8 ± 0.9
W → A 34.5 ± 0.9 40.5 ± 0.2 38.8 ± 1.2 43.9 ± 0.9 43.6 ± 1.0
W → D 95.1 ± 0.2 97.5 ± 0.1 95.5 ± 0.4 97.2 ± 0.3 97.5 ± 0.1
D → A 40.1 ± 0.3 43.1 ± 0.2 41.9 ± 0.6 43.1 ± 0.2 42.6 ± 0.6
D →W 89.7 ± 0.8 90.0 ± 0.2 90.0 ± 0.2 91.1 ± 0.2 91.6 ± 0.3

Average 62.26 66.4 65.6 68.3 68.2

Table 2.4: Office dataset. Classification accuracy for domain adaptation over the 10 categories of the
Office dataset. A, W, and D stand for Amazon, Webcam, and DSLR domain. Lower Bound is our base
model with no adaptation.

CCSA

Lower Bound GFK [66] mSDA [166] CDML [167] RTML [168] First Second Third

SURF

A →W 26.5 ± 3.1 39.9 ± 0.9 35.5 ± 0.5 37.3 ± 0.7 43.4 ± 0.9 68.3 ± 1.3 71.5 ± 1.1 72.8 ± 1.0
A → D 17.5 ± 1.2 36.2 ± 0.7 29.7 ± 0.7 35.3 ± 0.5 43.3 ± 0.6 73.6 ± 1.5 74.5 ± 1.1 75.1 ± 0.9
W → A 25.9 ± 1.0 29.8 ± 0.6 32.1 ± 0.8 32.4 ± 0.5 37.5 ± 0.7 41.8 ± 0.8 43.9 ± 0.7 43.2 ± 0.9
W → D 46.9 ± 1.1 80.9 ± 0.4 56.6 ± 0.4 77.9 ± 0.9 91.7 ± 1.1 84.6 ± 1.2 86.2 ± 1.1 88.6 ± 0.9
D → A 19.3 ± 1.9 33.2 ± 0.6 33.6 ± 0.8 29.4 ± 0.8 36.3 ± 0.3 27.6 ± 0.4 31.2 ± 1.1 30.5 ± 0.9
D →W 48.0 ± 2.1 79.4 ± 0.6 68.6 ± 0.7 79.4 ± 0.6 90.5 ± 0.7 76.5 ± 0.8 78.1 ± 0.9 79.0 ± 0.8

Average 30.6 43.5 38.4 43.5 49.8 62.0 64.2 64.8

DeCaF-fc6

A →W 78.9 ± 1.8 73.1 ± 2.8 64.6 ± 4.2 75.9 ± 2.1 79.5 ± 2.6 93.1 ± 1.8 94.9 ± 1.8 95.5 ± 1.7
A → D 79.2 ± 2.1 82.6 ± 2.1 72.6 ± 3.5 81.4 ± 2.6 83.8 ± 1.7 96.5 ± 1.5 97.2 ± 1.0 97.2 ± 1.0
W → A 77.3 ± 1.1 82.6 ± 1.3 71.4 ± 1.7 86.3 ± 1.6 90.8 ± 1.6 91.2 ± 0.8 91.5 ± 0.9 91.2 ± 0.8
W → D 96.6 ± 1.0 98.8 ± 0.9 99.5 ± 0.6 99.4 ± 0.4 100 ± 0.0 99.4 ± 0.4 99.6 ± 0.4 99.6 ± 0.4
D → A 84.0 ± 1.3 85.4 ± 0.7 78.8 ± 0.5 88.4 ± 0.5 90.6 ± 0.5 91.4 ± 0.8 92.1 ± 0.8 92.6 ± 0.7
D →W 96.7 ± 0.9 91.3 ± 0.4 97.5 ± 0.4 95.1 ± 0.5 98.6 ± 0.3 98.4 ± 0.4 98.7 ± 0.6 98.7 ± 0.6

Average 85.4 85.63 80.73 87.75 90.55 95.0 95.6 95.8

domain generalization model, both indicated as CCSA, with the state-of-the-art.

2.5.1 Domain Adaptation

We present results using the Office dataset [13], the MNIST dataset [6], the USPS dataset [169],

and the SVHN dataset [7].

Digits Datasets

The MNIST (M), USPS (U), and SVHN (S) datasets have recently become popular for domain

adaptation [170, 118, 89]. They contain images of digits from 0 to 9. We considered six cross-

domain tasks. The first two tasks includeM→ U , U →M, and followed the experimental setting
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Table 2.5: VLCS dataset. Classification accuracy for domain generalization over the 5 categories of
the VLCS dataset. LB (Lower Bound) is our base model trained without the contrastive semantic
alignment loss. 1NN stands for first nearest neighbor.

CCSA

Lower Bound Domain Generalization

1NN SVM LB UML [129] LRE-SVM [130] SCA [126] First Second

L, C,S → V 57.2 58.4 59.1 56.2 60.5 64.3 65.2 67.3
V, C,S → L 52.4 55.2 55.6 58.5 59.7 59.6 60.6 62.4
V,L,S → C 90.5 85.1 86.1 91.1 88.1 88.9 90.3 92.3
V,L, C → S 56.9 55.2 54.6 58.4 54.8 59.2 58.5 59.3
C,S → V,L 55.0 55.5 55.3 56.4 55.0 59.5 59.3 59.5
C,L → V,S 52.6 51.8 50.9 57.4 52.8 55.9 56.1 56.9
V, C → L,S 56.6 59.9 60.1 55.4 58.8 60.7 59.5 60.5

Average 60.1 60.1 60.2 61.5 61.4 64.0 64.2 65.4

in [170, 118, 88, 89, 90], which involves randomly selecting 2000 images from MNIST and 1800

images from USPS. To be consistent with literature, we used all training samples of the source

domain for training and all testing samples of the target domain for testing for the rest of the

cross-domain tasks (M→ S, S →M, U → S, and S → U).

Here, we randomly selected n labeled samples per class from target domain data and used them

in training. We evaluated our approach for n ranging from 1 to 7 and repeated each experiment 10

times (we only show the mean of the accuracies because the standard deviation is very small).

Similar to [6], we used 2 convolutional layers with 6 and 16 filters of 5× 5 kernels followed by

max-pooling layers and 2 fully connected layers with size 120 and 84 as the embedding function g,

and one fully connected layer with softmax activation as the prediction function h. We compare our

method with 3 recent UDA methods based on adversarial learning. Those methods use all target

samples in their training stage, while we only use very few labeled target samples per category

in training. We also compare our model with the recent few-shot method based on adversarial

learning [78]. Table 2.1 shows the average classification accuracy of the digits datasets. CCSA -

first, CCSA - second, and CCSA - third correspond to our model with discriminator, Contrastive,

and Triplet choices, respectively. CCSA for all choices works well compare to simple fin-tuning.

Table 2.1 shows that our few-shot formulation works well even when only one target sample per

category (n = 1) is available in training. Also, we can see that by increasing n, the accuracy quickly

converges to the top. As shown in the table, CCSA - third works better compared to the other two

choices.



Saeid Motiian Chapter 2. Few-Shot Domain Adaptation and Generalization 35

Ablation study. Separation loss is one of the advantages of the proposed model. We consider

three baselines to compare with it. for the M→ U task. First, we train the network with source

data and then fine-tune it with available target data. Second, we train the network using the

classification and semantic alignment losses (LCSA(f) = LC(h ◦ g) + LSA(g)). Third, we train the

network using the classification and separation losses (LCS(f) = LC(h ◦ g) + LS(g)). Figures 2.4

show the average accuracies over 10 repetition for CCSA-Second for 3 tasks. It show that CSA and

CS improve the accuracy over fine-tuning. It is important to see CS in some cases outperforms

CSA when there is n = 1 and n = 2. This shows the importance of the separation loss. Figures 2.4

also show that using the proposed CCSA loss (using both semantic alignment and separation losses)

provides the best performance. This pattern is seen for all other cross domain tasks.
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Figure 2.5: Visualization of the MNIST-USPS datasets. Left: 2D visualization of the row images of
the MNIST-USPS datasets. The samples from the same class and different domains lie far from each
other on the 2D subspace. Middle: 2D visualization of the embedded images using our base model
(without domain adaptation). The samples from the same class and different domains still lie far
from each other on the 2D subspace. Right: 2D visualization of the embedded images using our SDA
model. The samples from the same class and different domains lie very close to each other on the 2D
subspace.

Visualization. We show how samples lie on the embedding space using CCSA - Second. First, we
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considered the row images of the MNIST and USPS datasets and plotted 2D visualization of them

using t-SNE [171]. As Figure 2.5(Left) shows the row images of the same class and different domains

lie far away from each other in the 2D subspace. For example, the samples of the class zero of the

USPS dataset (0 U) are far from the class zero of the MNIST dataset (0 M). Second, we trained

our base model with no adaptation on the MNIST dataset. We then plotted the 2D visualization

of the MNIST and USPS samples in the embedding space (output of g, the last fully connected

layer). As Figure 2.5(Middle) shows, the samples from the same class and different domains still

lie far away from each other in the 2D subspace. Finally, we trained our SDA model on the MNIST

dataset and 3 labeled samples per class of the USPS dataset. We then plotted the 2D visualization

of the MNIST and USPS samples in the embedding space (output of g). As Figure 2.5(Right)

shows, the samples from the same class and different domains now lie very close to each other in

the 2D subspace. Note however, that this is only a 2D visualization of high-dimensional data, and

Figure 2.5(Right) may not perfectly reflect how close is the data from the same class, and how

classes are separated.
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Figure 2.6: Confusion Matrices U → M. Left: Confusion matrix for the baseline model when we
train with source samples and test on target. The accuracy in this case is 59.05%. There are a lot
of misclassified samples specifically for digit 8 (d-8). Middle: Confusion matrix for our model after
adaptation when we used n = 1 target sample per class. The accuracy is 76.05% and with respect to
the baseline model, there are less misclassified samples. Right: Confusion matrix for our model after
adaptation when we used n = 4 target samples per class. The accuracy is 91.83% and there are very
few misclassified samples.

Weight sharing: There is no restriction on whether or not gt and gs should share weights. Not

sharing weights likely leads to overfitting, given the reduced amount of target training data, and

weight-sharing acts as a regularizer. For instance, we repeated the experiment for the M → U

task with n = 4 and the second choice. Not sharing weights provides an average accuracy of 89.1
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over 10 repetitions, which is less than the average accuracy with weight-sharing (see Table 2.1). A

similar behavior is observable in other experiments.

Confusion Matrices. We designed one simple experiment to see how the confusion matrices

changes per class during adaptation. Similar to our previous experiments, we randomly selected

1800 samples from USPS dataset as source samples and 2000 samples from MNIST as target

samples. We also consider n = 1 and n = 4 target samples per class in training during adaptation.

Figure 2.6 shows that using adaptation provides very good results.
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Figure 2.7: Training Time. Training time with respect to the number of samples per category. The
number of created pairs linearly depends on the number of training target samples per category.

Training Time. Since we are creating pairs in training, The training time linearly increases if we

use all training pairs. However, since we are not using all the negative pairs, training time will be

slower than linear growth (Figure 2.7).

Combining Source and Target datasets. Finetuning is an effective method to transfer the

knowledge from the source domain to the target domain. Another baseline could be simply aggre-

gating all the samples from source and target datasets to one single dataset to train the model.

After applying this method to several experiments, we observed that it provided poorer results

than finetuning in the most cases.

For example, we repeated the experiment for the M→ U task. The classification accuracy for

n = 4, n = 5 , and n = 6 is 84.6, 86.1, and 87.2, respectively, which are poorer than finetuning

(86.5, 87.2, and 88.4).
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Office Dataset

The office dataset is a standard benchmark dataset for visual domain adaptation. It contains

31 object classes for three domains: Amazon, Webcam, and DSLR, indicated as A, W, and D, for

a total of 4,652 images. We consider six domain shifts using the three domains (A → W, A → D,

W → A, W → D, D → A, and D →W). We performed several experiments using this dataset.

First experiment. We followed the setting described in [62]. All classes of the office dataset and

5 train-test splits are considered. For the source domain, 20 examples per category for the Amazon

domain, and 8 examples per category for the DSLR and Webcam domains are randomly selected

for training for each split. Also, 3 labeled examples are randomly selected for each category in the

target domain for training for each split. The rest of the target samples are used for testing. Note

that we used the same splits generated by [62]. We also report the classification results of the SDA

algorithm presented in [65], [63], and [78]. In addition to the SDA algorithms, we report the results

of some recent UDA algorithms. They follow a different experimental protocol compared to the

SDA algorithms, and use all samples of the target domain in training as unlabeled data together

with all samples of the source domain.

For the embedding function g, we used the convolutional layers of the VGG-16 architecture [46]

followed by 2 fully connected layers with output size of 1024 and 128, respectively. For the prediction

function h, we used a fully connected layer with softmax activation. Similar to [62], we used the

weights pre-trained on the ImageNet dataset [48] for the convolutional layers, and initialized the

fully connected layers using all the source domain data. We then fine-tuned all the weights using

the train-test splits.

CCSA - first, CCSA - second, and CCSA - third correspond to our model with discriminator,

Contrastive, and Triplet choices, respectively.

Table 2.2 reports the classification accuracy over 31 classes for the Office dataset and shows that

CCSA - Second (Contrastive choice) and CCSA - Third (Triplet choice) have better performance

compared to [62]. Since the difference between W domain and D domain is not considerable,

unsupervised algorithms work well on D →W andW → D. However, in the cases when target and

source domains are very different (A → W, W → A, A → D, and D → A), CCSA shows larger

margins compared to the second best. This suggests that CCSA will provide greater alignment
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Figure 2.8: Improvement of CCSA over the base model.

gains when there are bigger domain shifts. Figure 2.8(a) instead, shows how much improvement

can be obtained with respect to the base model. This is simply obtained by training g and h with

only the classification loss and source training data, so no adaptation is performed.

Second experiment. We followed the setting described in [62] when only 10 target labeled samples

of 15 classes of the Office dataset are available during training. Similar to [62], we compute the

accuracy on the remaining 16 categories for which no target data was available during training. We

used the same network structure as in the first experiment and the same splits generated by [62].

Table 2.3 shows that CCSA is effective at transferring information from the labeled classes to

the unlabeled target classes. Similar to the first experiment, CCSA works well when shifts between

domains are larger.

Third experiment. We used the original train-test splits of the Office dataset [13]. The splits

are generated in a similar manner to the first experiment but here instead, only 10 classes are

considered (backpack, bike, calculator, headphones, keyboard, laptop-computer, monitor, mouse,

mug, and projector). In order to compare our results with the state-of-the-art, we used DeCaF-fc6

features [45] and 800-dimension SURF features as input. For DeCaF-fc6 features (SURF features)

we used 2 fully connected layers with output size of 1024 (512) and 128 (32) with ReLU activation

as the embedding function, and one fully connected layer with softmax activation as the prediction

function. The features and splits are available on the Office dataset webpage 1.

We compared our results with three UDA (GFK [66], mSDA [166], and RTML [168]) and one

SDA (CDML [167]) algorithms under the same settings. Table 2.4 shows that CCSA for all three

choices provides an improved accuracy with respect to the others. Again, greater domain shifts

1https://cs.stanford.edu/∼jhoffman/domainadapt/
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are better compensated by CCSA . Figure 2.8(b) shows the improvement of CCSA over the base

model using DeCaF-fc6 features. In this experiment, the third choice shows the better performance

compare to the other two.

2.5.2 Domain Generalization

Since model CCSA - Third shows the similar performance compared to CCSA - second for

domain generalization, we only evaluate CCSA - First and Second on different datasets. The goal

is to show that CCSA is able to learn a domain invariant embedding subspace for visual recognition

tasks.

2.5.3 VLCS Dataset

In this section, we use images of 5 shared object categories (bird, car, chair, dog, and person),

of the PASCAL VOC2007 (V) [172], LabelMe (L) [61], Caltech-101 (C) [173], and SUN09 (S) [174]

datasets, which is known as VLCS dataset [129].

[127, 126] have shown that there are covariate shifts between the above 4 domains and have

developed a DG method to minimize them. We followed their experimental setting, and ran-

domly divided each domain into a training set (70%) and a test set (30%) and conducted a

leave-one-domain-out evaluation (4 cross-domain cases) and a leave-two-domain-out evalu-

ation (3 cross-domain cases). In order to compare our results with the state-of-the-art, we used

DeCaF-fc6 features which are publicly available 2, and repeated each cross-domain case 20 times

and reported the average classification accuracy.

We used 2 fully connected layers with output size of 1024 and 128 with ReLU activation as

the embedding function g, and one fully connected layer with softmax activation as the prediction

function h. To create positive and negative pairs for training our network, for each sample of a

source domain we randomly selected 5 samples from each remaining source domain, and help in this

way to avoid overfitting. However, to train a deeper network together with convolutional layers, it

is enough to create a large amount of positive and negative pairs.

We report comparative results in Table 2.5, where all DG methods work better than the base

2http://www.cs.dartmouth.edu/∼chenfang/proj page

/FXR iccv13/index.php
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Table 2.6: MNIST dataset. Classification accuracy for domain generalization over the MNIST dataset
and its rotated domains.

CAE [175] MTAE [127] CCSA - Second

M15◦ ,M30◦ ,M45◦ ,M60◦ ,M75◦ →M 72.1 82.5 85.1
M,M30◦ ,M45◦ ,M60◦ ,M75◦ →M15◦ 95.3 96.3 95.9
M,M15◦ ,M45◦ ,M60◦ ,M75◦ →M30◦ 92.6 93.4 94.6
M,M15◦ ,M30◦ ,M60◦ ,M75◦ →M45◦ 81.5 78.6 83.2
M,M15◦ ,M30◦ ,M45◦ ,M75◦ →M60◦ 92.7 94.2 94.8
M,M15◦ ,M30◦ ,M45◦ ,M60◦ →M75◦ 79.3 80.5 82.5

Average 85.5 87.5 89.3

model, emphasizing the need for domain generalization. Our DG methods have higher average

performance. Also, note that in order to compare with the state-of-the-art DG methods, we only

used 2 fully connected layers for our network and precomputed features as input. However, when

using convolutional layers on row images, we expect our DG models to provide better performance.

Figure 2.8(c) shows the improvement of our DG models over the base model using DeCaF-fc6

features.

2.5.4 MNIST Dataset

We followed the setting in [127], and randomly selected a set M of 100 images per category

from the MNIST dataset (1000 in total). We then rotated each image in M five times with 15

degrees intervals, creating five new domains M15◦ , M30◦ , M45◦ , M60◦ , and M75◦ . We conducted

a leave-one-domain-out evaluation (6 cross-domain cases in total). We used the same network

of Section 2.5.1, and we repeated the experiments 10 times. To create positive and negative pairs

for training our network, for each sample of a source domain we randomly selected 2 samples from

each remaining source domain. We report comparative average accuracies for CCSA - Second and

others in Table 2.6, showing again a performance improvement.

2.6 Discussion

The proposed method has a close relationship with Linear Discriminative Analysis (LDA) [176].

LDA looks for a projection where examples from the same class are projected very close to each

other and, at the same time, the projected means are as far apart as possible. However, here

we do not maximize between-class scatters of the samples in the same domain (source or target)
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and we also do not minimize the within-class scatters of the samples in the same domain (source

or target). We maximize the between-class scatters and within-class scatters of the cross domain

samples. For the future work, it is interesting to use LDA for few-shot domain adaptation. It can

be done by simply aggregating all available samples (from source and target) to one single dataset

and applying LDA to that dataset.

2.7 Conclusions

We have introduced a deep model in combination with the classification and contrastive seman-

tic alignment (CCSA) loss to address supervised domain adaptation (SDA) in the few-shot fashion.

We have shown that the CCSA loss can be easily augmented to address the domain generalization

(DG) problem without the need to change the basic model architecture. However, the approach is

general in the sense that the architecture sub-components can be changed. We found that address-

ing the semantic distribution alignments with point-wise surrogates of distribution distances and

similarities for SDA and DG works very effectively, even when labeled target samples are very few.

We discussed three choices for point-wise surrogates of distribution distances and similarities and

we showed that Triplet choice provides the best results among the three choices. In addition, we

found the SDA accuracy to converge very quickly as more labeled target samples per category are

available. The approach shows clear promise as it sets new state-of-the-art performance in all the

experiments
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Chapter 3

Few-Shot Adversarial Domain

Adaptation

3.1 Introduction

As deep learning approaches have gained prominence in computer vision we have seen tasks

that have large amounts of available labeled data flourish with improved results. There are still

many problems worth solving where labeled data on an equally large scale is too expensive to

collect, annotate, or both, and by extension a straightforward deep learning approach would not be

feasible. Typically, in such a scenario, practitioners will train or reuse a model from a closely related

dataset with a large amount of samples, here called the source domain, and then train with the

much smaller dataset of interest, referred to as the target domain. This process is well-known under

the name finetuning. Finetuning, while simple to implement, has been found to be sub-optimal

when compared to later techniques such as domain adaptation [53]. Domain Adaptation can be

supervised [62, 63], unsupervised [64, 65], or semi-supervised [66, 67, 68], depending on what data

is available in a labeled format and how much can be collected.

Unsupervised domain adaptation (UDA) algorithms do not need any target data labels, but they

require large amounts of target training samples, which may not always be available. Conversely,

supervised domain adaptation (SDA) algorithms do require labeled target data, and because la-

beling information is available, for the same quantity of target data, SDA outperforms UDA [5].

Therefore, if the available target data is scarce, SDA becomes attractive, even if the labeling process

is expensive, because only few samples need to be processed.
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Most domain adaptation approaches try to find a feature space such that the confusion between

source and target distributions in that space is maximum (domain confusion). Because of that,

it is hard to say whether a sample in the feature space has come from the source distribution

or the target distribution. Recently, generative adversarial networks [87] have been introduced

for image generation which can also be used for domain adaptation. In [87], the goal is to learn

a discriminator to distinguish between real samples and generated (fake) samples and then to

learn a generator which best confuses the discriminator. Domain adaptation can also be seen as

a generative adversarial network with one difference, in domain adaptation there is no need to

generate samples, instead, the generator network is replaced with an inference network. Since the

discriminator cannot determine if a sample is from the source or the target distribution the inference

becomes optimal in terms of creating a joint latent space. In this manner, generative adversarial

learning has been successfully modified for UDA [88, 89, 90] and provided very promising results.

Here instead, we are interested in adapting adversarial learning for SDA which we are calling

few-shot adversarial domain adaptation (FADA) for cases when there are very few labeled target

samples available in training. In this few-shot learning regime, our SDA method has proven capable

of increasing a model’s performance at a very high rate with respect to the inclusion of additional

samples. Indeed, even one additional sample can significantly increase performance.

Our first contribution is to handle this scarce data while providing effective training. Our

second contribution is to extend adversarial learning [87] to exploit the label information of target

samples. We propose a novel way of creating pairs of samples using source and target samples to

address the first challenge. We assign a group label to a pair according to the following procedure:

0 if samples of a pair come from the source distribution and the same class label, 1 if they come

from the source and target distributions but the same class label, 2 if they come from the source

distribution but different class labels, and 3 if they come from the source and target distributions

and have different class labels. The second challenge is addressed by using adversarial learning [87]

to train a deep inference function, which confuses a well-trained domain-class discriminator (DCD)

while maintaining a high classification accuracy for the source samples. The DCD is a multi-

class classifier that takes pairs of samples as input and classifies them into the above four groups.

Confusing the DCD will encourage domain confusion, as well as the semantic alignment of classes.

Our third contribution is an extensive validation of CCSA against the state-of-the-art. Although
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Figure 3.1: Examples from MNIST [6] and SVHN [7] of grouped sample pairs. G1 is composed of
samples of the same class from the source dataset in this case MNIST. G2 is composed of samples of
the same class, but one is from the source dataset and the other is from the target dataset. In G3 the
samples in each pair are from the source dataset but with differing class labels. Finally, pairs in G4
are composed of samples from the target and source datasets with differing class labels.
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Figure 3.2: Few-shot adversarial domain adaptation. For simplicity we show our networks in the case
of weight sharing (gs = gt = g). (a) In the first step, we initialized g and h using the source samples
Ds. (b) We freeze g and train a DCD. The picture shows a pair from the second group G2 when the
samples come from two different distributions but the same class label. (c) We freeze the DCD and
update g and h.

our method is general, and can be used for all domain adaptation applications, we focus on visual

recognition.

3.2 Few-shot adversarial domain adaptation

In this section we describe the model we propose to address supervised domain adaptation

(SDA). We are given a training dataset made of pairs Ds = {(xsi , ysi )}Ni=1. The feature xsi ∈ X

is a realization from a random variable Xs, and the label ysi ∈ Y is a realization from a random

variable Y s. In addition, we are also given the training data Dt = {(xti, yti)}Mi=1, where xti ∈ X is a

realization from a random variable Xt, and the labels yti ∈ Y. We assume that there is a covariate

shift [52] between Xs and Xt, i.e., there is a difference between the probability distributions p(Xs)

and p(Xt). We say that Xs represents the source domain and that Xt represents the target domain.

Under this settings the goal is to learn a prediction function f : X → Y that during testing is going

to perform well on data from the target domain.
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Algorithm 1 FADA algorithm
1: Train g and h on Ds using (3.1).
2: Uniformly sample G1,G3 from DsxDs.
3: Uniformly sample G2,G4 from DsxDt.
4: Train DCD w.r.t. gt = gs = g using (3.3).
5: while not convergent do
6: Update g and h by minimizing (3.5).
7: Update DCD by minimizing (3.3).
8: end while

The problem formulated thus far is typically referred to as supervised domain adaptation. In

this work we are especially concerned with the version of this problem where only very few target

labeled samples per class are available. We aim at handling cases where there is only one target

labeled sample, and there can even be some classes with no target samples at all.

In absence of covariate shift a visual classifier f is trained by minimizing a classification loss

LC(f) = E[`(f(Xs), Y )] , (3.1)

where E[·] denotes statistical expectation and ` could be any appropriate loss function. When

the distributions of Xs and Xt are different, a deep model fs trained with Ds will have reduced

performance on the target domain. Increasing it would be trivial by simply training a new model

ft with data Dt. However, Dt is small and deep models require large amounts of labeled data.

In general, f could be modeled by the composition of two functions, i.e., f = h ◦ g. Here

g : X → Z would be an inference from the input space X to a feature or inference space Z, and

h : Z → Y would be a function for predicting from the feature space. With this notation we

would have fs = hs ◦ gs and ft = ht ◦ gt, and the SDA problem would be about finding the best

approximation for gt and ht, given the constraints on the available data.

If gs and gt are able to embed source and target samples, respectively, to a domain invariant

space, it is safe to assume from the feature to the label space that ht = hs = h. Therefore, domain

adaptation paradigms are looking for such inference functions so that they can use the prediction

function hs for target samples.

Traditional unsupervised DA (UDA) paradigms try to align the distributions of the features

in the feature space, mapped from the source and the target domains using a metric between dis-

tributions, Maximum Mean Discrepancy [3] being a popular one and other metrics like Kullback

Leibler divergence [177] and JensenShannon [87] divergence becoming popular when using adver-
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sarial learning. Once they are aligned, a classifier function would no longer be able to tell whether

a sample is coming from the source or the target domain. Recent UDA paradigms try to find

inference functions to satisfy this important goal using adversarial learning. Adversarial training

looks for a domain discriminator D that is able to distinguish between samples of source and target

distributions. In this case D is a binary classifier trained with the standard cross-entropy loss

Ladv−D(Xs, Xt, gs, gt) = −E[log(D(gs(X
s)))]− E[log(1−D(gt(X

t)))] . (3.2)

Once the discriminator is learned, adversarial learning tries to update the target inference

function gt in order to confuse the discriminator. In other words, the adversarial training is looking

for an inference function gt that is able to map a target sample to a feature space such that the

discriminator D will no longer distinguish it from a source sample.

From the above discussion it is clear that in order to perform well, UDA needs to align the

distributions effectively in order to be successful. This can happen only if distributions are repre-

sented by a sufficiently large dataset. Therefore, UDA approaches are in a position of weakness

when we assume Dt to be small. Moreover, UDA approaches have also another intrinsic limitation;

even with perfect confusion alignment, there is no guarantee that samples from different domains

but with the same class label will map nearby in the feature space. This lack of semantic alignment

is a major source of performance reduction.

3.2.1 Handling Scarce Target Data

We are interested in the case where very few labeled target samples (as low as 1 sample per

class) are available. We are facing two challenges in this setting. First, since the size of Dt is

small, we need to find a way to augment it. Second, we need to somehow use the label information

of Dt. Therefore, we create pairs of samples. In this way, we are able to alleviate the lack of

training target samples by pairing them with each training source sample. In [5], we have shown

that creating positive and negative pairs using source and target data is very effective for SDA.

Since the method proposed in [5] does not encode the domain information of the samples, it cannot

be used in adversarial learning. Here we extend [5] by creating 4 groups of pairs (Gi, i = 1, 2, 3, 4)

as follows: we break down the positive pairs into two groups (Groups 1 and 2), where pairs of the
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first group consist of samples from the source distribution with the same class labels, while pairs

of the second group also have the same class label but come from different distributions (one from

the source and one from the target distribution). This is important because we can encode both

label and domain information of training samples. Similarly, we break down the negative pairs into

two groups (Groups 3 and 4), where pairs of the third group consist of samples from the source

distribution with different class labels, while pairs of the forth group come from different class

labels and different distributions (one from the source and one from the target distributions). See

Figure 3.1. In order to give each group the same amount of members we use all possible pairs from

G2, as it is the smallest, and then uniformly sample from the pairs in G1, G3, and G4 to match the

size of G2. Any reasonable amount of portions between the numbers of the pairs can also be used.

In classical adversarial learning we would at this point learn a domain discriminator, but since

we have semantic information to consider as well, we are interested in learning a multi-class dis-

criminator (we call it domain-class discriminator (DCD)) in order to introduce semantic alignment

of the source and target domains. By expanding the binary classifier to its multiclass equivalent,

we can train a classifier that will evaluate which of the 4 groups a given sample pair belongs to.

We model the DCD with 2 fully connected layers with a softmax activation in the last layer which

we can train with the standard categorical cross-entropy loss

LFADA−D = −E[
4∑
i=1

yGi log(D(φ(Gi)))] , (3.3)

where yGi is the label of Gi and D is the DCD function. φ is a symbolic function that takes a

pair as input and outputs the concatenation of the results of the appropriate inference functions.

The output of φ is passed to the DCD (Figure 3.2).

In the second step, we are interested in updating gt in order to confuse the DCD in such a way

that the DCD can no longer distinguish between groups 1 and 2, and also between groups 3 and 4

using the loss

LFADA−g = −E[yG1 log(D(φ(G2))) + yG3 log(D(φ(G4)))] . (3.4)

(3.4) is inspired by the non-saturating game [178] and will force the inference function gt to

embed target samples in a space that DCD will no longer be able to distinguish between them.
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Connection with multi-class discriminators: Consider an image generation task where train-

ing samples come from k classes. Learning the image generator can be done by any standard k-class

classifier and adding generated samples as a new class (generated class) and correspondingly in-

creasing the dimension of the classifier output from k to k + 1. During the adversarial learning,

only the generated class is confused. This has proven effective for image generation [179] and other

tasks. However, this is different than the proposed DCD, where group 1 is confused with 2, and

group 3 is confused with 4. Inspired by [179], we are able to create a k+4 classifier to also guarantee

a high classification accuracy. Therefore, we suggest that (3.4) needs to be minimized together with

the main classifier loss

LFADA−g = −γE[yG1 log(D(g(G2)))+yG3 log(D(g(G4)))]+E[`(f(Xs), Y )]+E[`(f(Xt), Y )] , (3.5)

where γ strikes the balance between classification and confusion. Misclassifying pairs from

group 2 as group 1 and likewise for groups 4 and 3, means that the DCD is no longer able to

distinguish positive or negative pairs of different distributions from positive or negative pairs of the

source distribution, while the classifier is still able to discriminate positive pairs from negative pairs.

This simultaneously satisfies the two main goals of SDA, domain confusion and class separability

in the feature space. UDA only looks for domain confusion and does not address class separability,

because of the lack of labeled target samples.

Connection with conditional GANs: Concatenation of outputs of different inferences has

been done before in conditional GANs. For example, [180, 181, 182] concatenate the input text to

the penultimate layers of the discriminators. [183] concatenates positive and negative pairs before

passing them to the discriminator. However, all of them use the vanilla binary discriminator.

Relationship between gs and gt: There is no restriction for gs and gt and they can be con-

strained or unconstrained. An obvious choice of constraint is equality (weight-sharing) which makes

the inference functions symmetric. This can be seen as a regularizer and will reduce overfitting [5].

Another approach would be learning an asymmetric inference function [118]. Since we have access

to very few target samples, we use weight-sharing (gs = gt = g).
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Table 3.1: MNIST-USPS-SVHN datasets. Classification accuracy for domain adaptation over the
MNIST, USPS, and SVHN datasets. M, U , and S stand for MNIST, USPS, and SVHN domain. LB is
our base model without adaptation. FT and FADA stand for fine-tuning and our method, respectively.

Traditional UDA Adversarial UDA

LB [165] [118] [64] [88] [89] [90] SDA 1 2 3 4 5 6 7

M→ U 65.4 47.8 60.7 91.8 91.2 89.4 92.5
FT 82.3 84.9 85.7 86.5 87.2 88.4 88.6
[5] 85.0 89.0 90.1 91.4 92.4 93.0 92.9
FADA 89.1 91.3 91.9 93.3 93.4 94.0 94.4

U →M 58.6 63.1 67.3 73.7 89.1 90.1 90.8
FT 72.6 78.2 81.9 83.1 83.4 83.6 84.0
[5] 78.4 82.2 85.8 86.1 88.8 89.6 89.4
FADA 81.1 84.2 87.5 89.9 91.1 91.2 91.5

S →M 60.1 - - 82.0 76.0 - 84.7
FT 65.5 68.6 70.7 73.3 74.5 74.6 75.4
FADA 72.8 81.8 82.6 85.1 86.1 86.8 87.2

M→ S 20.3 - - 40.1 - - 36.4
FT 29.7 31.2 36.1 36.7 38.1 38.3 39.1
FADA 37.7 40.5 42.9 46.3 46.1 46.8 47.0

S → U 66.0 - - - - - -
FT 69.4 71.8 74.3 76.2 78.1 77.9 78.9
FADA 78.3 83.2 85.2 85.7 86.2 87.1 87.5

U → S 15.3 - - - - - -
FT 19.9 22.2 22.8 24.6 25.4 25.4 25.6
FADA 27.5 29.8 34.5 36.0 37.9 41.3 42.9

Choice of gs, gt, and h: Since we are interested in visual recognition, the inference functions

gs and gt are modeled by a convolutional neural network (CNN) with some initial convolutional

layers, followed by some fully connected layers which are described specifically in the experiments

section. In addition, the prediction function h is modeled by fully connected layers with a softmax

activation function for the last layer.

Training Process: Here we discuss the training process for the weight-sharing regularizer (gs =

gt = g). Once the inference functions g and the prediction function h are chosen, FADA takes the

following steps: First, g and h are initialized using the source dataset Ds. Then, the mentioned four

groups of pairs should be created using Ds and Dt. The next step is training DCD using the four

groups of pairs. This should be done by freezing g. In the next step, the inference function g and

prediction function h should be updated in order to confuse DCD and maintain high classification

accuracy. This should be done by freezing DCD. See Algorithm 1 and Figure 3.2. The training

process for the non weight-sharing case can be derived similarly.

3.3 Experiments

We present results using the Office dataset [13], the MNIST dataset [6], the USPS dataset [169],

and the SVHN dataset [7].
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3.3.1 MNIST-USPS-SVHN Datasets

The MNIST (M), USPS (U), and SVHN (S) datasets have recently been used for domain

adaptation [170, 118, 89]. They contain images of digits from 0 to 9 in various different environments

including in the wild in the case of SVHN [7]. We considered six cross-domain tasks. The first two

tasks include M → U , U → M, and followed the experimental setting in [170, 118, 88, 89, 90],

which involves randomly selecting 2000 images from MNIST and 1800 images from USPS. For the

rest of the cross-domain tasks,M→ S, S →M, U → S, and S → U , we used all training samples

of the source domain for training and all testing samples of the target domain for testing.

Since [170, 118, 88, 89, 90] introduced unsupervised methods, they used all samples of a target

domain as unlabeled data in training. Here instead, we randomly selected n labeled samples per

class from target domain data and used them in training. We evaluated our approach for n ranging

from 1 to 4 and repeated each experiment 10 times (we only show the mean of the accuracies for

this experiment because standard deviation is very small).

Since the images of the USPS dataset have 16× 16 pixels, we resized the images of the MNIST

and SVHN datasets to 16 × 16 pixels. We assume gs and gt share weights (g = gs = gt) for this

experiment. Similar to [6], we used 2 convolutional layers with 6 and 16 filters of 5 × 5 kernels

followed by max-pooling layers and 2 fully connected layers with size 120 and 84 as the inference

function g, and one fully connected layer with softmax activation as the prediction function h. Also,

we used 2 fully connected layers with size 64 and 4 as DCD (4 groups classifier). Training for each

stage was done using the Adam Optimizer [184]. We compare our method with 1 SDA method,

under the same condition, and 6 recent UDA methods. UDA methods use all target samples in

their training stage, while we only use very few labeled target samples per category in training.

Table 3.1 shows the classification accuracies across a range for the number of target samples

available in training (n = 1, . . . , 7). CCSA works well even when only one target sample per

category (n = 1) is available in training. We can get comparable accuracies with the state-of-

the-art using only 10 labeled target samples (one sample per class n = 1) instead of using more

than thousands of unlabeled target samples. We also report the lower bound (LB) of our model

which corresponds to training the base model using only source samples. Moreover, we report the

accuracies obtained by fine-tuning (FT) the base model on available target data and also the recent
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Table 3.2: Office dataset. Classification accuracy for domain adaptation over the 31 categories of the
Office dataset. A, W, and D stand for Amazon, Webcam, and DSLR domain. LB is our base model
without adaptation.

Unsupervised Methods Supervised Methods

LB [165] [65] [64] [62] [63] [5] CCSA

A →W 61.2 ± 0.9 61.8 ± 0.4 68.5 ± 0.4 68.7 ± 0.3 82.7 ± 0.8 84.5 ± 1.7 88.2 ± 1.0 88.1 ± 1.2
A → D 62.3 ± 0.8 64.4 ± 0.3 67.0 ± 0.4 67.1 ± 0.3 86.1 ± 1.2 86.3 ± 0.8 89.0 ± 1.2 88.2 ± 1.0
W → A 51.6 ± 0.9 52.2 ± 0.4 53.1 ± 0.3 54.09 ± 0.5 65.0 ± 0.5 65.7 ± 1.7 72.1 ± 1.0 71.1 ± 0.9
W → D 95.6 ± 0.7 98.5 ± 0.4 99.0 ± 0.2 99.0 ± 0.2 97.6 ± 0.2 97.5 ± 0.7 97.6 ± 0.4 97.5 ± 0.6
D → A 58.5 ± 0.8 52.1 ± 0.8 54.0 ± 0.4 56.0 ± 0.5 66.2 ± 0.3 66.5 ± 1.0 71.8 ± 0.5 68.1 ± 06
D →W 80.1 ± 0.6 95.0 ± 0.5 96.0 ± 0.3 96.4 ± 0.3 95.7 ± 0.5 95.5 ± 0.6 96.4 ± 0.8 96.4 ± 0.8

Average 68.2 70.6 72.9 73.6 82.2 82.6 85.8 84.9

work presented in [5]. Although Table 3.1 shows that FT increases the accuracies over LB, it has

reduced performance compared to SDA methods.

Figure 3.3 shows how much improvement can be obtained with respect to the base model.

The base model is the lower bound LB. This is simply obtained by training g and h with only the

classification loss and source training data; so, no adaptation is performed.

Weight-Sharing. As we discussed earlier, weight-sharing can be seen as a regularizer that prevents

the target network gt from overfitting. This is important because gt can be easily overfitted since

target data is scarce. We repeated the experiment for the U → M with n = 5 without sharing

weights. This provides an average accuracy of 84.1 over 10 repetitions, which is less than the

weight-sharing case.

3.3.2 Office Dataset

The office dataset is a standard benchmark dataset for visual domain adaptation. It contains

31 object classes for three domains: Amazon, Webcam, and DSLR, indicated as A, W, and D, for

a total of 4,652 images. The first domain A, consists of images downloaded from online merchants,

the second W, consists of low resolution images acquired by webcams, the third D, consists of

high resolution images collected with digital SLRs. We consider four domain shifts using the three

domains (A → W, A → D, W → A, and D → A). Since there is not a considerable domain shift

between W and D, we exclude W → D and D →W.

We followed the setting described in [62]. All classes of the office dataset and 5 train-test splits

are considered. For the source domain, 20 examples per category for the Amazon domain, and 8

examples per category for the DSLR and Webcam domains are randomly selected for training for

each split. Also, 3 labeled examples are randomly selected for each category in the target domain



Saeid Motiian Chapter 3. Supervised Few-Shot Domain Adaptation 53

for training for each split. The rest of the target samples are used for testing. Note that we used

the same splits generated by [62].

In addition to the SDA algorithms, we report the results of some recent UDA algorithms. They

follow a different experimental protocol compared to the SDA algorithms, and use all samples of

the target domain in training as unlabeled data together with all samples of the source domain.

So, we cannot make an exact comparison between results. However, since UDA algorithms use all

samples of the target domain in training and we use only very few of them (3 per class), we think

it is still worth looking at how they differ.

Here we are interested in the case where gs and gt share weights (gs = gt = g). For the inference

function g, we used the convolutional layers of the VGG-16 architecture [46] followed by 2 fully

connected layers with output size of 1024 and 128, respectively. For the prediction function h,

we used a fully connected layer with softmax activation. Similar to [62], we used the weights pre-

trained on the ImageNet dataset [48] for the convolutional layers, and initialized the fully connected

layers using all the source domain data. We model the DCD with 2 fully connected layers with a

softmax activation in the last layer.

Table 3.2 reports the classification accuracy over 31 classes for the Office dataset and shows

that CCSA has performance comparable to the state-of-the-art.

3.4 Conclusions

We have introduced a deep model combining a classification and an adversarial loss to address

SDA in few-shot learning regime. We have shown that adversarial learning can be augmented to

address SDA. The approach is general in the sense that the architecture sub-components can be

changed. We found that addressing the semantic distribution alignments with point-wise surrogates

of distribution distances and similarities for SDA works very effectively, even when labeled target

samples are very few. In addition, we found the SDA accuracy to converge very quickly as more

labeled target samples per category are available. The approach shows clear promise as it sets new

state-of-the-art performance in the experiments.
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Figure 3.3: MNIST-USPS-SVHN summary. The lower bar of each column represents the LB as
reported in Table 3.1 for the corresponding domain pair. The middle bar is the improvement of
fine-tuning FT the base model using the available target data reported in Table 3.1. The top bar is
the improvement of FADA over FT, also reported in Table 3.1.
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Chapter 4

Information Bottleneck Learning

Using Privileged Information

4.1 Introduction

We address the auxiliary view problem from an information theoretic perspective, where we

learn how to extract information from the main data view, in a way that is optimal for visual

recognition, and that speaks also on behalf of the missing auxiliary view [79]. The information

bottleneck (IB) method [8] is a tool for extracting latent information from the main view, in a

way that satisfies two complementary goals. The first is to compress the data as much as possible.

The second is to preserve all the information that is relevant for the task at hand (e.g., predicting

the labels of a visual recognition task). However, the IB method is not directly applicable to our

problem because the latent information is not extracted in a way that speaks also on behalf of the

auxiliary view. Therefore, our first contribution is to extend the IB method to take that aspect

into account. Since the auxiliary view is not available at testing time, it was named privileged

in [56], which first formalized this learning paradigm. Thus, we refer to our IB extension as the

information bottleneck method with privileged information (IBPI).

The IBPI method is a sound information theoretic principle for explicitly extracting relevant

latent information, but gives an implicit, hence computationally hard, way for learning a visual

classifier based on such information. Our second contribution is a modified version of IBPI that

allows learning explicitly any type of visual classifier based on risk minimization. Our third contri-

bution is the application of the modified IBPI method for learning a large-margin classifier, called
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Figure 4.1: Information Bottleneck. Structural representation of Gin and Gout used by the original
two-variable information bottleneck method [8].
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Figure 4.2: Information Bottleneck with Privileged Information. Structural representation of Gin and
Gout used by the information bottleneck method with privileged information.

large-margin IBPI (LMIBPI), for which it is possible to use kernels, and for which we provide an

optimization procedure guaranteed to converge in the primal space for improved computational

efficiency.

Our fourth contribution is an extensive validation of LMIBPI against the state-of-the-art. We

perform experiments where we improve visual recognition of gestures by training with auxiliary

3D joint information, we improve object classification with auxiliary object bounding box informa-

tion, we improve animal recognition with auxiliary attribute information, and we improve action

recognition with auxiliary visual features.

4.1.1 Problem statement

Traditional supervised learning assumes that a training dataset made ofN pairs (x1, y1), · · · , (xN , yN )

is given, where the feature xi ∈ X is a realization from a random variable X, the label yi ∈ Y is

a realization from a random variable Y , and the pairs are i.i.d. samples from a joint probability

distribution p(X,Y ). Under this setting the goal is to learn a prediction function f : X → Y by

searching over a space of admissible functions F .

The Learning Using Privileged Information (LUPI) paradigm as defined in [56] assumes that

every training data pair comes with auxiliary information, augmenting the training dataset to

(x1, x
∗
1, y1), · · · , (xN , x∗N , yN ). The auxiliary feature x∗i ∈ X ∗ is a realization from the random
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Figure 4.3: Upper-bound IBPI. Structural representation of Gin and Gout used by the information
bottleneck method when main and auxiliary information are fused to provide the upper-bound of the
IBPI method.

variable X∗. The triplets are now i.i.d. samples from the joint distribution p(X,X∗, Y ). Under

LUPI settings, the goal is to learn a prediction function f∗ : X → Y by searching F . Note that

in order to predict a label y, at testing time f∗ uses only data from the main space X . Therefore,

the data from the auxiliary space X ∗ is only available during training, which is why it is called

privileged. From the same amount of training samples N , the LUPI classifier f∗ will improve the

performance of the traditional classifier f [136]. On the other hand, how to best exploit privileged

information for learning f∗ remains an open problem.

4.2 The information bottleneck method

We summarize the information bottleneck (IB) method [8] that was extended to the multivariate

case in [185]. We are given a set of random variables X = {X1, · · · , Xn}, distributed according to

a known p(X), a set of latent variables S = {S1, · · · , Sk}, and a Bayesian network with graph Gin

over X ∪ S, defining which subset of X is compressed by which subset of S.

Another Bayesian network, Gout, also defined over X ∪ S, is given and represents which condi-

tional dependencies and independencies we desire S to be able to generate. The joint distribution

q(X,S)
.
= q(S|X)p(X) is unknown.

The compression requirements defined by Gin, and the desired independencies defined by Gout,

are incompatible in general. Therefore, the multivariate IB method computes the optimal S by

searching for the distribution q(S|X), where S compresses X as much as possible, while the distance

from q(X,S) to the closest distribution among those consistent with the structure ofGout is minimal.

This idea is implemented with the multi-information of X, which is the information shared by

X1, · · · , Xn, i.e.,

I(X) = DKL[p(X)‖p(X1) · · · p(Xn)] , (4.1)
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where DKL indicates the Kullback-Leibler divergence [186]. Therefore, the multivariate IB method

looks for q(S|X) that minimizes the functional

L[q(S|X)] = IGin(X,S) + γ(IGin(X,S)− IGout(X,S)) (4.2)

where γ strikes a balance between compression and the ability to satisfy the independency re-

quirements of Gout. The multi-information IG with respect to a Bayesian network G defined over

X ∼ p(X) is computed as in [185], i.e.,

IG(X) =
∑
i

I(Xi; PaGXi
) , (4.3)

where I(Xi; PaGXi
) is the mutual information between Xi and PaGXi

, the set of variables that are

parents of Xi in G.

Let us refer to Figure 4.1 for an example, where X = {X,Y }, and S = S. We interpret X as the

main data we want to compress, and from which we would like to predict the relevant information

Y . This is achieved by first compressing X into S, and then predicting Y from S. In Gin the

edge X → Y indicates the relation defined by p(X,Y ). Moreover, since S will compress X, this is

indicated by the edge X → S, establishing that S is completely determined given the variable it

compresses. The graph Gout instead, reflects the idea that we would like S to capture from X all

the necessary information to perform the best possible prediction of Y . This means that knowing

S makes X and Y independent, or equivalently that I(X;Y |S) = 0.

To evaluate (4.2), instead, we obtain IGin = I(S;X)+ I(Y ;X), and IGout = I(X;S)+ I(Y ;S),

and since I(Y ;X) is constant, (4.2) collapses to the original two-variable IB method [8].

4.3 IB with privileged information

Here we combine the ideas of Sections 4.1 and 4.2 for developing a new information bottleneck

principle, which accounts for privileged information. Specifically, let us assume that X, X∗, and

Y are three random variables with known distribution p(X,X∗, Y ). Also, it is assumed that both

X and X∗ contain information about Y . If properly extracted, such information could be used for

predicting Y . However, we assume that only the information carried by X can be used to predict

Y . We pose the question of whether by doing so it is still possible to learn a model capable of
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exploiting the information carried by X∗.

If we apply the two-variable IB method, we proceed by compressing X into a latent variable S

as much as possible, while making sure that information about Y is retained. These two competing

goals are depicted by the two graphs Gin and Gout in Figure 4.1. On the other hand, since X∗

has knowledge about Y , a more complete Bayesian network representing all the variables and the

compression requirements, is the graph Gin in Figure 4.2, which includes the connection X∗ → Y .

Therefore, the optimal representation computed by the two-variable IB method would be given by

q(X,X∗, Y, S) = q(S|X)p(X,X∗, Y ), where q(S|X) is such that I(X;Y |S) is as close to zero as

possible.

We note that the approach outlined above does not make any effort to exploit the information

carried by X∗. Indeed, I(X∗;Y |S) could be arbitrarily high, i.e., knowing S still leaves with X∗

substantial knowledge about Y . On the other hand, the multivariate IB method allows us to

consider more complex independency structures. In particular, we define Gout like in Figure 4.2,

where knowing S not only makes X and Y independent, but X∗ and Y too. In this way, q(S|X)

not only minimizes I(X;Y |S), but also I(X∗;Y |S). More precisely, the multi-informations of Gin

and Gout in Figure 4.2 are given by

IGin = I(S;X) + I(Y ;X,X∗) , (4.4)

IGout = I(S;X) + I(S;X∗) + I(S;Y ) . (4.5)

By plugging (4.4) and (4.5) into (4.2), since I(Y ;X,X∗) is constant, the functional for learning the

optimal representation for S is given by

L[q(S|X)] = I(S;X)− γI(X∗;S)− γI(S;Y ) (4.6)

where γ strikes a balance between compressing X and imposing the independency requirements.

Similarly to the LUPI framework, since it is not possible to directly compress X∗ for predicting Y ,

we can think of X∗ as carrying privileged information about Y . Therefore, we call learning repre-

sentations by minimizing (4.6) as the information bottleneck method with privileged information

(IBPI).
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4.4 IBPI for visual recognition

We are interested in designing a framework for visual recognition, where we need to perform

a classification task based on a main view X of the visual data. However, at training time, for

some training samples an auxiliary view X∗ is also available. We pose no restrictions on the type

of auxiliary data available. The task at hand falls into the LUPI category defined in Section 4.1,

except that we also admit training samples with missing auxiliary view.

We want to leverage the IBPI method (4.6) because it provides a sound principle, grounded

on information theory, for extracting information S from the main view X that is not only the

most relevant for predicting Y (representing class labels), but also minimizes I(X∗;Y |S), which

means that knowing S leaves with X∗ minimal information about Y . This suggests that S is the

representation of choice for predicting Y . However, similarly to the IB method [185], while IBPI

explicitly defines the compression map, S, by searching for q(S|X), the computation of q(Y |S) is

much harder in general. For this reason, we introduce a modified IBPI method that is tailored to

visual recognition.

We observe that by interpreting γ as a Lagrange multiplier, the last term in (4.6) corresponds to

the constraint I(S;Y ) ≥ constant, enforcing S of carrying at least a certain amount of information

about Y . Ultimately, such information should be used for classification purposes, by predicting

Y through a function f̃ : S → Y. Therefore, we replace the constraint on I(S;Y ) with the risk

associated to f̃(S) according to a loss function `. Thus, for visual recognition, (4.6) is modified

into

L[q(S|X), f̃ ] = I(S;X)− γI(X∗;S) + βE[`(f̃(S), Y )] (4.7)

where E[·] denotes statistical expectation, and β balances the risk versus the compression require-

ments. Note that the modified IBPI criterion (4.7) is general, and could be used with any classifier.

Obviously, a practical implementation of (4.7) would be based on the empirical risk.

4.4.1 Large-margin IBPI

We use (4.7) to develop a large-margin classifier. We focus on the binary case to prove the

validity of the framework by comparing it with the state-of-the-art, which also focused on the

binary case. In particular, we restrict the search space for q(S|X) by assuming S = φ(X;A),
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Algorithm 2 Projected gradient minimization for F

1: Chose 0 < η < 1, 0 < ν < 1.
2: Initialize F 1. Set ρ = 1.
3: for k = 1, 2, · · · do
4: if ρ satisfies (4.11) then
5: Repeatedly increase it by ρ← ρ/η until either ρ does not satisfy (4.11) or F (ρ/η) = F (ρ)
6: else
7: Repeatedly decrease ρ by ρ← ρ/η until ρ satisfies (4.11)
8: end if
9: Set Fk+1 = max{0, Fk − ρ∇FDKL(X̄‖FkX̄∗)}

10: Normalize to 1 the columns of Fk+1

11: end for

Algorithm 3 FALM for LMIBPI

1: Chose µf > 0 and µg > 0 and A0 = B0 = E1, set t1 = 1
2: for k = 1, 2, · · · do
3: Ak = arg min0≤A≤1Qg(A,Ek)

4: Bk = arg min0≤B≤1Qf (B,Ak)

5: tk+1 = (1 +
√

1 + 4t2k)/2

6: Ek+1 = Bk + tk−1
tk+1

(Bk −Bk−1)

7: end for

where A is a suitable set of parameters. Moreover, f̃(S) is a binary decision function given by

Y = sign(〈w, S〉+ b), where 〈·, ·〉 identifies a dot product, w defines the margin, and b is an offset.

Therefore, by using the hinge loss function, from (4.7) we derive the following classifier learning

formulation, which we refer to as the large-margin IBPI (LMIBPI)

min
A,w,b,ξi

I(S;X)− γI(X∗;S) +
β

2
‖w‖2+

C

N

N∑
i=1

ξi

s.t. yi(〈w, φ(xi, A)〉+ b) ≥ 1− ξi , (4.8)

ξi ≥ 0 , ∀i ∈ {1, · · · , N} .

where C is the usual parameter to control the slackness.

Kernels. We set S = φ(X,A) = Aφ(X), where we require φ(X) to have positive components and

be normalized to 1, and A to be a stochastic matrix, made of conditional probabilities between

components of φ(X) and S. This assumption greatly simplifies computing mutual informations.

X can be mapped to a feature space with ψ(X). In this case we set φ(X) = ρ(Ψψ(X))>, where

Ψ = [ψ(x1), · · · , ψ(xN )], and ρ(·) is the additive logistic transformation that maps u ∈ RN to the

N + 1 dimensional simplex v =
[

eu1
1+

∑
i e

ui
, · · · , euN

1+
∑

i e
ui
, 1

1+
∑

i e
ui

]
, with positive components and

normalized to 1. Thus, without loss of generality, in the sequel we set S = AX. X∗ can be mapped

to a feature space ϕ(X∗) with the same strategy.
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Mutual informations. I(S;X) is given by

I(S;X) = E

∑
i,j

A(i, j)X(j) log
A(i, j)

S(i)

 (4.9)

where A(i, j) is the entry of A in position i, j, whereas S(i) and X(j) are the components in

position i and j of S and X respectively. Obviously, during training the expectation is replaced by

the empirical average.

To compute I(S;X∗), let s(i), x∗(j), and x(h) be histogram realizations for S, X∗, and

X, where i, j, and h index the histogram bins. The mutual information I(t, x∗) is given by∑
i,j p(i, j) log p(i,j)

s(i)x∗(j) . By the low of total probability, p(i, j) is rewritten as
∑

h p(i|j, h)p(h|j)x∗(j),

where p(i|j, h) = p(i|h) = A(i, h) because s(i) is completely defined by x(h). In addition, we call

F (h, j) = p(h|j), from which it follows that X = FX∗, where F is also a stochastic matrix.

Therefore, I(S;X∗) is given by

I(S;X∗) = E

∑
i,j

A(i, ·)F (·, j)X∗(j) log
A(i, ·)F (·, j)

S(i)

 (4.10)

Learning F . F is learned from training data. Specifically, let’s indicate with X̄ = [x1, · · · , xN ]

and X̄∗ = [x∗1, · · · , x∗N ] the training data points corresponding to the main and privileged domains,

then F is learned by solving the following constrained optimization problem: minF DKL(X̄‖FX̄∗)

s.t. F is a stochastic matrix with normalized columns. We compute F with Algorithm 2, which is

a projected gradient method [187] with Armijo’s condition

DKL(X̄‖F k+1X̄∗)−DKL(X̄‖F kX̄∗) (4.11)

≤ ν〈∇FDKL(X̄‖F kX̄∗), F k+1 − F k〉

where k is the iteration index. The computation of ∇FDKL(X̄‖FX̄∗) is fairly simple, and can be

found as a special case in [188].

Missing auxiliary views. Training samples with missing auxiliary view affect only I(S;X∗). The

issue is seamlessly handled by estimating F and the average in (4.10) by using only the samples

that have the auxiliary view.
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Algorithm 4 Projected gradient minimization for Qf or Qg

1: Chose 0 < η < 1, 0 < ν < 1.
2: Initialize A1 for Qg (or B1 for Qf ). Set ρ = 1.
3: for k = 1, 2, · · · do
4: if ρ satisfies (4.16) for Qg (or (4.17) for Qf ) then
5: Repeatedly increase it by ρ← ρ/η until either ρ does not satisfy (4.16) (or (4.17)) or A(ρ/η) = A(ρ) (or B(ρ/η) =

B(ρ))
6: else
7: Repeatedly decrease ρ by ρ← ρ/η until ρ satisfies (4.16) (or (4.17))
8: end if
9: Set Ak+1 = max{0, Ak − ρ∇AQg(Ak, B)}

10: (Set Bk+1 = max{0, Bk − ρ∇BQf (Bk, A)})
11: Normalize to 1 the columns of Ak+1 (or Bk+1)
12: end for

LB-LMIBPI SVM SVM-R RankTr SVM+ SVM2k-LUPI KCCA-LUPI LMIBPI UB-LMIBPI SVM2k KCCA

brush hair 78.49 ± 4.99 78.50 ± 6.68 79.67 ± 4.25 78.16 ± 4.40 79.17 ± 6.40 77.50 ± 5.78 77.00 ± 6.79 80.66 ± 4.85 84.48 ± 5.03 85.00 ± 5.93 78.00 ± 8.08
dive 78.83 ± 4.23 80.66 ± 3.00 73.63 ± 4.11 79.66 ± 7.97 79.83 ± 3.64 82.50 ± 2.63 83.00 ± 2.33 83.16 ± 5.23 90.79 ± 5.94 87.16 ± 3.14 85.00 ± 2.07
drink 69.37 ± 6.62 69.16 ± 6.00 68.5 ± 5.43 75.50 ± 6.18 69.17 ± 5.80 69.50 ± 6.13 68.50 ± 5.41 72.36 ± 5.83 81.98 ± 7.48 74.33 ± 7.16 69.83 ± 6.20
eat 67.04 ± 5.86 67.66 ± 4.00 69.63 ± 5.00 75.08 ± 2.10 71.00 ± 5.16 71.50 ± 6.35 67.50 ± 6.58 74.85 ± 4.61 81.98 ± 4.95 76.00 ± 6.62 69.00 ± 6.19
golf 78.83 ± 3.68 81.50 ± 4.11 70.43 ± 4.02 74.66 ± 3.01 80.67 ± 7.25 80.00 ± 6.23 78.66 ± 4.76 85.47 ± 5.66 90.45 ± 3.68 85.33 ± 6.92 78.16 ± 5.29
hug 80.66 ± 3.35 81.83 ± 4.18 80.43 ± 4.66 82.82 ± 3.90 81.50 ± 3.72 83.33 ± 5.03 81.33 ± 4.83 85.97 ± 3.44 91.11 ± 5.61 87.83 ± 3.93 82.66 ± 4.91
jump 74.16 ± 3.70 74.16 ± 4.30 69.90 ± 2.87 75.66 ± 2.81 76.33 ± 6.42 77.00 ± 6.17 76.16 ± 6.03 79.83 ± 2.65 84.52 ± 3.62 81.16 ± 4.90 78.33 ± 7.37
pick 65.59 ± 3.88 63.83 ± 5.42 67.53 ± 3.67 78.33 ± 3.56 66.83 ± 4.19 65.16 ± 5.52 63.83 ± 5.15 79.83 ± 3.56 85.42 ± 3.79 68.50 ± 3.88 64.33 ± 6.09
punch 83.76 ± 3.20 83.66 ± 4.10 81.20 ± 5.72 87.33 ± 4.90 84.33 ± 5.89 84.83 ± 4.47 83.33 ± 4.37 92.06 ± 3.54 95.38 ± 3.54 86.16 ± 4.30 83.83 ± 4.23
sit 75.33 ± 3.10 75.16 ± 4.83 71.66 ± 9.8 76.33 ± 3.67 74.00 ± 4.60 75.16 ± 5.95 73.50 ± 5.05 76.99 ± 3.58 85.29 ± 4.05 77.50 ± 5.78 75.33 ± 5.92

Table 4.1: HMDB dataset. Classification accuracies for one-vs-all binary classifications. The HOF
features represent the main view, and the HOG features the auxiliary view. Best accuracies are
highlighted in boldface.

Optimization

When A is known, (4.8) is a soft-margin SVM problem. Instead, when the SVM parameters

are known, (4.8) becomes

min
A

I(S;X)− γI(X∗;S) +
C

N

N∑
i=1

ξi (4.12)

s.t. ξi = max {0, 1− yi(〈w, φ(xi, A)〉+ b)} .

Since the soft-margin problem is convex, if also (4.12) is convex, then an alternating direction

method is guaranteed to converge. In general, the mutual informations in (4.12) are convex func-

tions of q(S|X) [186]. The last term is also convex, however, the constraints define a non-convex

set due to the discontinuity of the hinge loss function. Smoothing the hinge loss turns (4.12) into

a convex problem, and allows to use an alternating direction method with variable splitting com-

bined with the augmented Lagrangian method. This is done by setting f(A) = I(S;X)−γI(X∗;S),

g(B) = C
N

∑N
i=1 ξi, and then solving minA{f(A) + g(B) : A−B = 0}.

For smoothing the hinge loss we use the Nesterov smoothing technique [189], used also in [190],

which requires choosing a proximal function, and then computing the smoothed slack variables in
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LB-LMIBPI SVM SVM-R RankTr SVM+ SVM2k-LUPI KCCA-LUPI LMIBPI UB-LMIBPI SVM2k KCCA

brush hair 91.67 ± 3.42 90.66 ± 3.06 73.33 ± 4.15 82.33 ± 4.09 93.66 ± 1.72 85.33 ± 5.56 90.33 ± 3.66 93.50 ± 2.42 93.83 ± 1.77 88.33 ± 9.52 91.33 ± 3.99
dive 88.50 ± 4.19 81.16 ± 4.44 83.83 ± 4.84 82.50 ± 3.16 84.50 ± 3.68 79.00 ± 5.73 83.00 ± 4.14 86.67 ± 2.61 90.83 ± 3.26 83.50 ± 3.96 83.50 ± 2.65
drink 76.83 ± 4.26 76.66 ± 6.52 68.83 ± 8.99 71.16 ± 8.01 75.16 ± 7.13 70.50 ± 3.33 77.16 ± 7.37 78.83 ± 5.21 81.00 ± 4.92 77.16 ± 5.44 79.16 ± 6.09
eat 75.00 ± 5.27 73.00 ± 5.70 72.83 ± 5.33 73.50 ± 5.05 75.50 ± 5.82 70.50 ± 4.23 74.33 ± 5.94 78.00 ± 4.07 79.33 ± 3.16 76.83 ± 8.02 77.33 ± 5.56
golf 84.50 ± 2.36 82.33 ± 3.61 78.83 ± 4.84 85.33 ± 5.43 86.16 ± 4.16 77.16 ± 6.18 84.33 ± 3.70 88.17 ± 4.87 89.83 ± 5.00 88.00 ± 3.02 89.00 ± 3.35
hug 86.00 ± 4.79 83.83 ± 4.84 74.83 ± 4.87 87.33 ± 3.70 86.33 ± 3.49 80.33 ± 6.17 83.83 ± 4.01 86.83 ± 4.34 87.50 ± 5.05 85.50 ± 4.23 86.16 ± 3.77
jump 80.50 ± 4.85 77.33 ± 7.78 78.33 ± 4.08 75.50 ± 4.30 79.66 ± 4.21 69.50 ± 5.62 80.83 ± 6.24 80.67 ± 4.98 84.33 ± 7.17 77.50 ± 4.46 81.50 ± 6.95
pick 73.17 ± 5.47 70.16 ± 11.1 65.83 ± 5.22 68.33 ± 3.33 72.33 ± 4.45 60.16 ± 7.09 70.66 ± 5.10 74.83 ± 5.00 75.17 ± 7.47 72.83 ± 4.44 73.50 ± 5.95
punch 88.10 ± 2.95 84.00 ± 5.67 83.83 ± 4.90 84.50 ± 4.44 88.16 ± 5.58 79.33 ± 4.66 86.66 ± 4.90 87.67 ± 4.10 88.83 ± 4.38 82.00 ± 5.76 82.33 ± 5.67
sit 78.00 ± 4.76 74.16 ± 6.15 76.50 ± 6.82 75.33 ± 4.14 76.33 ± 6.02 69.33 ± 7.70 76.33 ± 5.14 82.00 ± 5.58 83.17 ± 5.58 73.50 ± 6.82 75.33 ± 6.22

Table 4.2: HMDB dataset - HIK. Classification accuracies for one-vs-all binary classifications. The
HOF features represented main data, and HOG features auxiliary data. Best accuracies are high-
lighted in boldface.

this way ξi,σ = max0≤ui≤1 ui(1− yiw>Axi)− σ
2 ‖wx>i ‖∞u2

i , which gives

ξi,σ =



0 yiw
>Axi > 1 ,

(1− yiw>Axi)− σ
2 ‖wx>i ‖∞ yiw

>Axi < 1

−σ‖wx>i ‖∞,
(1−yiw>Axi)2

2σ‖wx>i ‖∞
otherwise.

(4.13)

where σ is a smoothing parameter. In this way, the minimization can be carried out with the

Fast Alternating Linearization Method (FALM) [191]. This allows simpler computations, and has

performance guarantees when ∇f and ∇g are Lipschitz continuous, which is the case, given the

smoothing technique that we used.

FALM splits the minimization of the augmented Lagrangian function into two simpler functions

to be minimized alternatively, which are given by

Qg(A,B) = f(A) + g(B) + 〈∇g(B), A−B〉+
1

µg
DKL(A||B) (4.14)

Qf (B,A) = f(A) + g(B) + 〈∇f(A), B −A〉+
1

µg
DKL(B||A) (4.15)

The FALM iteration is given in Algorithm 3. Since A is a stochastic matrix, the KL-divergence

regularization is used in place of the squared Frobenius norm.

Note that lines 3 and 4 of Algorithm 3 are constrained optimizations, requiring A and B to be

stochastic matrices with normalized columns. They are implemented by Algorithm 4, a projected

gradient method [187] with Armijo’s rule that for Qg and Qf is given by

Qg(A
k+1, B)−Qg(Ak, B) ≤ ν〈∇AQg(Ak, B), Ak+1 −Ak〉 (4.16)
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LB-LMIBPI SVM SVM-R RankTr SVM+ SVM2k-LUPI KCCA-LUPI LMIBPI UB-LMIBPI SVM2k KCCA

Thunder snake 56.84 ± 3.21 57.09 ± 3.14 52.42 ± 2.53 57.88 ± 3.57 60.17 ± 2.29 59.12 ± 2.00 56.79 ± 2.33 59.70 ± 2.62 63.31 ± 3.23 61.70 ± 1.35 57.05 ± 2.39
Ringneck snake 62.03 ± 2.62 63.31 ± 2.76 53.55 ± 3.78 62.25 ± 1.46 63.14 ± 2.45 63.93 ± 2.82 63.47 ± 2.03 64.72 ± 2.36 68.36 ± 2.65 67.49± 2.43 64.46 ± 2.55
Hognose snake 57.71 ± 1.56 60.11 ± 1.34 55.74 ± 2.36 55.33 ± 2.77 59.10 ± 1.81 59.73 ± 2.10 60.55 ± 0.96 60.63 ± 1.58 65.32 ± 4.25 61.53± 1.36 60.03 ± 1.32
Green snake 68.11 ± 2.85 71.46 ± 1.39 55.43 ± 6.54 62.20 ± 2.99 70.66 ± 1.83 71.12 ± 1.40 70.03 ± 2.20 72.72 ± 2.17 77.82 ± 5.36 72.64± 1.45 68.80 ± 2.59
King snake 62.75 ± 1.57 60.20 ± 1.83 61.14 ± 3.53 59.70 ± 3.74 63.84 ± 2.07 59.81 ± 1.54 59.92 ± 2.01 61.70 ± 4.96 65.38 ± 2.36 64.89± 1.41 60.70 ± 1.78
Garter snake 66.72 ± 5.23 69.02 ± 3.25 57.07 ± 4.79 66.47 ± 2.58 66.02 ± 2.34 69.17 ± 2.90 69.21 ± 2.86 68.23 ± 1.79 70.23 ± 5.36 72.97± 2.37 69.65 ± 3.31
Water snake 70.26 ± 1.47 71.94 ± 1.91 64.80 ± 9.72 67.86 ± 3.40 68.82 ± 2.86 72.21 ± 1.83 71.34 ± 1.95 72.72 ± 4.96 73.21 ± 3.42 72.50± 2.13 70.11 ± 1.54
Vine snake 67.85 ± 3.52 78.92 ± 2.04 73.04 ± 5.00 69.97 ± 4.87 74.86 ± 2.09 79.05 ± 2.14 78.45 ± 1.95 77.91 ± 1.77 78.92 ± 4.02 80.15± 2.58 78.45 ± 1.72
Night snake 52.42 ± 6.32 53.97 ± 3.62 54.01 ± 2.25 52.96 ± 3.23 55.19 ± 1.76 55.26 ± 3.39 55.00 ± 3.44 57.09 ± 2.14 60.17 ± 4.23 55.48± 3.35 54.51 ± 3.32
Boa constrictor 61.90 ± 2.41 61.76 ± 1.87 59.03 ± 4.80 59.64 ± 3.40 62.66 ± 1.23 62.92 ± 1.65 61.60 ± 2.08 60.86 ± 1.72 63.76 ± 6.03 63.46± 2.10 61.19 ± 1.48
Rock python 57.88 ± 6.85 60.39 ± 2.36 56.84 ± 2.83 57.71 ± 2.59 58.43 ± 2.92 60.14 ± 2.46 59.50 ± 1.44 60.59 ± 1.54 61.14 ± 2.36 60.92± 2.16 58.78 ± 1.81
Indian cobra 61.90 ± 3.56 65.21 ± 2.84 59.04 ± 6.87 63.76 ± 3.92 65.88 ± 2.55 66.88 ± 2.83 64.92 ± 3.55 63.19 ± 2.97 64.53 ± 4.02 68.80± 1.52 65.42 ± 3.39
Green mamba 65.24 ± 1.69 68.50 ± 2.33 62.71 ± 9.11 66.77 ± 5.23 67.56 ± 2.39 68.36 ± 1.95 67.09 ± 2.47 68.72 ± 3.50 71.46 ± 5.36 70.14± 1.67 67.27 ± 2.16
Sea snake 72.72 ± 2.56 77.42 ± 1.64 68.36 ± 4.46 77.22 ± 2.03 76.17 ± 1.61 77.55 ± 1.84 77.10 ± 1.54 77.22 ± 1.70 78.53 ± 2.39 78.51± 1.41 73.06 ± 1.66
Horned viper 67.90 ± 1.49 69.92 ± 1.25 63.95 ± 5.17 67.74 ± 2.75 67.41 ± 1.94 69.49 ± 2.39 69.54 ± 1.01 71.46 ± 3.21 74.86 ± 6.45 71.80± 2.72 68.98 ± 1.31
Diamondback 64.27 ± 2.53 66.18 ± 2.56 61.90 ± 3.09 64.07 ± 2.60 63.48 ± 3.12 66.60 ± 1.81 65.89 ± 2.12 69.92 ± 2.42 71.94 ± 5.01 69.32± 1.59 65.69 ± 2.60
Sidewinder 67.41 ± 3.92 69.55 ± 2.34 60.28 ± 4.82 68.11 ± 3.21 67.85 ± 2.64 68.93 ± 5.54 68.70 ± 2.50 70.66 ± 3.19 72.77 ± 4.03 69.88± 7.25 66.46 ± 1.84

Table 4.3: ImageNet dataset. Classification accuracies for one-vs-all binary classifications. The BoW
from the whole image is the main view, and the BoW from the bounding box region is the auxiliary
view. Best accuracies are highlighted in boldface.

LB-LMIBPI SVM SVM-R RankTr SVM+ SVM2k-LUPI KCCA-LUPI LMIBPI UB-LMIBPI SVM2k KCCA

Thunder snake 54.32 ± 2.21 58.21 ± 1.95 55.35 ± 3.45 62.31 ± 3.21 61.59 ± 1.63 56.74 ± 3.09 59.71 ± 2.15 60.52 ± 3.21 64.73 ± 3.21 59.43 ± 2.49 58.40 ± 2.75
Ringneck snake 65.23 ± 1.78 64.60 ± 2.57 56.84 ± 4.02 64.32 ± 2.15 65.49 ± 2.86 61.26 ± 2.67 61.93 ± 1.53 67.51 ± 2.11 68.32 ± 2.56 62.88 ± 2.96 62.80 ± 2.47
Hognose snake 58.43 ± 2.21 60.00 ± 1.38 59.14 ± 2.65 61.22 ± 1.83 59.52 ± 2.29 54.78 ± 2.72 57.47 ± 3.01 63.72 ± 1.89 66.51 ± 3.45 55.90 ± 2.70 59.25 ± 1.93
Green snake 69.25 ± 1.32 71.59 ± 1.65 60.66 ± 4.20 72.23 ± 2.68 70.34 ± 1.21 62.42 ± 7.44 65.03 ± 1.43 73.21 ± 2.63 75.42 ± 2.87 66.97 ± 7.13 70.46 ± 1.80
King snake 64.41 ± 3.22 63.46 ± 1.48 53.00 ± 2.74 66.21 ± 3.25 65.76 ± 1.61 55.05 ± 4.50 60.74 ± 1.32 67.31 ± 3.25 68.22 ± 5.36 56.86 ± 5.81 61.72 ± 2.60
Garter snake 71.22 ± 2.33 69.27 ± 2.52 60.17 ± 4.26 72.33 ± 3.36 70.34 ± 2.37 65.29 ± 3.59 64.40 ± 1.86 71.44 ± 4.15 73.25 ± 4.32 68.88 ± 2.13 68.49 ± 1.32
Water snake 71.31 ± 3.25 72.32 ± 1.84 62.75 ± 2.98 73.45 ± 4.51 71.88 ± 1.23 69.65 ± 1.85 65.98 ± 1.64 74.41 ± 2.63 76.85 ± 3.25 69.76 ± 1.74 70.05 ± 1.68
Vine snake 79.05 ± 2.51 79.12 ± 2.27 67.64 ± 5.86 78.32 ± 3.72 79.05 ± 1.96 76.21 ± 4.15 73.67 ± 1.25 80.11 ± 3.65 83.22 ± 2.31 77.55 ± 2.97 78.13 ± 1.74
Night snake 56.33 ± 3.11 55.69 ± 3.22 52.90 ± 2.10 59.23 ± 2.23 57.27 ± 1.74 54.60 ± 2.96 55.91 ± 3.08 58.32 ± 4.11 60.11 ± 4.28 55.65 ± 2.93 55.43 ± 2.57
Boa constrictor 64.80 ± 2.11 64.69 ± 1.78 52.61 ± 2.84 63.21 ± 1.80 65.26 ± 1.81 57.18 ± 5.62 63.00 ± 1.07 66.21 ± 2.56 68.42 ± 3.35 60.04 ± 6.85 64.52 ± 2.45
Rock python 62.22 ± 1.78 61.99 ± 1.63 52.86 ± 2.05 61.55 ± 2.35 60.57 ± 1.75 54.07 ± 4.34 58.53 ± 1.76 64.32 ± 3.89 68.23 ± 2.36 55.87 ± 4.91 60.59 ± 2.38
Indian cobra 66.51 ± 1.96 67.23 ± 2.33 59.73 ± 5.50 67.23 ± 4.36 68.57 ± 1.95 62.42 ± 4.82 65.19 ± 2.14 67.89 ± 2.75 71.08 ± 4.83 64.23 ± 3.52 65.98 ± 2.73
Green mamba 69.22 ± 1.32 68.18 ± 1.97 60.58 ± 4.23 71.22 ± 1.25 69.59 ± 1.68 64.79 ± 5.25 64.79 ± 2.03 74.32 ± 1.56 78.31 ± 3.96 65.82 ± 4.55 67.50 ± 1.86
Sea snake 78.53 ± 3.21 77.90 ± 9.05 69.07 ± 7.32 79.22 ± 3.38 81.48 ± 1.44 63.47 ± 9.81 75.70 ± 1.08 82.32 ± 3.18 83.41 ± 3.57 65.59 ± 9.21 79.07 ± 1.03
Horned viper 71.32 ± 4.51 70.64 ± 1.65 59.23 ± 4.16 71.23 ± 2.68 70.84 ± 1.29 60.01 ± 6.64 66.00 ± 2.21 73.45 ± 3.75 76.77 ± 2.58 64.05 ± 7.02 69.29 ± 1.79
Diamondback 68.31 ± 2.11 67.45 ± 2.09 58.00 ± 5.02 69.35 ± 3.65 68.55 ± 2.54 58.48 ± 5.65 63.44 ± 2.56 71.22 ± 2.86 72.31 ± 1.36 62.14 ± 4.87 65.32 ± 2.20
Sidewinder 70.21 ± 1.17 69.62 ± 2.10 63.23 ± 6.20 69.58 ± 4.11 71.39 ± 2.62 66.79 ± 3.49 67.54 ± 2.70 72.36 ± 1.98 78.33 ± 2.35 68.18 ± 2.34 69.10 ± 2.83

Table 4.4: ImageNet dataset - HIK. Classification accuracies for one-vs-all binary classifications. The
BoW from the whole image represented main data, and the BoW from the bounding box region
auxiliary data. Best accuracies are highlighted in boldface.

Qf (Bk+1, A)−Qf (Bk, A) ≤ ν〈∇BQf (Bk, A), Bk+1 −Bk〉 (4.17)

where k is the iteration index. From (4.13), (4.9), (4.10) it is straightforward to compute ∇AQg,

and ∇BQf . We leave those expressions out due to the limited space.

4.5 LMBPI bounds

4.5.1 Lower-bound LMIBPI

In addition to the proposed LMIBPI, we also deploy two more approaches, representing the

upper and lower bounds of LMIBPI. The lower bound corresponds to eliminating the use of auxiliary

information from LMIBPI. Computationally, this can be achieved very easily by setting γ = 0

in (4.8). For each of the experiments we have added a column indicated with LB-LMIBPI, which

stands for lower-bound LMIBPI, and which represents this case.
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4.5.2 Upper-bound LMIBPI

The upper-bound model for LMIBPI corresponds to the case for when main and auxiliary data

are available at both training and testing time. We model this situation as in Figure 4.3. In

particular, we allow the auxiliary data X∗ to be compressed, and obtain S∗, as indicated by Gin

in Figure 4.3. The desired output is identified by Gout, where S∗ d-separates X∗ and Y , and S

d-separates X and Y . Also, we have that (S, S∗) d-separates (X,X∗) from Y . This means that we

would like to have at the same time I(X;Y |S) = 0, I(X∗;Y |S∗) = 0, and I(X,X∗;Y |S, S∗) = 0.

So, we should compress X and X∗ as much as possible, provided that S and S∗ retain all the

information about Y .

The multi-information of Gin and Gout of Figure 4.3 is given by

IGin = I(S;X) + I(S∗;X∗) + I(Y ;X,X∗) , (4.18)

IGout = I(S;X) + I(S∗;X∗) + I(S, S∗;Y ) . (4.19)

Since I(Y ;X,X∗) is constant, the functional for learning the optimal representation for S and S∗

becomes

L[q(S, S∗|X,X∗)] = I(S;X) + I(S∗, X∗)− γI(S, S∗;Y ) . (4.20)

From (4.20) we derive the large-margin formulation of the upper-bound of LMIBPI. In partic-

ular, we restrict the search space for q(S, S∗|X,X∗) by assuming that

S = φ(X;A) , (4.21)

S∗ = φ(X∗;A∗) , (4.22)

where A and A∗ are two suitable sets of parameters. Moreover, from S and S∗ we aim at predicting

the relevant information Y through the decision function given by

Y = sign

〈
w,

 S

S∗

〉 + b

 . (4.23)
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Therefore, the large-margin problem that we solve is the following

min
A,A∗,w,b,ξi

I(S;X) + I(S∗;X∗) +
β

2
‖w‖2+

C

N

N∑
i=1

ξi

s.t. yi

〈
w,

 φ(xi, A)

φ(x∗i , A
∗)

〉 + b

 ≥ 1− ξi , (4.24)

ξi ≥ 0 , ∀i ∈ {1, · · · , N} .

The optimization of problem (4.24), which we refer to as upper-bound LMIBPI (UP-LMIBPI)

can be carried out with techniques similar to LMIBPI. In particular, we assume the relationships

S = AX, and S∗ = A∗X∗, where A and A∗ are stochastic matrices with normalized columns.

Although now we have to estimate A and A∗, the parameter γ of (4.8) has disappeared. The

implementation of the optimization entails alternating between solving an SVM problem when A

and A∗ are known, and then keep every parameter fixed and update A, and subsequently update

A∗. The update of A and A∗ requires a set of equations similar to LMIBPI.

In the rest of this material we refer to the implementation of UP-LMIBPI as UP-LMIBPI, and

for each experiment we report results corresponding to this case, where auxiliary information is

available at testing time too (which actually makes it no-longer privileged!).

4.6 Experiments

We have performed experiments with four different datasets. With each dataset we train and

test the following binary classifiers.

Single-view classifiers: Using only the main view, we train the SVM-Light [192] (indicated

as SVM), the SVM-Rank [193] (indicated as SVM-R), and LMIBPI where we eliminate the use of

auxiliary information by setting γ = 0 (indicated as LB-LMIBPI).

LUPI classifiers: We train the SVM+ [56] (indicated as SVM+, implemented by [194]), the Rank

Transfer [10] (indicated as RankTr, and reimplemented by us), and our LMIBPI approach (indicated

as LMIBPI). We also train the SVM2k [73] and test only the SVM that uses the main view (indicated

as SVM2k-LUPI), and we perform kernel CCA (KCCA) [195] between main and auxiliary views, map

the main view in feature space and train an SVM (indicated as KCCA-LUPI).

Two-view classifiers: Using main and auxiliary views, we train the SVM2k (indicated as SVM2k),
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and we also use KCCA between views to map them in feature space, train two SVMs and average

the outputs (indicated as KCCA). Finally, we also extend LMIBPI (details are omitted for lack of

space) to fuse main and auxiliary views (indicated as UB-LMIBPI). Note that for these classifiers

main and auxiliary views are used also during testing. So, their performances represent the upper

bound for the corresponding LUPI versions.

Model selection: We use the same joint cross validation and model selection procedure described

in [10], based on 5-fold cross-validation to select the best parameters and use them to retrain on

the complete set. The main parameters to select are C, β, γ, and m, the number of columns of

A. The C’s and β’s were searched in the range {10−3, · · · , 103}, the γ’s in the range {0.1, 0.3, 0.5},

and the m’s in the range {50, 70, 90}.

Performance: For each binary classification experiment we randomly select the same number of

positive and negative samples for training, and the same for testing. Each experiment is repeated

10 times and average classification accuracy and standard deviation are reported.

Kernels: We use the linear and the histogram intersection (HIK). Due to space constraints we

report table results for the linear case, and include figures for the HIK. Tables for more non-linear

kernels are omitted for lack of space.

HMDB dataset: The HMDB dataset [196] is a video dataset for action recognition, composed

of 51 classes. Each class has approximately 100 videos. We have randomly selected 10 classes,

and we have considered the binary classification between one class versus the rest. With this

experiment we test whether computing an auxiliary feature only during training, can be used to

improve the recognition during testing. This would mean a performance improvement while saving

computing power. For every video we extracted two bag-of-word (BoW) representations, one given

by HOF descriptors, and one by HOG descriptors. We used dictionaries of size 400, learned with

VLFeat [197]. We used 70 samples per class for training and 30 for testing. The HOF descriptors

were set to the main view, and the HOG’s represented auxiliary information. Table 4.1 collects the

classification accuracies for the linear kernel. As expected, LUPI classifiers improve upon single-

view, and LMIBPI outperforms the others 8 out of 10 times in the linear case, and 6 times with

HIK. See Figure 4.4 (top row).

Table 4.2 provides the classification accuracy for the same experiment reported in Table 4.1,

with the exception that the linear kernel here is replaced by the HIK kernel. Figure 4.5 shows the
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differences between the accuracies of LMIBPI versus RankTr, SVM+, SVM2k-LUPI and KCCA-LUPI.

These plots highlight that LMIBPI compares favorably. Figure 4.6 shows how LMIBPI compares

against LB-LMIBPI and UB-LMIBPI. If we consider the performance gap between lower and upper

bound accuracies, and we identify with 0% the lower bound, and with 100% the upper bound,

on average, using the auxiliary information allows recovering 47.1% of the performance gap in the

linear kernel case, and 35.4% when HIK is used. Also, using HIK improves the average performance

from 81.11± 5.80% to 83.71± 5.75%.

Time complexity: LMIBPI estimates F only once, and then iterates between optimizing A and

a SVM. Both components are fast, also thanks to the derivation in the primal space. In addition,

Figure 4.7 shows the accuracy convergence for the drink class of the HMDB dataset for different

m’s. We observed that less than 10 iterations were enough to reach convergence most of the time.

ImageNet dataset: We use the ImageNet [48] object categories of the 2012 challenge, also used

in [10]. This subset has bounding box annotations, and we test whether they can improve recog-

nition when used as auxiliary information. We use the group of snakes, which has 17 classes, for

a total of 7746 images (some bounding boxes did not have images). For each sample we extracted

a BoW from the entire image to be used as main view, and a BoW from the image portion in the

bounding box to be used as auxiliary view. The descriptor used was dense SIFT [197] with a vo-

cabulary size of 400. The classification task is between one snake class versus all the others. We use

200 samples per class for training and the rest for testing. Table 4.3 summarizes the classification

accuracy results. Even here LUPI classifiers improve upon single-view, and LMIBPI outperforms

the others 10 out of 17 times in the linear case, and 13 times with HIK. See Figure 4.4 (middle

row).

Table 4.4 provides the classification accuracy for the same experiment reported in Table 4.3,

with the exception that the linear kernel here is replaced by the HIK kernel. Figure 4.8 shows the

differences between the accuracies of LMIBPI versus RankTr, SVM+, SVM2k-LUPI and KCCA-LUPI.

These plots highlight that LMIBPI compares favorably. Figure 4.9 shows how LMIBPI compares

against LB-LMIBPI and UB-LMIBPI. On average, using the auxiliary information allows recovering

47.4% of the performance gap in the linear kernel case, and 50.6% when HIK is used. Also, using

HIK improves the average performance from 66.94± 6.39% to 69.92± 6.39%.

CGD2011 dataset: The CGD2011 dataset [198] contains 20 gesture classes, each of which has
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LB-LMIBPI SVM SVM-R RankTr SVM+ SVM2k-LUPI KCCA-LUPI LMIBPI UB-LMIBPI SVM2k KCCA

vieniqui 52.89 ± 1.98 49.72 ± 4.96 52.83 ± 6.24 52.11 ± 4.83 50.27 ± 4.20 51.16 ± 4.50 48.33 ± 4.84 54.00 ± 1.32 56.50 ± 5.06 50.72 ± 2.99 52.66 ± 3.38
prendere 53.95 ± 4.23 52.39 ± 3.00 56.38 ± 4.10 54.50 ± 3.87 58.05 ± 2.34 54.83 ± 3.16 52.44 ± 3.34 57.28 ± 4.18 61.61 ± 8.32 56.50± 3.54 57.50 ± 2.72
sonostufo 55.95 ± 2.56 52.27 ± 3.97 57.00 ± 4.61 57.11 ± 4.19 59.44 ± 3.74 54.05 ± 4.29 51.33 ± 3.56 59.28 ± 2.19 66.33 ± 7.25 58.88± 4.47 57.00 ± 4.55
chevuoi 60.00 ± 5.62 57.55 ± 4.16 57.72 ± 5.12 55.22 ± 3.16 54.77 ± 4.24 59.22 ± 4.22 57.00 ± 3.45 61.11 ± 2.84 65.83 ± 6.10 67.05± 2.12 61.11 ± 2.27
daccordo 61.53 ± 5.25 65.83 ± 3.34 67.00 ± 3.87 63.61 ± 2.34 65.50 ± 5.28 67.00 ± 3.59 63.27 ± 3.40 64.86 ± 3.94 67.33 ± 8.25 74.83± 3.54 65.66 ± 4.69
perfetto 66.61 ± 4.05 64.55 ± 4.54 62.05 ± 3.46 60.11 ± 4.60 64.16 ± 2.40 64.94 ± 4.79 65.83 ± 4.26 67.72 ± 7.71 68.11 ± 7.23 64.05± 3.78 66.16 ± 5.14
vattene 61.83 ± 7.02 65.66 ± 3.19 62.27 ± 2.16 61.83 ± 5.43 64.55 ± 4.07 65.72 ± 1.88 63.88 ± 3.24 65.11 ± 5.07 68.70 ± 4.21 67.44± 3.47 66.83 ± 2.74
basta 67.00 ± 6.56 65.11 ± 5.18 65.44 ± 3.35 63.38 ± 4.37 64.11 ± 2.55 65.27 ± 3.91 62.72 ± 5.42 68.11 ± 4.28 69.22 ± 6.32 74.94± 6.21 72.11 ± 4.87
buonissimo 56.56 ± 8.02 52.44 ± 12.1 58.64 ± 6.57 58.55 ± 5.18 55.94 ± 5.17 56.05 ± 5.82 54.50 ± 4.52 57.67 ± 5.71 61.50 ± 2.35 65.38± 6.76 55.11 ± 5.00
cheduepalle 63.89 ± 2.01 66.27 ± 2.29 66.44 ± 2.82 65.83 ± 2.87 67.33 ± 3.33 66.66 ± 1.81 64.94 ± 2.47 67.72 ± 2.01 68.11 ± 3.05 76.05± 2.67 70.72 ± 2.85
cosatifarei 58.78 ± 6.20 61.99 ± 3.29 62.33 ± 4.03 61.50 ± 4.17 61.61 ± 4.40 64.50 ± 3.55 61.50 ± 5.25 62.11 ± 4.98 67.17 ± 6.24 64.88± 4.40 63.94 ± 5.75
fame 61.11 ± 5.23 59.55 ± 2.98 60.66 ± 2.87 61.38 ± 3.34 62.66 ± 3.90 63.38 ± 3.47 58.33 ± 1.50 60.55 ± 2.35 66.61 ± 7.22 65.94± 3.52 61.44 ± 4.40
noncenepiu 53.83 ± 1.99 52.61 ± 4.39 53.11 ± 3.55 53.83 ± 2.70 52.94 ± 3.21 54.94 ± 4.71 51.33 ± 3.73 54.94 ± 3.01 58.55 ± 5.23 55.83± 5.57 56.44 ± 4.21
furbo 63.39 ± 5.06 67.27 ± 3.56 65.22 ± 3.65 63.00 ± 3.10 66.33 ± 1.53 68.66 ± 3.30 66.05 ± 2.93 68.70 ± 4.65 72.22 ± 4.31 73.05± 1.87 70.22 ± 4.71
combinato 56.67 ± 7.26 56.33 ± 2.41 59.83 ± 3.73 58.55 ± 4.55 61.05 ± 3.38 58.83 ± 2.61 55.83 ± 2.43 62.11 ± 2.26 65.83 ± 6.32 75.00± 2.83 64.05 ± 3.66
freganiente 55.00 ± 4.25 52.38 ± 3.21 58.77 ± 3.28 56.94 ± 4.56 54.05 ± 6.20 56.94 ± 3.74 53.00 ± 3.12 59.28 ± 4.89 64.16 ± 3.95 58.05± 4.77 54.44 ± 4.59
seipazzo 60.61 ± 6.52 57.16 ± 4.58 55.50 ± 4.89 55.00 ± 3.92 53.55 ± 3.90 60.05 ± 3.23 58.05 ± 4.37 61.72 ± 5.02 65.44 ± 6.03 70.77± 2.97 61.94 ± 5.92
tantotempo 59.89 ± 5.15 61.50 ± 2.95 60.75 ± 3.75 59.27 ± 3.63 63.66 ± 1.96 62.22 ± 2.35 61.27 ± 2.75 63.80 ± 3.72 67.27 ± 3.25 70.83± 3.22 65.33 ± 2.74
messidaccordo 54.83 ± 1.34 53.49 ± 8.88 57.15 ± 4.47 59.05 ± 4.67 59.05 ± 2.98 58.44 ± 2.39 55.66 ± 3.43 55.94 ± 3.17 59.05 ± 5.23 54.50± 4.76 58.50 ± 4.92
ok 53.06 ± 2.98 51.83 ± 2.95 56.50 ± 10.2 53.44 ± 3.62 52.50 ± 2.78 53.88 ± 3.39 50.22 ± 2.79 56.39 ± 2.19 60.75 ± 6.35 51.27± 3.43 52.77 ± 3.16

Table 4.5: CGD2011 dataset. Classification accuracies for one-vs-all binary classifications. The HOF
features are used as main view, and histograms of joint positions are used as auxiliary view. Best
accuracies are highlighted in boldface.

LB-LMIBPI SVM SVM-R RankTr SVM+ SVM2k-LUPI KCCA-LUPI LMIBPI UB-LMIBPI SVM2k KCCA

vieniqui 55.78 ± 4.72 50.22 ± 2.88 53.94 ± 3.70 52.61 ± 3.91 52.22 ± 4.47 51.38 ± 5.89 54.38 ± 3.88 60.27 ± 3.77 62.27 ± 5.23 56.16 ± 3.97 55.44 ± 3.90
prendere 59.44 ± 2.53 56.05 ± 2.82 50.77 ± 1.36 54.39 ± 2.95 58.61 ± 2.91 48.27 ± 3.39 58.50 ± 2.23 61.27 ± 1.83 64.61 ± 3.25 58.05 ± 6.15 61.38 ± 4.21
sonostufo 60.39 ± 3.27 56.11 ± 2.60 55.27 ± 4.64 56.72 ± 4.21 59.88 ± 4.33 53.83 ± 6.30 58.66 ± 3.95 62.94 ± 2.79 63.73 ± 3.50 67.55 ± 5.16 63.00 ± 4.31
chevuoi 60.17 ± 3.69 58.27 ± 2.88 59.22 ± 3.37 58.11 ± 2.38 58.66 ± 3.03 56.66 ± 3.20 59.33 ± 3.05 65.05 ± 3.56 67.86 ± 3.65 66.66 ± 3.12 67.22 ± 4.32
daccordo 66.06 ± 4.42 67.05 ± 3.53 63.88 ± 5.33 61.83 ± 3.07 67.94 ± 2.52 66.05 ± 8.54 66.70 ± 2.18 71.66 ± 2.84 73.44 ± 5.72 77.50 ± 5.17 78.50 ± 2.45
perfetto 66.94 ± 2.42 66.55 ± 4.51 62.33 ± 4.16 62.05 ± 3.52 66.33 ± 2.74 63.33 ± 8.61 63.00 ± 3.32 68.44 ± 2.85 71.11 ± 2.82 68.16 ± 5.39 60.55 ± 3.16
vattene 67.61 ± 1.56 64.50 ± 2.80 61.72 ± 3.04 60.28 ± 2.67 64.61 ± 2.83 62.11 ± 3.27 63.77 ± 2.92 69.05 ± 2.63 72.33 ± 3.45 73.44 ± 3.87 67.88 ± 3.77
basta 67.06 ± 5.14 67.84 ± 4.47 63.66 ± 6.52 63.44 ± 6.11 68.05 ± 2.76 59.66 ± 6.03 69.05 ± 3.46 69.33 ± 3.01 73.33 ± 2.80 71.11 ± 5.73 79.94 ± 4.07
buonissimo 57.78 ± 4.23 55.05 ± 3.84 57.33 ± 3.10 54.55 ± 3.83 56.61 ± 4.33 54.66 ± 2.78 56.66 ± 3.71 63.50 ± 3.77 65.96 ± 3.63 65.38 ± 6.00 60.66 ± 5.35
cheduepalle 67.61 ± 2.85 66.72 ± 2.44 65.88 ± 2.11 61.94 ± 5.63 66.88 ± 3.64 62.00 ± 4.99 63.50 ± 4.00 70.33 ± 2.40 74.44 ± 1.88 75.66 ± 2.61 70.55 ± 3.96
cosatifarei 65.88 ± 4.12 63.55 ± 3.20 59.72 ± 4.12 59.00 ± 3.85 61.77 ± 3.30 58.11 ± 7.29 61.38 ± 4.38 68.33 ± 3.37 73.05 ± 3.36 67.11 ± 6.24 62.44 ± 4.80
fame 62.05 ± 5.25 56.68 ± 2.31 57.88 ± 2.97 58.83 ± 3.70 63.22 ± 4.87 52.94 ± 5.09 57.05 ± 2.62 64.94 ± 1.86 67.00 ± 5.71 66.22 ± 4.37 59.50 ± 4.22
noncenepiu 58.50 ± 4.32 53.22 ± 3.30 53.16 ± 1.83 55.61 ± 3.44 54.88 ± 4.22 53.50 ± 5.11 55.44 ± 3.74 61.66 ± 3.26 63.72 ± 3.88 60.83 ± 4.35 53.94 ± 2.36
furbo 63.44 ± 3.12 67.66 ± 3.27 63.33 ± 5.47 61.66 ± 3.29 65.88 ± 3.63 62.88 ± 4.97 63.55 ± 2.91 68.55 ± 1.61 72.22 ± 3.69 67.83 ± 3.35 60.88 ± 6.55
combinato 63.83 ± 2.12 59.44 ± 2.91 56.99 ± 2.54 59.78 ± 1.68 64.16 ± 1.92 59.83 ± 4.54 59.72 ± 1.98 65.72 ± 4.19 69.34 ± 2.32 78.16 ± 6.64 76.50 ± 1.65
freganiente 59.13 ± 3.25 51.94 ± 2.52 56.11 ± 3.22 54.89 ± 4.82 54.88 ± 3.52 52.05 ± 5.07 52.33 ± 2.34 62.61 ± 2.61 67.88 ± 3.23 59.16 ± 2.97 57.83 ± 2.54
seipazzo 60.56 ± 4.12 56.55 ± 4.11 56.77 ± 4.30 53.16 ± 6.42 55.05 ± 2.81 50.50 ± 5.74 57.44 ± 2.50 63.55 ± 4.08 65.96 ± 4.53 69.00 ± 5.28 64.88 ± 4.28
tantotempo 66.88 ± 4.15 65.72 ± 2.59 56.56 ± 3.61 59.11 ± 2.58 68.05 ± 1.94 63.55 ± 6.33 62.00 ± 2.99 68.11 ± 2.38 72.22 ± 4.78 75.38 ± 3.84 72.33 ± 4.03
messidaccordo 61.38 ± 3.80 60.66 ± 4.74 55.33 ± 2.64 58.33 ± 2.61 63.22 ± 4.10 58.61 ± 4.90 60.88 ± 4.67 65.05 ± 2.72 67.11 ± 3.21 59.27 ± 4.85 56.88 ± 6.03
ok 56.33 ± 1.22 53.15 ± 2.39 53.72 ± 2.49 52.55 ± 3.93 54.61 ± 3.56 50.66 ± 5.85 55.27 ± 3.18 59.61 ± 3.43 62.44 ± 2.65 56.27 ± 6.26 63.55 ± 2.64

Table 4.6: CGD2011 dataset - HIK. Classification accuracies for one-vs-all binary classifications. The
HOF features represented main data, and histograms of joint positions were used as auxiliary data.
Best accuracies are highlighted in boldface.

about 400 RGB-D videos, along with skeleton tracking data. Since skeleton tracking is typically

more expensive to obtain, we test whether by using it as auxiliary data it can boost performance.

We perform one-vs-all classification with 100 samples per class for training and 90 for testing. We

used a BoW with dictionary size 100 based on HOF features as main view. For the auxiliary view,

from a video we extract a histogram of the joint positions, accumulated over all the frames of the

sequence. Specifically, at every frame we place a spatial grid aligned with the head position of an

individual and bin the position of each of the joints with respect to the grid. The resulting count is

normalized and produces a histogram with 100 bins (Figure 4.10). Table 4.5 shows the classification

accuracies. The LUPI classifiers improve upon single-view, and LMIBPI outperforms the others 11

out of 20 times in the linear case, and all the times with HIK. See Figure 4.4 (bottom row).
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Table 4.6 provides the classification accuracy for the same experiment reported in Table 4.5,

with the exception that the linear kernel here is replaced by the HIK kernel. Figure 4.11 shows the

differences between the accuracies of LMIBPI versus RankTr, SVM+, SVM2k-LUPI and KCCA-LUPI.

These plots highlight that LMIBPI compares favorably. Figure 4.12 shows how LMIBPI compares

against LB-LMIBPI and UB-LMIBPI. On average, using the auxiliary information allows recovering

41.6% of the performance gap in the linear kernel case, and 50.7% when HIK is used. Also, using

HIK improves the average performance from 61.42± 4.60% to 65.50± 3.55%.

Figure 4.13 gives a comprehensive outlook of how LMIBPI compares with the other single-view

and LUPI classifiers. In general, LMIBPI outperforms the competition. For all the three datasets,

HMDB, ImageNet, and CGD2011, using a non-linear kernel has led to a performance improvement,

and for ImageNet and CGD2011 this has also led to a further performance improvement of LMIBPI

with respect to the other approaches.

Finally, for scientific honesty, we note that in 2 cases for HMDB with HIK kernel, 2 cases

for ImageNet with linear kernel, and 1 case for CGD2011 with linear kernel, on average, LMIBPI

performs slightly below LB-LMIBPI. These are a few unfortunate cases where the optimization

on average converges to a local minimum that leads to a worse solution than the corresponding

single-view classifier.

AwA dataset: We use the Animals with Attributes (AwA) dataset [199], which contains images of

animal categories, and repeat the same experiment performed in [10, 9]. We use the 10 test classes

for which the attribute annotations are provided, for a total of 6180 images. The attributes capture

85 properties of the animals. We use the same set of features used in [10]. The main view is given

by L1 normalized 2000 dimensional SURF descriptors, and the attributes are the auxiliary view

obtained from the DAP model [199]. We train 45 binary classifiers for each class pair combination.

We use 50 and 200 samples per class for training and testing, respectively. The train/test split is

repeated 20 times. For fair comparison with [10, 9] we use the linear kernel. Table 4.7 reports only

the average precision (AP) results, where we have indicated in bold when LMIBPI has improved

the AP, which happens 20 times out of 45, and 12 times the improvement is significant according to

the z-test. Finally, Table 4.8 repeats the same experiment of Table 4.7 where the linear kernel has

been replaced with a Gaussian kernel. The average AP is 88.38 for the linear kernel and also for

the Gaussian kernel. Therefore, switching to a non-linear kernel has not improved the performance.
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SVM RankTr SVM+ LIR LMIBPI

1 Chimpanzee versus Giant panda 88.88 ± 0.51 89.33 ± 0.50 88.07 ± 0.57 88.28 ± 0.47 88.32 ± 0.33
2 Chimpanzee versus Leopard 93.74 ± 0.26 93.70 ± 0.23 93.49 ± 0.29 93.36 ± 0.15 94.05 ± 0.10
3 Chimpanzee versus Persian cat 90.14 ± 0.40 91.00 ± 0.39 89.88 ± 0.42 91.59 ± 0.40 90.76 ± 0.19
4 Chimpanzee versus Pig 85.64 ± 0.57 86.08 ± 0.43 85.19 ± 0.53 83.74 ± 0.35 87.32 ± 0.17
5 Chimpanzee versus Hippopotamus 86.40 ± 0.55 86.92 ± 0.45 86.31 ± 0.59 89.63 ± 0.31 90.21 ± 0.12
6 Chimpanzee versus Humpback whale 98.03 ± 0.18 98.08 ± 0.18 97.74 ± 0.22 98.30 ± 0.16 97.76 ± 0.26
7 Chimpanzee versus Raccoon 87.01 ± 0.46 87.07 ± 0.48 86.64 ± 0.47 85.90 ± 0.63 88.21 ± 0.27
8 Chimpanzee versus Rat 85.42 ± 0.53 86.67 ± 0.56 84.83 ± 0.68 85.43 ± 0.48 85.31 ± 0.29
9 Chimpanzee versus Seal 91.74 ± 0.39 91.54 ± 0.43 91.10 ± 0.59 92.78 ± 0.42 93.11 ± 0.23

10 Giant panda versus Leopard 93.71 ± 0.38 93.76 ± 0.29 94.03 ± 0.28 92.81 ± 0.48 92.95 ± 0.20
11 Giant panda versus Persian cat 92.55 ± 0.41 92.57 ± 0.43 92.66 ± 0.32 93.75 ± 0.29 92.82 ± 0.32
12 Giant panda versus Pig 86.64 ± 0.45 86.22 ± 0.52 86.55 ± 0.40 84.19 ± 0.69 86.71 ± 0.40
13 Giant panda versus Hippopotamus 90.04 ± 0.56 90.89 ± 0.36 89.93 ± 0.56 91.27 ± 0.35 91.12 ± 0.29
14 Giant panda versus Humpback whale 98.38 ± 0.17 98.53 ± 0.15 98.11 ± 0.19 98.67 ± 0.11 98.82 ± 0.14
15 Giant panda versus Raccoon 89.36 ± 0.44 88.66 ± 0.60 89.06 ± 0.49 86.90 ± 0.74 89.21 ± 0.30
16 Giant panda versus Rat 88.49 ± 0.49 87.53 ± 0.51 87.86 ± 0.48 88.76 ± 0.37 89.13 ± 0.25
17 Giant panda versus Seal 92.81 ± 0.32 92.40 ± 0.40 92.59 ± 0.38 93.32 ± 0.31 93.81 ± 0.19
18 Leopard versus Persian cat 95.08 ± 0.25 95.26 ± 0.25 94.93 ± 0.24 95.26 ± 0.22 94.97 ± 0.22
19 Leopard versus Pig 88.55 ± 0.28 88.90 ± 0.28 88.37 ± 0.36 85.34 ± 0.50 87.31 ± 0.21
20 Leopard versus Hippopotamus 92.98 ± 0.29 92.86 ± 0.26 92.73 ± 0.31 92.54 ± 0.28 92.71 ± 0.16
21 Leopard versus Humpback whale 98.49 ± 0.30 98.63 ± 0.23 98.27 ± 0.31 98.83 ± 0.11 98.61 ± 0.26
22 Leopard versus Raccoon 80.31 ± 0.75 79.84 ± 0.59 79.94 ± 0.73 81.31 ± 0.67 80.12 ± 0.22
23 Leopard versus Rat 88.74 ± 0.35 89.27 ± 0.28 88.92 ± 0.35 89.93 ± 0.28 90.13 ± 0.21
24 Leopard versus Seal 93.87 ± 0.36 94.30 ± 0.36 93.74 ± 0.37 94.12 ± 0.21 95.18 ± 0.33
25 Persian cat versus Pig 81.55 ± 0.59 81.68 ± 0.46 81.45 ± 0.57 82.60 ± 0.58 82.27 ± 0.24
26 Persian cat versus Hippopotamus 92.42 ± 0.34 92.82 ± 0.30 92.33 ± 0.33 92.00 ± 0.49 92.38 ± 0.32
27 Persian cat versus Humpback whale 95.92 ± 0.29 95.84 ± 0.30 95.45 ± 0.38 97.36 ± 0.15 97.42 ± 0.25
28 Persian cat versus Raccoon 90.19 ± 0.40 90.38 ± 0.39 90.31 ± 0.41 91.72 ± 0.34 91.24 ± 0.18
29 Persian cat versus Rat 67.19 ± 0.60 69.07 ± 0.48 67.56 ± 0.63 69.62 ± 0.84 70.49 ± 0.45
30 Persian cat versus Seal 84.79 ± 0.60 85.66 ± 0.49 84.46 ± 0.54 88.38 ± 0.44 88.41 ± 0.36
31 Pig versus Hippopotamus 74.42 ± 0.48 75.57 ± 0.58 73.47 ± 0.55 77.75 ± 0.51 73.42 ± 0.12
32 Pig versus Humpback whale 96.01 ± 0.33 95.93 ± 0.37 95.75 ± 0.30 96.85 ± 0.18 95.93 ± 0.12
33 Pig versus Raccoon 77.73 ± 0.80 79.13 ± 0.63 76.96 ± 0.85 81.61 ± 0.71 82.19 ± 0.15
34 Pig versus Rat 68.66 ± 0.76 70.77 ± 0.73 68.58 ± 0.41 72.47 ± 0.55 73.31 ± 0.25
35 Pig versus Seal 77.91 ± 0.71 79.26 ± 0.77 77.32 ± 0.73 82.61 ± 0.55 83.11 ± 0.43
36 Hippopotamus versus Humpback whale 92.19 ± 0.44 92.17 ± 0.44 91.64 ± 0.60 91.08 ± 0.63 90.11 ± 0.28
37 Hippopotamus versus Raccoon 85.54 ± 0.60 85.84 ± 0.70 85.03 ± 0.60 85.72 ± 0.63 84.46 ± 0.36
38 Hippopotamus versus Rat 84.49 ± 0.39 85.62 ± 0.48 84.25 ± 0.37 85.91 ± 0.48 86.11 ± 0.26
39 Hippopotamus versus Seal 69.79 ± 0.83 70.83 ± 0.79 69.43 ± 0.84 69.79 ± 0.70 70.49 ± 0.41
40 Humpback whale versus Raccoon 96.67 ± 0.28 96.90 ± 0.29 96.57 ± 0.31 97.34 ± 0.20 96.97 ± 0.27
41 Humpback whale versus Rat 94.52 ± 0.19 94.56 ± 0.22 93.97 ± 0.24 92.95 ± 0.68 93.89 ± 0.19
42 Humpback whale versus Seal 84.60 ± 0.49 84.81 ± 0.38 84.24 ± 0.49 85.91 ± 0.57 86.13 ± 0.17
43 Raccoon versus Rat 77.65 ± 0.64 78.61 ± 0.72 78.36 ± 0.54 80.00 ± 0.57 79.63 ± 0.14
44 Raccoon versus Seal 91.43 ± 0.36 91.51 ± 0.40 91.37 ± 0.38 89.21 ± 0.43 91.63 ± 0.36
45 Rat versus Seal 78.45 ± 0.65 79.88 ± 0.69 78.28 ± 0.75 79.02 ± 0.50 79.21 ± 0.28

Average 87.28 87.92 87.53 88.13 88.38

Table 4.7: AwA dataset. AP results for one-vs-one classification. Best average precisions are high-
lighted in boldface. The red boldface numbers indicate when the improvement of the LMIBPI method
over the second best value was significant according to the z-test. The table refers to the case where
we use 50 and 200 samples per class for training and testing, respectively. The values for the columns
indicated as SVM, RankTr, SVM+, and LIR have been reported directly from [9] and from the supplementary
material of [10].

This is likely due to the use of SURF features, which have a very high dimension, and are known

to work well with linear kernels.

The table including the results of the other approaches can be found in [9]. Figure 4.7 shows

that SVM has the highest AP 3 times, SVM+ 1 time, RankTr 9 times, and LIR [9] 12 times.
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SVM SVM+ SVM2k-LUPI KCCA-LUPI LMIBPI

1 Chimpanzee versus Giant panda 87.96 ± 0.18 87.81 ± 0.08 87.89 ± 0.42 87.60 ± 0.20 86.48 ± 0.46
2 Chimpanzee versus Leopard 95.15 ± 0.56 92.12 ± 0.33 93.80 ± 0.29 92.39 ± 0.30 92.90 ± 0.26
3 Chimpanzee versus Persian cat 88.20 ± 0.13 92.30 ± 0.04 90.60 ± 0.57 90.83 ± 0.24 93.42 ± 0.04
4 Chimpanzee versus Pig 84.77 ± 0.25 85.57 ± 0.25 85.37 ± 0.15 85.09 ± 0.54 86.29 ± 0.42
5 Chimpanzee versus Hippopotamus 87.35 ± 0.06 86.83 ± 0.26 87.11 ± 0.29 87.72 ± 0.48 89.84 ± 0.38
6 Chimpanzee versus Humpback whale 98.25 ± 0.06 97.61 ± 0.10 98.64 ± 0.39 96.73 ± 0.31 98.19 ± 0.18
7 Chimpanzee versus Raccoon 83.60 ± 0.13 83.62 ± 0.16 86.07 ± 0.21 83.39 ± 0.49 87.33 ± 0.42
8 Chimpanzee versus Rat 85.52 ± 0.24 85.74 ± 0.54 86.50 ± 0.07 85.33 ± 0.26 88.15 ± 0.42
9 Chimpanzee versus Seal 90.78 ± 0.39 90.10 ± 0.30 89.96 ± 0.07 90.82 ± 0.13 88.62 ± 0.31

10 Giant panda versus Leopard 95.49 ± 0.49 95.69 ± 0.14 93.83 ± 0.13 91.79 ± 0.03 95.40 ± 0.41
11 Giant panda versus Persian cat 90.85 ± 0.00 93.64 ± 0.30 93.16 ± 0.46 90.63 ± 0.38 93.47 ± 0.29
12 Giant panda versus Pig 86.07 ± 0.52 86.09 ± 0.35 86.44 ± 0.54 87.75 ± 0.15 85.19 ± 0.58
13 Giant panda versus Hippopotamus 91.31 ± 0.29 90.85 ± 0.40 91.88 ± 0.50 92.24 ± 0.29 92.83 ± 0.14
14 Giant panda versus Humpback whale 99.45 ± 0.49 98.34 ± 0.39 98.74 ± 0.26 97.48 ± 0.30 98.20 ± 0.53
15 Giant panda versus Raccoon 88.18 ± 0.30 90.36 ± 0.55 90.43 ± 0.09 88.74 ± 0.16 89.54 ± 0.03
16 Giant panda versus Rat 84.63 ± 0.51 88.18 ± 0.51 87.41 ± 0.17 85.62 ± 0.30 86.93 ± 0.06
17 Giant panda versus Seal 90.07 ± 0.49 91.30 ± 0.22 90.86 ± 0.26 89.66 ± 0.30 90.09 ± 0.14
18 Leopard versus Persian cat 95.09 ± 0.58 93.38 ± 0.55 94.40 ± 0.06 94.82 ± 0.00 93.85 ± 0.07
19 Leopard versus Pig 88.62 ± 0.12 87.31 ± 0.10 88.10 ± 0.18 85.20 ± 0.31 86.81 ± 0.09
20 Leopard versus Hippopotamus 91.04 ± 0.04 91.51 ± 0.20 92.39 ± 0.53 90.74 ± 0.18 94.06 ± 0.26
21 Leopard versus Humpback whale 97.02 ± 0.00 98.21 ± 0.14 99.04 ± 0.49 98.19 ± 0.47 98.94 ± 0.05
22 Leopard versus Raccoon 82.90 ± 0.11 80.42 ± 0.29 81.46 ± 0.19 82.31 ± 0.13 82.65 ± 0.54
23 Leopard versus Rat 85.85 ± 0.52 87.91 ± 0.51 86.87 ± 0.19 87.65 ± 0.34 88.85 ± 0.08
24 Leopard versus Seal 93.02 ± 0.46 92.21 ± 0.12 94.13 ± 0.48 95.08 ± 0.48 95.13 ± 0.04
25 Persian cat versus Pig 82.51 ± 0.27 79.40 ± 0.05 80.76 ± 0.14 81.12 ± 0.01 81.94 ± 0.14
26 Persian cat versus Hippopotamus 92.02 ± 0.36 94.00 ± 0.13 92.83 ± 0.37 93.67 ± 0.26 93.56 ± 0.51
27 Persian cat versus Humpback whale 94.90 ± 0.23 98.37 ± 0.23 97.06 ± 0.08 99.01 ± 1.00 96.18 ± 0.18
28 Persian cat versus Raccoon 90.33 ± 0.23 92.18 ± 0.39 90.76 ± 0.51 90.70 ± 0.17 91.71 ± 0.39
29 Persian cat versus Rat 62.81 ± 0.21 63.04 ± 0.04 65.04 ± 0.37 64.07 ± 0.04 67.80 ± 0.11
30 Persian cat versus Seal 87.09 ± 0.44 87.47 ± 0.18 86.34 ± 0.49 87.29 ± 0.30 89.21 ± 0.36
31 Pig versus Hippopotamus 75.30 ± 0.06 76.38 ± 0.50 76.71 ± 0.19 74.16 ± 0.49 76.56 ± 0.48
32 Pig versus Humpback whale 94.30 ± 0.18 94.42 ± 0.30 96.74 ± 0.00 97.13 ± 0.36 96.28 ± 0.16
33 Pig versus Raccoon 79.55 ± 0.09 78.02 ± 0.15 80.07 ± 0.16 79.55 ± 0.05 81.39 ± 0.49
34 Pig versus Rat 70.72 ± 0.33 70.25 ± 0.41 72.98 ± 0.33 74.23 ± 0.19 74.68 ± 0.11
35 Pig versus Seal 77.88 ± 0.16 78.72 ± 0.20 78.08 ± 0.32 78.56 ± 0.56 79.66 ± 0.07
36 Hippopotamus versus Humpback whale 92.54 ± 0.17 93.70 ± 0.14 92.62 ± 0.00 94.02 ± 0.54 94.15 ± 0.28
37 Hippopotamus versus Raccoon 88.30 ± 0.17 83.36 ± 0.09 86.36 ± 0.47 87.68 ± 0.46 89.60 ± 0.50
38 Hippopotamus versus Rat 84.01 ± 0.59 85.90 ± 0.17 83.95 ± 0.05 83.59 ± 0.12 82.86 ± 0.06
39 Hippopotamus versus Seal 71.13 ± 0.49 72.74 ± 0.03 71.73 ± 0.47 69.87 ± 0.46 70.76 ± 0.50
40 Humpback whale versus Raccoon 96.57 ± 0.45 98.59 ± 0.43 97.08 ± 0.40 96.96 ± 0.28 96.29 ± 0.28
41 Humpback whale versus Rat 96.54 ± 0.38 96.01 ± 0.34 95.32 ± 0.29 95.25 ± 0.10 94.65 ± 0.04
42 Humpback whale versus Seal 84.21 ± 0.41 86.30 ± 0.38 85.97 ± 0.52 83.39 ± 0.31 87.58 ± 0.10
43 Raccoon versus Rat 78.09 ± 0.04 78.27 ± 0.28 77.96 ± 0.43 78.61 ± 0.02 79.33 ± 0.38
44 Raccoon versus Seal 92.05 ± 0.42 92.51 ± 0.34 90.60 ± 0.20 91.44 ± 0.52 89.36 ± 0.08
45 Rat versus Seal 77.29 ± 0.19 79.03 ± 0.38 77.39 ± 0.19 77.29 ± 0.02 80.54 ± 0.44

Average 87.32 87.75 87.81 87.45 88.38

Table 4.8: AwA dataset. AP results for one-vs-one classification. Best average precisions are high-
lighted in boldface. The values in this table have been obtained by conducting the same experiment
performed to obtain Table 4.7, with the difference that a Gaussian kernel was used in place of the
linear kernel.
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RankTr wins SVM+ wins SVM2k wins CCA wins LMIBPI wins

Figure 4.4: Linear vs. non-linear kernel. Plots representing the differences between the classification
accuracy of the winner LUPI method against the average accuracy over the following methods: RankTr

(yellow), SVM+ (magenta), SVM2k-LUPI (cyan), KCCA-LUPI (red), and LMIBPI (green). The linear kernel was
used on the left plots, and the histogram intersection kernel on the right plots. The top row come
from the HMDB dataset, the middle row from ImageNet, and the last row from CGD2011.
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Figure 4.5: HMDB dataset. Each row shows the plots of the differences between the classification
accuracy of LMIBPI versus RankTr, SVM+, SVM2k-LUPI, and CCA-LUPI, respectively. The top row refers to
the use of the linear kernel. The bottom row refers to the use of the HIK kernel.
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Figure 4.6: HMDB dataset. Comparison between the classification accuracy of LMIBPI versus the
corresponding single-view classifier (lower bound) LB-LMIBPI, and two-view classifier (upper bound)
UB-LMIBPI. The left plot refers to the use of the linear kernel. The right plot refers to the use of the
HIK kernel.
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SVM wins SVM+ wins RankTr wins LIR wins LMIBPI wins

Figure 4.7: Rate of convergence and AwA dataset. Left: Plot showing the convergence rate for
different m’s for the drink class of the HMDB dataset. Right: Plot showing the differences between
the AP of the winner LUPI method against the average accuracy over the following methods: SVM

(yellow), SVM+ (magenta), RankTr (cyan), LIR (red), and LMIBPI (green).
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Figure 4.8: ImageNet dataset. Each row shows the plots of the differences between the classification
accuracy of LMIBPI versus RankTr, SVM+, SVM2k-LUPI, and CCA-LUPI, respectively. The top row refers to
the use of the linear kernel. The bottom row refers to the use of the HIK kernel.



Saeid Motiian Chapter 4. Information Bottleneck Learning Using Privileged Information 77

40

50

60

70

80

A
c
c
u
ra

c
y

T
h

u
n

d
e

r 
s
n

a
k
e

R
in

g
n

e
c
k
 s

n
a

k
e

H
o

g
n

o
s
e

 s
n

a
k
e

G
re

e
n

 s
n

a
k
e

K
in

g
 s

n
a

k
e

G
a

rt
e

r 
s
n

a
k
e

W
a

te
r 

s
n

a
k
e

V
in

e
 s

n
a

k
e

N
ig

h
t 

s
n

a
k
e

B
o

a
 c

o
n

s
tr

ic
to

r

R
o

c
k
 p

y
th

o
n

In
d

ia
n

 c
o

b
ra

G
re

e
n

 m
a

m
b

a

S
e

a
 s

n
a

k
e

H
o

rn
e

d
 v

ip
e

r

D
ia

m
o

n
d

b
a

c
k

S
id

e
w

in
d

e
r 

 

LB−LMIBPI

LMIBPI

UB−LMIBPI
40

50

60

70

80

A
c
c
u
ra

c
y

T
h

u
n

d
e

r 
s
n

a
k
e

R
in

g
n

e
c
k
 s

n
a

k
e

H
o

g
n

o
s
e

 s
n

a
k
e

G
re

e
n

 s
n

a
k
e

K
in

g
 s

n
a

k
e

G
a

rt
e

r 
s
n

a
k
e

W
a

te
r 

s
n

a
k
e

V
in

e
 s

n
a

k
e

N
ig

h
t 

s
n

a
k
e

B
o

a
 c

o
n

s
tr

ic
to

r

R
o

c
k
 p

y
th

o
n

In
d

ia
n

 c
o

b
ra

G
re

e
n

 m
a

m
b

a

S
e

a
 s

n
a

k
e

H
o

rn
e

d
 v

ip
e

r

D
ia

m
o

n
d

b
a

c
k

S
id

e
w

in
d

e
r 

 

LB−LMIBPI

LMIBPI

UB−LMIBPI

Figure 4.9: ImageNet dataset. Comparison between the classification accuracy of LMIBPI versus the
corresponding single-view classifier (lower bound) LB-LMIBPI, and two-view classifier (upper bound)
UB-LMIBPI. The left plot refers to the use of the linear kernel. The right plot refers to the use of the
HIK kernel.

Figure 4.10: CGD2011 dataset. Samples from the CGD2011 dataset with joint information superim-
posed (red squares), together with a (green) grid visualizing the binning of the joint positions.
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Figure 4.11: CGD2011 dataset. Each row shows the plots of the differences between the classification
accuracy of LMIBPI versus RankTr, SVM+, SVM2k-LUPI, and CCA-LUPI, respectively. The top row refers to
the use of the linear kernel. The bottom row refers to the use of the HIK kernel.
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Figure 4.12: CGD2011 dataset. Comparison between the classification accuracy of LMIBPI versus the
corresponding single-view classifier (lower bound) LB-LMIBPI, and two-view classifier (upper bound)
UB-LMIBPI. The left plot refers to the use of the linear kernel. The right plot refers to the use of the
HIK kernel.
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Figure 4.13: HMDB, ImageNet and CGD2011 datasets. Plots representing the number of wins accu-
mulated by the single-view and the LUPI classifiers, namely SVM, SVM-R, and RankTr, SVM+, SVM2k-LUPI,
KCCA-LUPI, LMIBPI. The top row refers to the use of the linear kernel. The bottom row refers to the
use of the HIK kernel. The first column refers to the HMDB dataset. The middle column refers to
the ImageNet dataset. The right column refers tot he CGD2011 dataset.
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Chapter 5

Information Bottleneck Domain

Adaptation with Privileged

Information

We addressed the auxiliary view problem in Section 4. In this section, we take another step

forward and consider the the auxiliary view problem and the unsupervised domain adaptation

(UDA) problem jointly by taking an information theoretic approach. [80]. This is important because

target distribution most likely is different than source distributions.

We are given a training dataset made of triplets (x1, x
∗
1, y1), · · · , (xN , x∗N , yN ). The feature

xi ∈ X is a realization from a random variable X, the feature x∗i ∈ X ∗ is a realization from a

random variable X∗, and the label yi ∈ Y is a realization from a random variable Y . The triplets

are i.i.d. samples from a joint probability distribution p(X,X∗, Y ). In addition, we are given the

data xt1, · · · , xtM , where xti ∈ X is a realization from a random variable Xt, and the data points are

i.i.d. samples from a distribution p(Xt). We assume that there is a covariate shift [52] between

X and Xt, i.e., there is a difference between p(X) and p(Xt). We say that X represents the main

data view, that X∗ represents the auxiliary data view, and that Xt represents the target data view.

The main and auxiliary views represent the source domain, and the target view the target domain.

Under this settings the goal is to learn a prediction function f : X → Y that during testing is going

to perform well on data from the target view.

The problem just described (See Figure 5.1 for model overview) is different from the traditional
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No adaptation and no auxiliary information

Xt

X

S

T

X*
BallCo�ee MugLabels

Auxiliary View (X*)

Main View (X)

Source Dataset Target Dataset

Calculator

IBDAPI

Our model

(a) (b)

Target View (Xt)

S*

Figure 5.1: Domain Adaptation with Privileged Information We assumed that X represents the
source/main samples, Xt, and X∗ represent the extra information available in training from target
and source samples, respectively. (a) Since target data distribution p(Xt), and source data distribu-
tion p(X) differ by a covariate shift, the classifier boundary is suboptimal. Even more so because the
paired source auxiliary/privileged data X∗ is not used for training. (b) Labeled paired source aux-
iliary/privileged data (e.g., depth data) is used, along with unlabeled target data, to improve visual
recognition on the target domain via the information bottleneck domain adaptation with privileged
information (IBDAPI) principle (as we will discuss in Chapter 5). IBDAPI learns a compressed rep-
resentation where the mapped source data (S and S∗), as well as the mapped target data (T ) become
more separable.

unsupervised domain adaptation (UDA), because we also aim at exploiting the auxiliary data view

during training for learning a better prediction function. On the other hand, the presence of

the auxiliary view is reminiscent of the Learning Using Privileged Information (LUPI) paradigm

as defined in [56], but there is a fundamental difference. In the LUPI framework the prediction

function is used only on the main view, and the domain adaptation task is absent. While it has

been shown that auxiliary data improves the performance of a traditional classifier [136], how to

best carry this improvement over to a new target domain is still an open problem.

5.1 IB for UDA with auxiliary data

We use the IB framework of Section 4.2 to develop a new information bottleneck principle,

which simultaneously accounts for the use of auxiliary data, as well as the adaptation to a new

target domain. Specifically, let us assume that X, X∗, Xt and Y are four random variables with

known distribution p(X,X∗, Xt, Y ). We develop the principle in two steps. First, we assume that

the target view is an additional view of the source domain, and we extend the IB method to handle

the auxiliary the main and the target views in the source, and the main and target views in the

target domain. Then, we assume that the target view does not carry information about Y , and we

address the covariate shift.
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5.1.1 Incorporating auxiliary data

We assume that both X, X∗, and Xt carry information about Y . In addition, only the infor-

mation carried by X and Xt can be used to predict Y . We want to design a principle for learning

a model for prediction that also exploits the information carried by X∗.

The straightforward application of the IB method suggests to compress X into a latent variable

S, and Xt into a latent variable T , as much as possible, while making sure that information

about Y is retained. These two competing goals are depicted by the graphs Gin and Gout in

Figures 5.2(a) and 5.2(b). Therefore, the IB method would seek for the optimal representation

given by q(Xt, X,X∗, Y, S, T ) = q(S, T |X,Xt)p(Xt, X,X∗, Y ), where q(S, T |X,Xt) is such that

I(X;Y |S) and I(Xt;Y |T ) are as close to zero as possible. On the other hand, since X∗ has

knowledge about Y (as highlighted by the connection X∗ → Y in Gin), we observe that I(X∗;Y |S)

and I(X∗;Y |T ) could be arbitrarily high. This means that knowing S and T still leaves with X∗

substantial information about Y .

We address the problem just outlined by modifying Gout as in Figure 5.2(c), where the edges

S → X∗ and T → X∗ have been added. In this way, knowing S and T makes not only X and

Y independent, as well as Xt and Y , but also makes X∗ and Y independent. This also means

that the optimal q(S, T |X,Xt) will minimize I(X;Y |S) and I(Xt;Y |T ), as well as I(X∗;Y |S) and

I(X∗;Y |T ). In particular, the multi-informations of Gin and Gout in Figures 5.2(a) and 5.2(c) are

given by

IGin = I(S;X) + I(T ;Xt) + I(Y ;Xt, X,X∗) , (5.1)

IGout = I(S;X) + I(T ;Xt) + I(S, T ;X∗) + I(S, T ;Y ) . (5.2)

By plugging (5.1) and (5.2) into (4.2), since I(Y ;Xt, X,X∗) is constant, the functional for learning

the optimal representation for S and T is given by

L[q(S, T |X,Xt)] = I(S;X) + I(T ;Xt)− γI(S, T ;X∗)− γI(S, T ;Y ) , (5.3)

where γ strikes a balance between compressing X and Xt and imposing the independency require-

ments.
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Figure 5.2: Information Bottleneck with Auxiliary Data. Structural representation of Gin (a), and
Gout (b,c) used by the information bottleneck method. (b) Gout does not leverage the auxiliary data.
(c) Gout leverages the auxiliary data.

5.1.2 Adapting to a new target domain

Model (5.3) incorporates the target view Xt under the assumption that it can predict the

relevant information Y . This implies a fully supervised scenario, where training data should be given

in quadruplets, i.e., (xti, xi, x
∗
i , yi). On the other hand, we are interested in the unsupervised setting,

where the training target view is not labeled and not paired with the source data. From a statistical

point of view, this assumption corresponds to saying that p(Xt, X,X∗, Y ) = p(Xt)p(X,X∗, Y ),

which leads to a number of consequences. First, the graph Gin of Figure 5.2(a) now becomes as

in Figure 5.3(a), where we do not consider the dotted edges for the moment. In addition, it is

easy to show that I(S, T ;X∗) = I(S;X∗), and that I(S, T ;Y ) = I(S;Y ). Therefore, the graph

structure Gout in Figure 5.2(c) now becomes as in Figure 5.3(b). Finally, it is also easy to show

that q(S, T |X,Xt) = q(S|X)q(T |Xt). Therefore, the unsupervised scenario reduces model (5.3) to

the following

L[q(S|X), q(T |Xt)] = I(S;X) + I(T ;Xt)− γI(S;X∗)− γI(S;Y ) . (5.4)

We note that estimating the optimal compressed representation S and T of X and Xt, by

minimizing (5.4) leads to an ill-posed problem. This is because at convergence q(T |Xt) would

simply minimize I(T ;Xt). On the other hand, we are interested in addressing the distribution

mismatch between the main view and the target view. Therefore, rather than treating q(S|X) and

q(T |Xt) as separate free functions, we make the assumption that the compression maps from the

main and the target views should cause q(S|X) and q(T |Xt) to be the same, in order to minimize the

covariate shift in the compressed domain. If we restrict the search for the optimal representation
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Figure 5.3: Information Bottleneck Domain Adaptation with Privileged Information. Structural
representation of Gin and Gout used by the IBDAPI principle (5.5).

within a family of distributions parameterized by A, this means that q(S|X)
.
= qA(S|X) and

q(T |Xt)
.
= qA(T |Xt), i.e., they should have the same parameter. This assumption would impose

q(S|X) and q(T |Xt) to no longer be independent, and therefore all the consequences originated by

the statistical independence of Xt would be reversed, to a certain extent. In other words, it would

be as if the links Xt → Y in Gin, and T → X∗ and T → Y in Gout, were partially restored, which

is why they appear with dotted lines in Figure 5.3. Finally, this assumption reduces (5.4) to the

proposed principle

L[qA(·|·)] = I(S;X) + I(T ;Xt)− γI(S;X∗)− γI(S;Y ) (5.5)

Since the auxiliary view plays the role of privileged information, we call learning representations by

minimizing the functional (5.5) as the information bottleneck domain adaptation with privileged

information (IBDAPI).

5.2 IBDAPI for visual recognition

Our goal is to design a framework for visual recognition, where a classification task is based

on the target view Xt of the visual data, for which some unlabeled samples are given for training.

Moreover, at training time labeled samples from a main view X are also given, as well as some

samples from an auxiliary view X∗. We pose no restrictions on the type of auxiliary data available.
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The IBDAPI method (5.5) learns how to compress X and Xt into S and T in a way that is

optimal for predicting Y (representing class labels), but also that best exploits the information

carried by X∗ about Y . Therefore, T appears to be the representation of choice for predicting Y .

However, while IBDAPI provides for a compression map defined explicitly by qA(·|·), the prediction

map for doing classification, identified by q(Y |S) is much harder to compute in general. This is

why we modify the IBDAPI method into one that is tailored to visual recognition.

We note that the last term in (5.5) is equivalent to the constraint I(S;Y ) ≥ constant if γ is

interpreted as a Lagrange multiplier. This means that S should carry at least a certain amount

of information about Y . On the other hand, we are interested in learning a decision function

f : S → Y that uses such information for classification purposes. Therefore, we replace the

constraint on I(S;Y ) with the risk associated to f(S) according to a loss function `. Thus, for

visual recognition, (5.5) is modified into

L[qA(·|·), f ] = I(S;X) + I(T ;Xt)− γI(S;X∗) + βE[`(f(S), Y )] (5.6)

where E[·] denotes statistical expectation, and β balances the risk versus the compression require-

ments. Note that the modified IBDAPI criterion (5.6) is general, and could be used with any

classifier.

5.2.1 Large-margin IBDAPI

We use (5.6) for learning a multi-class large-margin classifier. We parameterize the search

space for qA(·|·) by assuming S = φ(X;A), as well as T = φ(Xt;A), where A is a suitable set of

parameters. Moreover, f(S) is a k-class decision function given by Y = arg maxm=1,···,k〈wm, S〉,

where 〈·, ·〉 identifies a dot product, and W = [w1, · · · , wk] defines a set of margins. Therefore,

based on [200], (5.6) leads to the following classifier learning formulation, which we refer to as the

large-margin IBDAPI (LMIBDAPI)

min
A,W,ξi

I(S;X) + I(T ;Xt)− γI(S;X∗) +
β

2
‖W‖22+

C

N

N∑
i=1

ξi (5.7)

s.t. 〈wyi − wm, φ(xi, A)〉 ≥ emi − ξi , ξi ≥ 0 , m = 1, · · · , k , i = 1, · · · , N .
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where emi = 0 if yi = m and emi = 1 otherwise. ξi indicates the usual slack variables, and C is the

usual parameter to control the slackness.

Kernels. As described in Section 4.4.1, we set S = φ(X,A) = Aφ(X), and T = φ(Xt, A) =

Aφ(Xt), where we require φ(X) and φ(Xt) to have positive components and be normalized to

1, and A to be a stochastic matrix, made of conditional probabilities between components of

φ(X) (φ(Xt)) and S (T ). This assumption greatly simplifies computing mutual informations. This

mapping also allows the use of kernels. X∗ is mapped to a feature space with the same requirements

by using the same strategy. Thus, without loss of generality, in the sequel we set S = AX, and

T = AXt.

Mutual informations. I(S;X) and I(T ;Xt) are given by

I(S;X) = E

∑
i,j

A(i, j)X(j) log
A(i, j)

S(i)

 I(T ;Xt) = E

∑
i,j

A(i, j)Xt(j) log
A(i, j)

T (i)

 (5.8)

where A(i, j) is the entry of A in position i, j, whereas S(i) and X(j) (T (i) and Xt(j)) are the

components in position i and j of S and X (T and Xt) respectively. Obviously, during training

the expectation is replaced by the empirical average. To compute I(S;X∗), it is easy to show that

I(S;X∗) = E

∑
i,j

A(i, ·)F (·, j)X∗(j) log
A(i, ·)F (·, j)

S(i)

 (5.9)

where F is also a stochastic matrix such that X = FX∗. F can be learned from the source training

data with a projected gradient method [187], as described in Section 4.4.1.

Missing auxiliary views. Training samples with missing auxiliary view affect only I(S;X∗).

The issue is seamlessly handled by estimating F and the average in (5.9) by using only the samples

that have the auxiliary view.

Optimization. When A is known, (5.7) is a soft-margin SVM problem. Instead, when the SVM

parameters are known, (5.7) becomes

min
A

I(S;X) + I(T ;Xt)− γI(X∗;S) +
C

N

N∑
i=1

ξi (5.10)

s.t. ξi = max
m=1,···,k

{〈wm − wyi , φ(xi, A)〉+ emi } .
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Since the soft-margin problem is convex, if also (5.10) is convex, then an alternating direction

method is guaranteed to converge. In general, the mutual informations in (5.10) are convex

functions of q(S|X) and q(T |Xt) [186], while within a range of γ’s the third mutual informa-

tion leaves the sum of the three to be convex. The last term is also convex, however, the con-

straints define a non-convex set due to the discontinuity of the hinge loss function. Smooth-

ing the hinge loss turns (5.10) into a convex problem, and allows to use an alternating direc-

tion method with variable splitting combined with the augmented Lagrangian method. This is

done by setting f(A) = I(S;X) + I(T ;Xt) − γI(X∗;S), g(B) = C
N

∑N
i=1 ξi, and then solving

minA{f(A) + g(B) : A−B = 0}.

For smoothing the hinge loss we use the Nesterov smoothing technique [189]. Since the objective

is to smooth g(B), we proceed by relaxing its minimization into the sum of the minima of the slack

variables. Doing so gives ḡ(B), the smoothed version of g(B), expressed as

ḡ(B) = C
N

∑N
i=1 µ ln( 1

m

∑k
m=1 cosh( 1

µ(〈wm − wyi , φ(xi, B)〉 − emi ))) (5.11)

and µ is a smoothing parameter. In this way, the minimization can be carried out with the

Fast Alternating Linearization Method (FALM) [191]. This allows simpler computations, and has

performance guarantees when ∇f and ∇ḡ are Lipschitz continuous, which is the case, given the

smoothing technique that we have used. Since the procedure is almost identical to the Section 4,

we refer the readers to that section.

In summary, we provide an optimization procedure guaranteed to converge, which starts by

learning F . Then, until convergence alternates between learning a SVM, and solving (5.10). Note

that this iterative optimization is fully conducted in the primal space for best computational effi-

ciency.

5.3 Experiments

We have performed experiments on several datasets for object and gender recognition, and have

compared our approach with several others summarized as follows.

Single-view classifiers: Using only the main view, we use libSVM [201] and LIBLINEAR [202]

(indicated as SVM) for training binary and multi-class SVM classifiers.
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Table 5.1: RGB-D-Caltech256 dataset. Classification accuracies for one-vs-all binary classifications
with linear kernels. Main and auxiliary views are KDES features of the RGB and depth of the RGB-D
Object dataset [11]. KDES features from the Caltech256 dataset [12] represent the target domain.

MV and LUPI UDA UDA+LUPI

SVM SVM2k KCCA SVM+ RankTr SGF LMK SA LMIBDA DA-M2S LMIBDAPI

Calculator 49.83 ± 1.65 50.08 ± 1.87 48.10 ± 2.58 54.61 ± 3.37 53.27 ± 1.26 54.23 ± 1.26 53.71 ± 2.78 54.22 ± 3.32 56.33 ± 2.78 55.63 ± 2.89 59.52 ± 2.18
Cereal box 69.10 ± 3.41 67.10 ± 3.60 67.40 ± 3.20 62.78 ± 3.53 63.26 ± 4.98 65.23 ± 3.25 66.81 ± 2.59 67.17 ± 3.89 67.92 ± 2.11 68.50 ± 4.27 72.60 ± 2.63
Coffee mug 57.95 ± 3.03 57.61 ± 3.97 57.13 ± 5.99 58.32 ± 3.45 58.36 ± 3.69 66.23 ± 4.21 67.36 ± 3.89 68.12 ± 5.11 68.36 ± 3.11 70.11 ± 5.19 75.65 ± 3.39
Keyboard 60.79 ± 6.04 59.77 ± 6.41 59.40 ± 6.08 58.21 ± 3.88 57.98 ± 3.48 61.59 ± 3.27 59.26 ± 3.89 62.65 ± 3.14 63.36 ± 3.25 63.52 ± 4.68 68.50 ± 3.71
Flashlight 72.06 ± 2.60 70.86 ± 3.95 70.56 ± 3.20 71.36 ± 2.21 70.68 ± 4.24 72.36 ± 2.78 70.26 ± 2.15 73.25 ± 2.68 72.15 ± 2.14 71.37 ± 2.78 74.79 ± 2.51
Lightbulb 67.09 ± 2.32 65.23 ± 2.71 66.69 ± 3.06 68.36 ± 3.77 67.58 ± 2.15 67.99 ± 1.89 66.36 ± 2.11 68.11 ± 1.67 67.23 ± 2.85 68.48 ± 3.81 71.81 ± 1.49
Mushroom 49.02 ± 4.45 51.41 ± 3.97 49.04 ± 3.54 54.71 ± 5.86 56.84 ± 4.15 66.36 ± 3.87 64.26 ± 4.15 68.22 ± 3.89 69.26 ± 3.14 70.00 ± 5.10 70.39 ± 2.96
Ball 45.19 ± 2.11 48.96 ± 0.78 45.05 ± 4.44 53.27 ± 1.84 54.48 ± 3.25 60.25 ± 2.11 61.36 ± 2.87 63.86 ± 1.89 64.95 ± 2.67 67.27 ± 5.32 65.45 ± 3.71
Soda can 52.04 ± 3.46 50.00 ± 3.30 50.09 ± 3.33 52.48 ± 3.76 50.26 ± 1.36 56.58 ± 2.18 55.71 ± 2.65 58.36 ± 2.14 60.33 ± 2.35 59.65 ± 2.63 62.93 ± 2.84
Tomato 56.05 ± 3.73 50.76 ± 0.99 53.69 ± 3.03 51.55 ± 3.71 50.23 ± 2.59 63.25 ± 2.17 64.25 ± 1.36 64.33 ± 2.74 64.26 ± 2.36 64.61 ± 3.19 73.40 ± 2.22

Average 57.91 57.18 56.71 58.56 58.29 63.41 62.93 64.83 65.42 65.91 69.50

MV and LUPI UDA UDA+LUPI

SVM SVM2k KCCA SVM+ LMK SA LMIBDA DA-M2S LMIBDAPI

Calculator 50.65 ± 2.65 51.68 ± 2.65 52.68 ± 3.69 56.69 ± 2.65 54.65 ± 2.69 56.26 ± 2.16 58.14 ± 1.59 57.69 ± 3.25 61.36 ± 3.17
Cereal box 68.69 ± 4.65 68.15 ± 2.16 66.39 ± 2.98 63.69 ± 2.15 65.65 ± 3.57 67.68 ± 2.59 68.06 ± 2.21 70.69 ± 3.25 73.89 ± 2.15
Coffee mug 58.96 ± 2.98 58.68 ± 2.69 56.25 ± 2.15 59.69 ± 3.69 59.15 ± 2.45 71.69 ± 3.69 70.15 ± 2.14 73.69 ± 4.65 76.69 ± 3.67
Keyboard 59.68 ± 5.24 58.12 ± 4.65 57.64 ± 5.17 61.65 ± 3.24 58.69 ± 3.84 63.69 ± 2.15 62.15 ± 2.58 64.15 ± 3.25 67.65 ± 2.59
Flashlight 67.69 ± 3.69 69.14 ± 2.69 69.56 ± 3.36 72.69 ± 2.15 72.64 ± 4.16 71.69 ± 1.71 73.15 ± 3.15 72.69 ± 1.25 76.69 ± 3.15
Lightbulb 67.69 ± 2.69 63.69 ± 3.69 67.68 ± 2.58 67.69 ± 3.15 68.69 ± 1.69 65.69 ± 2.26 66.15 ± 2.45 65.69 ± 2.69 72.36 ± 1.20
Mushroom 52.69 ± 4.98 53.69 ± 3.56 52.66 ± 2.68 56.36 ± 4.65 57.15 ± 3.45 67.36 ± 2.69 66.69 ± 2.78 71.69 ± 4.69 69.45 ± 2.69
Ball 48.69 ± 3.69 47.25 ± 2.68 46.54 ± 3.47 54.65 ± 2.15 53.24 ± 2.15 62.69 ± 3.45 63.78 ± 3.69 69.69 ± 4.57 68.69 ± 2.45
Soda can 54.98 ± 2.58 51.69 ± 4.64 51.45 ± 3.15 53.12 ± 2.15 51.68 ± 2.91 57.36 ± 3.71 58.18 ± 3.56 58.15 ± 2.98 60.69 ± 2.45
Tomato 55.69 ± 2.15 52.63 ± 2.65 54.65 ± 3.87 52.58 ± 2.11 51.45 ± 2.14 62.69 ± 2.48 65.97 ± 3.48 67.69 ± 2.78 75.15 ± 3.11

Average 58.54 57.47 57.55 59.88 59.29 64.68 65.24 67.18 70.26

Table 5.2: RGB-D-Caltech256 dataset. Classification accuracies for one-vs-all binary classifications
with Gaussian kernels. Main and auxiliary views are KDES features of the RGB and depth of the
RGB-D Object dataset [11]. KDES features from the Caltech256 dataset [12] represent the target
domain.

LUPI and multi-view (MV) classifiers: By using the main and auxiliary views, we train the

SVM+ [56] (indicated as SVM+, the Rank Transfer [10] (indicated as RankTr). We also train the

SVM2k [73] and test only the SVM that uses the main view (indicated as SVM2k), and we perform

kernel CCA (KCCA) [195] between main and auxiliary views, map the main view in feature space

and train an SVM (indicated as KCCA). SVM+, RankTr, SVM2k, and KCCA, can be used only for binary

classification.

UDA classifiers: We use the main view and the target training data for learning the Sampling

Geodesic Flow (SGF) [97], the Landmark (LMK) [203], the Subspace Alignment (SA) [98], the Trans-

fer Component Analysis (TCA) [114], and the Domain Invariant Projection (DIP) [83] classifiers.

In addition, we use LMIBDAPI where we eliminate the auxiliary information by setting γ = 0

(indicated as LMIBDA).

UDA+LUPI classifiers: Besides our approach, indicated as LMIBDAPI, we consider the only

other approach designed to work in the same settings, which is [59] (indicated as DA-M2S).

Model selection: We use the same joint cross validation and model selection procedure described
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Figure 5.4: RGB-D-Caltech256 dataset. Classification accuracy variation for three classes of Table 5.1.
In particular, from left to right: Accuracy variation against M , the number of training target domain
samples; Accuracy variation against r, the dimensionality of T and S; Accuracy variation against the
fraction of available auxiliary data; Convergence rate of the accuracy against the number of iterations
of the learning procedure.

in [10], based on 5-fold cross-validation to select the best parameters and use them to retrain on the

complete set. The main parameters to select are C, β, γ, and r, which is the number of columns of

A. The C’s and β’s were searched in the range {10−3, · · · , 103}, the γ’s in the range {0.1, 0.3, 0.5}.

r was set by doing PCA on the mapped main view data (through φ(·)), and thresholding at 90%

of the summation of the eigenvalues. In addition, for DA-M2S we set two parameters as indicated

in [59], while for C and the others we look for those that maximize performance.

Performance: Average classification accuracy and standard deviation are reported. Testing is

always done on the target domain data.

Object recognition: We evaluate the proposed approach for object recognition where we use the

RGB-D Object dataset [11] as source domain, and the Caltech256 dataset [12] as target domain.

We follow the same protocol outlined in [59], where we consider the 10 classes reported in Table 5.1,

which are in common between the two datasets. Instances in the RGB-D Object are given as videos,

and we uniformly sample frames every two seconds, obtaining 2056 training images. All the images

of the 10 Caltech256 classes instead are used as unlabeled training target data.

Following [59], kernel descriptor (KDES) features [204], which perform well on the RGB-D

Object dataset, are computed from the color and depth images to represent the main and the

auxiliary views, respectively, and KDES features from the color images of the Caltech256 represent

the target view. For each view we compute the Gradient KDES and the LBP KDES and we

concatenate them. We set the vocabulary size to 1000, and use three level of pyramids.

For each of the 10 object classes, Table 5.1 and Table 5.2 shows the accuracies for the one-vs-all
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binary classification with linear and Gaussian kernels, respectively. Here we randomly selected 50

positive and 50 negative training samples from the source domain, and the experiment was repeated

10 times. We observe that on average the multi-view based methods perform on par with the SVM,

and the LUPI methods better exploit the information from the auxiliary view, but they all suffer

from the lack of adaptation. The UDA methods perform better overall, highlighting the need to

address the domain shift before taking advantage of the auxiliary view. In particular, we notice

that LMIBDA, which does not use the auxiliary view, is an effective UDA approach. The last two

columns address domain shift while leveraging the auxiliary view information, and show that the

proposed LMIBDAPI provides state-of-the-art performance on this task.

Table 5.4 and Table 5.3 shows the classification accuracies for the multiclass classification case

using linear and Gaussian kernels, respectively, where all the source samples are used for training.

Even for this case, UDA methods improve upon the baseline SVM, and LMIBDA performs effectively,

while LMIBDAPI confirms to have the best performance.

Figure 5.4 shows how the one-vs-all binary classification accuracy for three classes of Table 5.1

varies with respect to a number of parameters. The leftmost plot shows how the accuracy changes

against the number M of training target domain samples. After a number of samples (about 200 in

this case), the model saturates and additional samples will no more compensate for data shift. The

second plot from the left shows that increasing r (i.e., the dimensionality of S and T ), does not help

beyond a certain limit (here between 60 and 70). Once it is reached, the model has enough capacity

to extract all the necessary information for prediction. Beyond that limit the accuracy does not

improve anymore and shows a noisy behavior. Choosing r below the limit reduces the capacity

and thus prediction accuracy. The second plot from the right shows the accuracy variation against

the fraction of available auxiliary data (or conversely, the fraction of missing auxiliary data). Note

that handling missing auxiliary data is peculiar to our approach. The plot shows that at least 20%

of missing auxiliary data is tolerated without performance drop. Finally, the rightmost plot shows

Table 5.3: RGB-D-Caltech256 dataset. Classification accuracies for the multi-class classification with
Gaussian kernels. Main and auxiliary views are KDES features of the RGB and depth of the RGB-D
Object dataset [11]. KDES features from the Caltech256 dataset [12] represent the target domain.

UDA UDA+LUPI

SVM SGF LMK SA TCA DIP LMIBDA DA-M2S LMIBDAPI

18.23 19.41 19.69 19.83 25.07 25.47 27.23 29.47 34.22
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UDA UDA+LUPI

SVM SGF LMK SA LMIBDA DA-M2S LMIBDAPI

17.94 18.22 18.36 19.19 26.15 30.74 33.66

Table 5.4: RGB-D-Caltech-256 dataset. Classification accuracies for the multi-class classification with
linear kernel. Main and auxiliary views are KDES features of the RGB and depth of the RGB-D
Object dataset [11]. KDES features from the Caltech-256 dataset [12] represent the target domain.

Table 5.5: Office dataset. Classification accuracy for domain adaptation over the 31 categories of the
Office dataset [13]. A, W, and D stand for Amazon, Webcam, and DSLR domain.

SVM-s SVM-t LMK HFA GFK SDASL LMIBDA

A →W 51.95 80.94 81.15 78.61 83.26 85.40 86.10
A → D 54.92 82.90 82.31 83.71 82.72 85.77 85.31
W → A 49.21 63.91 60.24 65.65 65.92 67.26 67.41
W → D 83.26 81.91 82.26 86.10 84.28 86.18 87.15
D → A 48.51 62.98 62.18 64.60 65.45 66.76 66.82
D →W 80.35 82.65 83.45 81.69 82.69 84.65 83.36

the rate of convergence of the optimization procedure, which occurs monotonically. We found that

no more than 10 iterations were normally enough to reach convergence, which is fairly good.

Table 5.5 shows the classification accuracy of the proposed approach for UDA without auxiliary

data on the Office dataset [13], which contains 31 object classes for 3 domains: Amazon, Webcam,

and DSLR, indicated as A, W, and D, for a total of 4,652 images. The first domain consists of

images downloaded from online merchants, the second consists of low resolution images acquired

by webcams, the third consists of high resolution images collected with digital SLRs. The table

notation A → W indicates that A was the source domain, and W the target. All the source data

was used for training, whereas the target data was evenly split into two halves: one used for training

and the other for testing. We used the 1000-way fc8 classification layer computed by DeCAF [45]

as image features, and Gaussian kernels set up as detailed in [68]. We compared LMIBDA against

LMK, the heterogeneous domain adaptation method (HFA) [205], the geodesic flow kernel method

(GFK) [66], and against a recent semi-supervised domain adaptation method (SDASL) [68], which

uses some labeled target data for training. The SVM trained on the source and on the target

domain data, indicated as SVM-s and SVM-t, is also reported for reference. The main result is that

even with this more popular domain adaptation dataset, the proposed approach, restricted to UDA

only, has performance comparable to the state-of-the art.
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LUPI UDA UDA+LUPI

SVM SVM2k KCCA SVM+ LMK SA LMIBDA DA-M2S LMIBDAPI

64.89 ± 1.11 65.23 ± 11.37 63.23 ± 2.12 66.39 ± 1.23 63.45 ± 1.61 67.11 ± 1.46 67.29 ± 1.54 67.89 ± 1.32 71.23 ± 1.23

Table 5.6: EURECOM-LFW-a dataset. Classification accuracies for the male vs. female classification
with linear kernel. Main and auxiliary views are Gradient-LBP features of the RGB and depth of the
EURECOM dataset [14]. Gradient-LBP features from the LFW-a dataset [15] represent the target
domain.

Gender recognition: We evaluate the proposed approach also for gender recognition where we

use the RGB-D face dataset EURECOM [14] as source domain, and the RGB dataset Labeled

Faces in the Wild-a (LFW-a) [15] as target domain. The EURECOM dataset consists of pairs of

RGB and depth images from 196 females and 532 males captured with the Kinect sensor, and we

removed the profile face images, which had only one manually annotated eye position. The LFW-a

dataset contains images from 2,960 females and 10,184 males captured in uncontrolled conditions.

We resized the main, the auxiliary, and the target view face images to 120 × 105 pixels, and

divide them into 8 × 7 non-overlapping subregions of 15 × 15 pixels. From each subregion of an

image we extract the Gradient-LBP features, shown to be effective for gender recognition [14], and

concatenate them into a single feature vector.

We perform a gender recognition experiment by combining the female source pairs with 196

randomly selected male source pairs to have a balanced gender representation. In addition, we

randomly sample 3000 unlabeled target face images for training. The experiment is repeated 10

times, and the classification accuracies of all the methods are reported in Table 5.6 and Table 5.7

for linear and Gaussian kernels, respectively. The results show a pattern similar to the one found

for object recognition in Table 5.1, Table 5.2, Table 5.4, and Table 5.3. One difference might be

that in this experiment leveraging the auxiliary depth information seems to be as important as

addressing the RGB domain shift. This is because the performance increase of the best LUPI

methods is comparable to the performance increase of the best UDA methods. We also note that

even here, LMIBDA confirms to be an effective UDA method by surpassing all the UDA and LUPI

methods. Finally, although DA-M2S marginally improves by leveraging auxiliary information and

addressing domain shift, the proposed LMIBDAPI provides a remarkable performance increase.
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Table 5.7: EURECOM-LFW-a dataset. Classification accuracies for the male vs. female classification
with Gaussian kernels. Main and auxiliary views are Gradient-LBP features of the RGB and depth
of the EURECOM dataset [14]. Gradient-LBP features from the LFW-a dataset [15] represent the
target domain.

MV and LUPI UDA UDA+LUPI

SVM SVM2k KCCA SVM+ SGF LMK SA TCA DIP LMIBDA DA-M2S LMIBDAPI

64.82 ± 1.35 67.15 ± 1.25 63.85 ± 1.34 67.31 ± 1.96 67.81 ± 1.45 64.88 ± 1.31 67.11 ± 1.45 65.24 ± 0.88 64.84 ± 4.80 68.11 ± 1.64 68.22 ± 1.41 72.43 ± 1.34

5.4 Conclusions

We developed an unsupervised domain adaptation approach for visual recognition when aux-

iliary information is available at training time. We extended the IB principle to IBDAPI, a new

information theoretic principle that jointly handles the auxiliary view and the mismatch between

the source and target distributions. We provided a modified version of IBDAPI based on risk mini-

mization for learning explicitly any type of classifier, where training samples with missing auxiliary

view can be handled seamlessly. We used this principle for deriving LMIBDAPI, a large-margin

classifier with a fast optimization procedure in the primal space that converges in about 10 itera-

tions. We performed experiments on object and gender recognition on a new target RGB domain

by learning from a different RGB plus depth dataset. We observed that without using auxiliary

data LMIBDA performs UDA with performance comparable with the state-of-the art. In addi-

tion, LMIBDAPI consistently outperformed the state-of-the-art, confirming its ability to carry the

content of the auxiliary information over to a new domain.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this dissertation, we explored several types of additional information that may be collected

in an inexpensive manner during training of a visual classifier in order to improve its performance.

Depending on where the additional information comes from, we showed that training a visual recog-

nition model can be formulated as domain adaptation (DA), domain generalization (DG),

learning using privileged information (LUPI), and domain adaptation with privileged

information (DAPI).

Domain Adaptation and Generalization. We focused on a specific scenario for DA for when

there are very few labeled target samples in training. We introduced two novel approaches. First, we

developed a deep model in combination with the classification and contrastive semantic alignment

(CCSA) loss to address few-shot domain adaptation. In this scenario, alignment and separation of

semantic probability distributions is difficult because of the lack of data. We found that by reverting

to point-wise surrogates of distribution distances and similarities provides an effective solution. Our

extensive experiments show that our model converges very quickly as more labeled target samples

per category are available. We have shown that the CCSA loss can be augmented to address the

domain generalization problem without the need to change the basic model architecture.

Second, we followed the recent development in image generation and used adversarial learning

for a novel few-shot domain adaptation. This is important because there is no other prior work

addressing few-shot domain adaptation using adversarial learning. We found that by carefully



CHAPTER 6. CONCLUSION AND FUTURE WORK 95

designing a training scheme whereby the typical binary adversarial discriminator is augmented

to distinguish between four different classes, it is possible to effectively address the supervised

adaptation problem. In addition, the approach has a high speed of adaptation, i.e. it requires an

extremely low number of labeled target training samples, even one per category can be effective.

Learning Using Privileged Information. Privileged information has been shown to be effective

in several computer vision applications. However, most of the works in this topic either modified

a specific classifier in order to exploit privileged data or used a specific privileged data to improve

the recognition task. In this dissertation, we provided a general framework that can use any type

of classifier to exploit any privileged data. We focused on binary and multi-class SVM in our study

and provided an optimization algorithm that is guaranteed to converge. Our method consistently

outperformed the state-of-the-art LUPI methods.

Domain Adaptation with Privileged Information. There are very few studies on investigat-

ing the problem of covariate shift in presence of privileged data. Similar to our LUPI approach, we

used the information bottleneck principal to develop a model for addressing DAPI. Our model is

general in the sense that it allows the use of any classifier and any privileged data. We performed

experiments on object and gender recognition on a new target RGB domain by learning from a dif-

ferent RGB plus depth dataset. Our method outperforms the state-of-the-art methods, confirming

its ability to carry the content of the auxiliary information over to a new domain.

6.2 Future Work

6.2.1 Domain Adaptation

In Chapters 2 and 3, we proposed two models for supervised (few-shot) domain adaptation

(SDA). However, we have not extended our models in presence of unlabeled target data (semi-

supervised setting). This could be done by using an unsupervised domain adaptation (UDA)

method in combination with our approaches.

As we discussed in Chapter 1, adversarial learning is very popular for UDA [89, 90, 88]. Those

approaches use a binary discriminator to maximally confuse source and target distributions in the

latent space. In Chapter 3, we discussed how we can use a multi-class discriminator to confuse

the source and target samples in the latent space to address SDA. For future work, it would be
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interesting to investigate the use of two discriminators (one for addressing UDA and one for SDA)

to address the semi-supervised setting.

6.2.2 Domain Generalization

As we discussed, adversarial learning can be used to maximally confuse source and target

distributions in the latent space. By following the same idea, adversarial learning may be very

effective to confuse several source domains in the latent space to address the domain generalization

problem. This idea could also be very effective for unsupervised domain generalization (where there

is no label information for some source domains).

6.2.3 Deep Information Bottleneck for Visual Recognition

In Chapters 4 and 5, we introduced the general frameworks for information bottleneck (IB)

learning for visual recognition. Since computing mutual information is difficult and is limited

to some special cases, IB is hard to use in deep networks. Recently some techniques have been

developed to address this issue [206, 207]. [206] proposed a method to perform IB in more general

domains by defining an upper bound on the IB objective, derived using a non-parametric estimator

of mutual information and a variational approximation. [207] proposed a method to parameterize

the information bottleneck model using a neural network and leverage the reparameterization trick

for efficient training.

For future work, one may be interested in using deep classifiers in (4.7) and (5.6) instead of

SVM. To learn the parameters of the deep classifiers, we can build on techniques from [206, 207].

Specifically, focusing on (4.7), in Chapter 4, we first assumed that there is a linear mapping between
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the main viewX and the latent variable S and then used the kernel trick for non-linear mapping. For

future work, one may use deep embedding functions (containing convolutional and fully connected

layers) in order to embed X onto S. See Figure 6.1. In terms of implementation, the first and

second terms in (4.7) can be seen as the regularizers on the last layer of the embedding function as

shown if Figure 6.1. A discussion is valid also for the Privilege Information and Domain Adaptation

framework (5.6).
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[115] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification using a”
siamese” time delay neural network,” in Advances in Neural Information Processing Systems,
1994, pp. 737–744.

[116] B. Kumar, G. Carneiro, I. Reid et al., “Learning local image descriptors with deep siamese
and triplet convolutional networks by minimising global loss functions,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 5385–5394.

[117] R. R. Varior, B. Shuai, J. Lu, D. Xu, and G. Wang, “A siamese long short-term memory archi-
tecture for human re-identification,” in European Conference on Computer Vision. Springer,
2016, pp. 135–153.

[118] A. Rozantsev, M. Salzmann, and P. Fua, “Beyond sharing weights for deep domain adapta-
tion,” arXiv preprint arXiv:1603.06432, 2016.

[119] J. Yang, R. Yan, and A. G. Hauptmann, “Adapting svm classifiers to data with shifted
distributions,” in Data Mining Workshops, 2007. ICDM Workshops 2007. Seventh IEEE
International Conference on. IEEE, 2007, pp. 69–76.

[120] L. Duan, I. W. Tsang, D. Xu, and S. J. Maybank, “Domain transfer svm for video concept
detection,” in Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on. IEEE, 2009, pp. 1375–1381.

[121] C. J. Becker, C. M. Christoudias, and P. Fua, “Non-linear domain adaptation with boosting,”
in Advances in Neural Information Processing Systems, 2013, pp. 485–493.

[122] H. Daume III and D. Marcu, “Domain adaptation for statistical classifiers,” Journal of Arti-
ficial Intelligence Research, vol. 26, pp. 101–126, 2006.

[123] Y. Yang and T. Hospedales, “Zero-shot domain adaptation via kernel regression on the grass-
mannian,” arXiv preprint arXiv:1507.07830, 2015.

[124] K.-C. Peng, Z. Wu, and J. Ernst, “Zero-shot deep domain adaptation,” arXiv preprint
arXiv:1707.01922, 2017.

[125] A. A. Deshmukh, S. Sharma, J. W. Cutler, and C. Scott, “Multiclass domain generalization.”

[126] M. Ghifary, D. Balduzzi, W. B. Kleijn, and M. Zhang, “Scatter component analysis: A unified
framework for domain adaptation and domain generalization,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2017.

[127] M. Ghifary, W. Bastiaan Kleijn, M. Zhang, and D. Balduzzi, “Domain generalization for
object recognition with multi-task autoencoders,” in Proceedings of the IEEE International
Conference on Computer Vision, 2015, pp. 2551–2559.

[128] A. Khosla, T. Zhou, T. Malisiewicz, A. A. Efros, and A. Torralba, “Undoing the damage of
dataset bias,” in European Conference on Computer Vision. Springer, 2012, pp. 158–171.

[129] C. Fang, Y. Xu, and D. N. Rockmore, “Unbiased metric learning: On the utilization of mul-
tiple datasets and web images for softening bias,” in International Conference on Computer
Vision, 2013.



REFERENCES 107

[130] Z. Xu, W. Li, L. Niu, and D. Xu, “Exploiting low-rank structure from latent domains for
domain generalization,” in ECCV, 2014, pp. 628–643.

[131] L. Niu, W. Li, and D. Xu, “Multi-view domain generalization for visual recognition,” in
Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 4193–4201.

[132] L. Niu, W. Li, D. Xu, and J. Cai, “An exemplar-based multi-view domain generalization
framework for visual recognition,” IEEE Transactions on Neural Networks and Learning
Systems, 2017.

[133] J. Hoffman, S. Gupta, and T. Darrell, “Learning with side information through modality
hallucination,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 826–834.

[134] Z. Wang, X. Wang, and Q. Ji, “Learning with hidden information,” in ICPR, Aug 2014, pp.
238–243.

[135] Z. Wang, T. Gao, and Q. Ji, “Learning with hidden information using a max-margin latent
variable model,” in ICPR, Aug 2014, pp. 1389–1394.

[136] D. Pechyony and V. Vapnik, “On the theory of learning with privileged information,” in
NIPS, 2010.

[137] J. Donahue and K. Grauman, “Annotator rationales for visual recognition,” in ICCV, Nov
2011, pp. 1395–1402.

[138] J. Tang, Y. Tian, P. Zhang, and X. Liu, “Multiview privileged support vector machines,”
IEEE transactions on neural networks and learning systems, 2017.

[139] N. Sarafianos, C. Nikou, and I. A. Kakadiaris, “Predicting privileged information for height
estimation,” in Pattern Recognition (ICPR), 2016 23rd International Conference on. IEEE,
2016, pp. 3115–3120.

[140] S. Wang, D. Tao, and J. Yang, “Relative attribute svm+ learning for age estimation,” IEEE
transactions on cybernetics, vol. 46, no. 3, pp. 827–839, 2016.

[141] S. You, C. Xu, Y. Wang, C. Xu, and D. Tao, “Privileged multi-label learning,” arXiv preprint
arXiv:1701.07194, 2017.

[142] B. Mahasseni and S. Todorovic, “Regularizing long short term memory with 3d human-
skeleton sequences for action recognition,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2016, pp. 3054–3062.

[143] Z. Shi and T.-K. Kim, “Learning and refining of privileged information-based rnns for action
recognition from depth sequences,” arXiv preprint arXiv:1703.09625, 2017.

[144] Z. Luo, L. Jiang, J.-T. Hsieh, J. C. Niebles, and L. Fei-Fei, “Graph distillation for action
detection with privileged information,” arXiv preprint arXiv:1712.00108, 2017.

[145] V. Ferrari and A. Zisserman, “Learning visual attributes,” in NIPS, 2007.

[146] A. Farhadi, I. Endres, D. Hoiem, and D. Forsyth, “Describing objects by their attributes,”
in CVPR, June 2009, pp. 1778–1785.



REFERENCES 108

[147] L. Torresani, M. Szummer, and A. Fitzgibbon, “Efficient object category recognition using
classemes,” in ECCV, 2010, pp. 776–789.

[148] Q. Li, J. Wu, and Z. Tu, “Harvesting mid-level visual concepts from large-scale internet
images,” in CVPR, June 2013, pp. 851–858.

[149] P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, “Object detection with dis-
criminatively trained part-based models,” IEEE TPAMI, vol. 32, no. 9, pp. 1627–1645, Sept
2010.

[150] A. Quattoni, S. Wang, L. Morency, M. Collins, and T. Darrell, “Hidden conditional random
fields,” IEEE TPAMI, vol. 29, no. 10, pp. 1848–1852, Oct 2007.

[151] N. Slonim and N. Tishby, “Agglomerative information bottleneck,” in NIPS, 1999.

[152] G. Chechik and N. Tishby, “Extracting relevant structures with side information,” in NIPS,
2002.

[153] L. Wolf and N. Levy, “The SVM-Minus similarity score for video face recognition,” in CVPR,
June 2013, pp. 3523–3530.

[154] J. Chen, X. Liu, and S. Lyu, “Boosting with side information,” in ACCV, 2012, pp. 563–577.

[155] J. Feyereisl, S. Kwak, J. Son, and B. Han, “Object localization based on structural SVM
using privileged information,” in NIPS, 2014.

[156] S. Fouad, P. Tino, S. Raychaudhury, and P. Schneider, “Incorporating privileged information
through metric learning,” IEEE Trans. on Neural Networks and Learning Systems, vol. 24,
no. 7, pp. 1086–1098, July 2013.

[157] X. Xu, W. Li, and D. Xu, “Distance metric learning using privileged information for face
verification and person re-identification,” IEEE Trans. on Neural Networks and Learning
Systems, 2015.

[158] M. Xu, R. Jin, and Z.-H. Zhou, “Speedup matrix completion with side information: Applica-
tion to multi-label learning,” in Advances in Neural Information Processing Systems, 2013,
pp. 2301–2309.

[159] X. Yang, M. Wang, and D. Tao, “Person re-identification with metric learning using privileged
information,” IEEE Transactions on Image Processing, vol. 27, no. 2, pp. 791–805, 2018.

[160] M. Vrigkas, C. Nikou, and I. A. Kakadiaris, “Active privileged learning of human activities
from weakly labeled samples,” in Image Processing (ICIP), 2016 IEEE International Confer-
ence on. IEEE, 2016, pp. 3036–3040.

[161] Q. Zhang, G. Hua, W. Liu, Z. Liu, and Z. Zhang, “Can visual recognition benefit from
auxiliary information in training?” in ACCV, 2014, pp. 65–80.

[162] Q. Zhang and G. Hua, “Multi-view visual recognition of imperfect testing data,” in ACM
MM, 2015, pp. 561–570.



REFERENCES 109

[163] W. Li, L. Chen, D. Xu, and L. Van Gool, “Visual recognition in rgb images and videos by
learning from rgb-d data,” IEEE transactions on pattern analysis and machine intelligence,
2017.

[164] N. Sarafianos, M. Vrigkas, and I. A. Kakadiaris, “Adaptive svm+: Learning with privileged
information for domain adaptation,” arXiv preprint arXiv:1708.09083, 2017.

[165] E. Tzeng, J. Hoffman, N. Zhang, K. Saenko, and T. Darrell, “Deep domain confusion: Max-
imizing for domain invariance,” arXiv preprint arXiv:1412.3474, 2014.

[166] M. Chen, Z. Xu, K. Weinberger, and F. Sha, “Marginalized denoising autoencoders for domain
adaptation,” arXiv preprint arXiv:1206.4683, 2012.

[167] H. Wang, W. Wang, C. Zhang, and F. Xu, “Cross-domain metric learning based on informa-
tion theory.” in AAAI, 2014, pp. 2099–2105.

[168] Z. Ding and Y. Fu, “Robust transfer metric learning for image classification,” IEEE Trans-
actions on Image Processing, vol. 26, no. 2, pp. 660–670, 2017.

[169] J. J. Hull, “A database for handwritten text recognition research,” IEEE Transactions on
pattern analysis and machine intelligence, vol. 16, no. 5, pp. 550–554, 1994.

[170] B. Fernando, T. Tommasi, and T. Tuytelaarsc, “Joint cross-domain classification and sub-
space learning for unsupervised adaptation,” Pattern Recogition Letters, 2015.

[171] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of Machine Learning
Research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[172] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman, “The pascal visual
object classes (voc) challenge,” International journal of computer vision, vol. 88, no. 2, pp.
303–338, 2010.

[173] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101 object categories,” Computer
vision and Image understanding, vol. 106, no. 1, pp. 59–70, 2007.

[174] M. J. Choi, J. J. Lim, A. Torralba, and A. S. Willsky, “Exploiting hierarchical context on
a large database of object categories,” in Computer vision and pattern recognition (CVPR),
2010 IEEE conference on. IEEE, 2010, pp. 129–136.

[175] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive auto-encoders: Ex-
plicit invariance during feature extraction,” in Proceedings of the 28th international confer-
ence on machine learning (ICML-11), 2011, pp. 833–840.

[176] R. A. Fisher, “The use of multiple measurements in taxonomic problems,” Annals of human
genetics, vol. 7, no. 2, pp. 179–188, 1936.

[177] S. Kullback and R. A. Leibler, “On information and sufficiency,” The annals of mathematical
statistics, vol. 22, no. 1, pp. 79–86, 1951.

[178] I. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,” arXiv preprint
arXiv:1701.00160, 2016.



REFERENCES 110

[179] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved
techniques for training gans,” in Advances in Neural Information Processing Systems, 2016,
pp. 2234–2242.

[180] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee, “Generative adversarial
text to image synthesis,” in Proceedings of the 33rd International Conference on International
Conference on Machine Learning-Volume 48. JMLR. org, 2016, pp. 1060–1069.

[181] S. E. Reed, Z. Akata, S. Mohan, S. Tenka, B. Schiele, and H. Lee, “Learning what and where
to draw,” in Advances in Neural Information Processing Systems, 2016, pp. 217–225.

[182] H. Zhang, T. Xu, H. Li, S. Zhang, X. Huang, X. Wang, and D. Metaxas, “Stackgan: Text to
photo-realistic image synthesis with stacked generative adversarial networks,” arXiv preprint
arXiv:1612.03242, 2016.

[183] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with conditional
adversarial networks,” arXiv preprint arXiv:1611.07004, 2016.

[184] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol.
abs/1412.6980, 2014. [Online]. Available: http://arxiv.org/abs/1412.6980

[185] N. Slonim, N. Friedman, and N. Tishby, “Multivariate information bottleneck,” Neural Com-
putation, vol. 18, no. 8, pp. 1739–1789, 2006.

[186] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley and Sons, Inc.,
1991.

[187] C. J. Lin, “Projected gradient methods for nonnegative matrix factorization,” Neural Com-
putation, vol. 19, no. 10, pp. 2756–2779, 2007.

[188] Z. Yang, H. Zhang, Z. Yuan, and E. Oja, “Kullback-Leibler divergence for nonnegative matrix
factorization,” in ICANN, 2011, pp. 250–257.

[189] Y. Nesterov, “Smooth minimization of non-smooth functions,” Mathematical Programming,
vol. 103, no. 1, pp. 127–152, 2005.

[190] T. Zhou, D. Tao, and X. Wu, “NESVM: A fast gradient method for support vector machines,”
in ICDM, Dec 2010, pp. 679–688.

[191] D. Goldfarb, S. Ma, and K. Scheinberg, “Fast alternating linearization methods for minimiz-
ing the sum of two convex functions,” Mathematical Programming, vol. 141, no. 1–2, pp.
349–382, 2013.

[192] T. Joachims, “Making large-scale SVM learning practical,” in Advances in Kernel Methods
- Support Vector Learning. MIT Press, 1999.

[193] ——, “Training linear svms in linear time,” in KDD, 2006.

[194] L. Liang and V. Cherkassky, “Connection between svm+ and multi-task learning,” in IJCNN,
2008, pp. 2048 – 2054.

http://arxiv.org/abs/1412.6980


REFERENCES 111

[195] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor, “Canonical correlation analysis: An
overview with application to learning methods,” Neural Computation, vol. 16, p. 26392664,
2004.

[196] H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre, “HMDB: a large video database
for human motion recognition,” in IEEE ICCV, 2011.

[197] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library of computer vision
algorithms,” http://www.vlfeat.org/, 2008.

[198] ChaLearn, “ChaLearn gesture dataset (CGD2011),” California, 2011.

[199] C. Lampert, H. Nickisch, and S. Harmeling, “Attribute-based classification for zero-shot
visual object categorization,” IEEE TPAMI, vol. 36, no. 3, pp. 453–465, March 2014.

[200] K. Crammer and Y. Singer, “On the algorithmic implementation of multiclass kernel-based
vector machines,” JMLR, vol. 2, pp. 265–292, 2001.

[201] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM Trans-
actions on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27, 2011.

[202] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, and C.-J. Wang, X.-R.and Lin, “LIBLINEAR: A library
for large linear classification,” JMLR, no. 9, pp. 1871–1874, 2008.

[203] B. Gong, K. Grauman, and F. Sha, “Connecting the dots with landmarks: Discriminatively
learning domain-invariant features for unsupervised domain adaptation,” in ICML, 2013.

[204] L. Bo, X. Ren, and D. Fox, “Depth kernel descriptors for object recognition,” in IROS, 2011.

[205] L. Duan, D. Xu, and I. W. Tsang, “Learning with augmented features for heterogeneous
domain adaptation,” in Proceedings of the International Conference on Machine Learning.
Edinburgh, Scotland: Omnipress, June 2012, pp. 711–718.

[206] A. Kolchinsky, B. D. Tracey, and D. H. Wolpert, “Nonlinear information bottleneck,” arXiv
preprint arXiv:1705.02436, 2017.

[207] A. A. Alemi, I. Fischer, J. V. Dillon, and K. Murphy, “Deep variational information bottle-
neck,” arXiv preprint arXiv:1612.00410, 2016.

http://www.vlfeat.org/

	Domain Adaptation and Privileged Information for Visual Recognition
	Recommended Citation

	tmp.1568233084.pdf.Jxesq

