1,982 research outputs found

    OCP Based Online Multisensor Data Fusion for Autonomous Ground Vehicle

    Get PDF
    In this paper, online multisensor data fusion algorithm using CORBA event channel is proposed, in order to deal with simplifying problem in sensor registration and fusion for vehicleā€™s state estimation. The networked based navigation concept for Autonomous Ground Vehicle (AGV) using several sensors is presented. A simulation of various application scenarios are considered by choosing several parameters of UKF, i.e. weighting constant for sigma points and square root matrix. Normalized mean-square error (MSE) of Monte Carlo simulations are computed and reported in the simulation results. Furthermore, the middleware infrastructure based on Open Control Platform (OCP) to support the interconnection between the whole filter structures also reported

    Workshop on multisensor integration in manufacturing automation

    Get PDF
    Journal ArticleMany people helped make the Workshop a success, but special thanks must be given to Howard Moraff for his support, and to Vicky Jackson for her efforts in making things run smoothly. Finally, thanks to Jake Aggarwal for helping to start the ball rolling

    Experiences with the JPL telerobot testbed: Issues and insights

    Get PDF
    The Jet Propulsion Laboratory's (JPL) Telerobot Testbed is an integrated robotic testbed used to develop, implement, and evaluate the performance of advanced concepts in autonomous, tele-autonomous, and tele-operated control of robotic manipulators. Using the Telerobot Testbed, researchers demonstrated several of the capabilities and technological advances in the control and integration of robotic systems which have been under development at JPL for several years. In particular, the Telerobot Testbed was recently employed to perform a near completely automated, end-to-end, satellite grapple and repair sequence. The task of integrating existing as well as new concepts in robot control into the Telerobot Testbed has been a very difficult and timely one. Now that researchers have completed the first major milestone (i.e., the end-to-end demonstration) it is important to reflect back upon experiences and to collect the knowledge that has been gained so that improvements can be made to the existing system. It is also believed that the experiences are of value to the others in the robotics community. Therefore, the primary objective here will be to use the Telerobot Testbed as a case study to identify real problems and technological gaps which exist in the areas of robotics and in particular systems integration. Such problems have surely hindered the development of what could be reasonably called an intelligent robot. In addition to identifying such problems, researchers briefly discuss what approaches have been taken to resolve them or, in several cases, to circumvent them until better approaches can be developed

    A bank of unscented Kalman filters for multimodal human perception with mobile service robots

    Get PDF
    A new generation of mobile service robots could be ready soon to operate in human environments if they can robustly estimate position and identity of surrounding people. Researchers in this field face a number of challenging problems, among which sensor uncertainties and real-time constraints. In this paper, we propose a novel and efficient solution for simultaneous tracking and recognition of people within the observation range of a mobile robot. Multisensor techniques for legs and face detection are fused in a robust probabilistic framework to height, clothes and face recognition algorithms. The system is based on an efficient bank of Unscented Kalman Filters that keeps a multi-hypothesis estimate of the person being tracked, including the case where the latter is unknown to the robot. Several experiments with real mobile robots are presented to validate the proposed approach. They show that our solutions can improve the robot's perception and recognition of humans, providing a useful contribution for the future application of service robotics

    An annotated bibligraphy of multisensor integration

    Get PDF
    technical reportIn this paper we give an annotated bibliography of the multisensor integration literature

    Common Data Fusion Framework : An open-source Common Data Fusion Framework for space robotics

    Get PDF
    Multisensor data fusion plays a vital role in providing autonomous systems with environmental information crucial for reliable functioning. In this article, we summarize the modular structure of the newly developed and released Common Data Fusion Framework and explain how it is used. Sensor data are registered and fused within the Common Data Fusion Framework to produce comprehensive 3D environment representations and pose estimations. The proposed software components to model this process in a reusable manner are presented through a complete overview of the framework, then the provided data fusion algorithms are listed, and through the case of 3D reconstruction from 2D images, the Common Data Fusion Framework approach is exemplified. The Common Data Fusion Framework has been deployed and tested in various scenarios that include robots performing operations of planetary rover exploration and tracking of orbiting satellites

    Develop a Multiple Interface Based Fire Fighting Robot

    Get PDF

    Multimodal sensor fusion for real-time location-dependent defect detection in laser-directed energy deposition

    Full text link
    Real-time defect detection is crucial in laser-directed energy deposition (L-DED) additive manufacturing (AM). Traditional in-situ monitoring approach utilizes a single sensor (i.e., acoustic, visual, or thermal sensor) to capture the complex process dynamic behaviors, which is insufficient for defect detection with high accuracy and robustness. This paper proposes a novel multimodal sensor fusion method for real-time location-dependent defect detection in the robotic L-DED process. The multimodal fusion sources include a microphone sensor capturing the laser-material interaction sound and a visible spectrum CCD camera capturing the coaxial melt pool images. A hybrid convolutional neural network (CNN) is proposed to fuse acoustic and visual data. The key novelty in this study is that the traditional manual feature extraction procedures are no longer required, and the raw melt pool images and acoustic signals are fused directly by the hybrid CNN model, which achieved the highest defect prediction accuracy (98.5 %) without the thermal sensing modality. Moreover, unlike previous region-based quality prediction, the proposed hybrid CNN can detect the onset of defect occurrences. The defect prediction outcomes are synchronized and registered with in-situ acquired robot tool-center-point (TCP) data, which enables localized defect identification. The proposed multimodal sensor fusion method offers a robust solution for in-situ defect detection.Comment: 8 pages, 10 figures. This paper has been accepted to be published in the proceedings of IDETC-CIE 202
    • ā€¦
    corecore