6 research outputs found

    A Vernacular for Coherent Logic

    Full text link
    We propose a simple, yet expressive proof representation from which proofs for different proof assistants can easily be generated. The representation uses only a few inference rules and is based on a frag- ment of first-order logic called coherent logic. Coherent logic has been recognized by a number of researchers as a suitable logic for many ev- eryday mathematical developments. The proposed proof representation is accompanied by a corresponding XML format and by a suite of XSL transformations for generating formal proofs for Isabelle/Isar and Coq, as well as proofs expressed in a natural language form (formatted in LATEX or in HTML). Also, our automated theorem prover for coherent logic exports proofs in the proposed XML format. All tools are publicly available, along with a set of sample theorems.Comment: CICM 2014 - Conferences on Intelligent Computer Mathematics (2014

    Improving legibility of natural deduction proofs is not trivial

    Full text link
    In formal proof checking environments such as Mizar it is not merely the validity of mathematical formulas that is evaluated in the process of adoption to the body of accepted formalizations, but also the readability of the proofs that witness validity. As in case of computer programs, such proof scripts may sometimes be more and sometimes be less readable. To better understand the notion of readability of formal proofs, and to assess and improve their readability, we propose in this paper a method of improving proof readability based on Behaghel's First Law of sentence structure. Our method maximizes the number of local references to the directly preceding statement in a proof linearisation. It is shown that our optimization method is NP-complete.Comment: 33 page

    Robust, Semi-Intelligible Isabelle Proofs from ATP Proofs

    No full text

    Hammering towards QED

    Get PDF
    This paper surveys the emerging methods to automate reasoning over large libraries developed with formal proof assistants. We call these methods hammers. They give the authors of formal proofs a strong “one-stroke” tool for discharging difficult lemmas without the need for careful and detailed manual programming of proof search. The main ingredients underlying this approach are efficient automatic theorem provers that can cope with hundreds of axioms, suitable translations of the proof assistant’s logic to the logic of the automatic provers, heuristic and learning methods that select relevant facts from large libraries, and methods that reconstruct the automatically found proofs inside the proof assistants. We outline the history of these methods, explain the main issues and techniques, and show their strength on several large benchmarks. We also discuss the relation of this technology to the QED Manifesto and consider its implications for QED-like efforts.Blanchette’s Sledgehammer research was supported by the Deutsche Forschungs- gemeinschaft projects Quis Custodiet (grants NI 491/11-1 and NI 491/11-2) and Hardening the Hammer (grant NI 491/14-1). Kaliszyk is supported by the Austrian Science Fund (FWF) grant P26201. Sledgehammer was originally supported by the UK’s Engineering and Physical Sciences Research Council (grant GR/S57198/01). Urban’s work was supported by the Marie-Curie Outgoing International Fellowship project AUTOKNOMATH (grant MOIF-CT-2005-21875) and by the Netherlands Organisation for Scientific Research (NWO) project Knowledge-based Automated Reasoning (grant 612.001.208).This is the final published version. It first appeared at http://jfr.unibo.it/article/view/4593/5730?acceptCookies=1

    Formalization and automation of Euclidean geometry

    Get PDF
    Напредак геометрије кроз векове се може разматрати кроз развој различитих аксиоматских система који је описују. Употреба аксиоматских система започиње са Хилбертом и Тарским али се ту не завршава. Чак и данас се развијају нови аксиоматски ситеми за рад са еуклидском геометријом...The advance of geometry over the centuries can be observed through the development of dierent axiomatic systems that describe it. The use of axiomatic systems begins with Euclid, continues with Hilbert and Tarski, but it doesn't end there. Even today, new axiomatic systems for Euclidean geometry are developed..
    corecore