1,607 research outputs found

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    Adaptive Robust Control of Biomass Fuel Co-Combustion Process

    Get PDF
    The share of biomass in energy production is constantly growing. This is caused by environmental and industry standards and EU guidelines. Biomass is used in the process of co-firing in large power plants and industrial installations. In the existing power stations, biomass is milled and burned simultaneously with coal. However, low-emission combustion techniques, including biomass co-combustion, have some negative side effects that can be split into two categories. The direct effects influence the process control stability, whereas the indirect ones on combustion installations via increased corrosion or boiler slagging. The effects can be minimised using additional information about the process. The proper combustion diagnosis as well as an appropriate, robust control system ought to be applied. The chapter is devoted to the analysis of modern, robust control techniques for complex power engineering applications

    Fuzzy sliding mode control of a multi-DOF parallel robot in rehabilitation environment

    Get PDF
    Multi-degrees of freedom (DOF) parallel robot, due to its compact structure and high operation accuracy, is a promising candidate for medical rehabilitation devices. However, its controllability relating to the nonlinear characteristics challenges its interaction with human subjects during the rehabilitation process. In this paper, we investigated the control of a parallel robot system using fuzzy sliding mode control (FSMC) for constructing a simple controller in practical rehabilitation, where a fuzzy logic system was used as the additional compensator to the sliding mode controller (SMC) for performance enhancement and chattering elimination. The system stability is guaranteed by the Lyapunov stability theorem. Experiments were conducted on a lower limb rehabilitation robot, which was built based on kinematics and dynamics analysis of the 6-DOF Stewart platform. The experimental results showed that the position tracking precision of the proposed FSMC is sufficient in practical applications, while the velocity chattering had been effectively reduced in comparison with the conventional FSMC with parameters tuned by fuzzy systems

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms
    • …
    corecore