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Abstract

Multisensor data fusion plays a vital role in providing autonomous systems with environmental information crucial for

reliable functioning. In this article, we summarize the modular structure of the newly developed and released Common

Data Fusion Framework and explain how it is used. Sensor data are registered and fused within the Common Data Fusion

Framework to produce comprehensive 3D environment representations and pose estimations. The proposed software

components to model this process in a reusable manner are presented through a complete overview of the framework,

then the provided data fusion algorithms are listed, and through the case of 3D reconstruction from 2D images, the

Common Data Fusion Framework approach is exemplified. The Common Data Fusion Framework has been deployed and
tested in various scenarios that include robots performing operations of planetary rover exploration and tracking of

orbiting satellites.
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Introduction

Recent breakthroughs in machine learning1,2 illustrate the

accelerating pace of research into embedded intelligence

and the continued drive for better system autonomy. Space

applications in particular require increasingly autonomous

systems using multiple sensors to assist the ongoing com-

mercialization of space and maximize the scientific output

of future orbital and planetary missions.

Sensory information about itself and its environment

is at the root of a robot’s system autonomy. However, it

is difficult to reason very far at the raw perception level.

Planning complex autonomous behaviors requires a

robotic system to have a cognitively higher level of

understanding about itself and its environment.

Multisensor data fusion meets this requirement: It is the

process of aggregating and synthesizing perceptual data,

across sensory modalities and across time, into higher

1DKFI, Robotics Innovation Centre, Bremen, Germany
2Department of Electronic Engineering, University of York, York, UK
3Department of Design, Manufacture, and Engineering Management,

University of Strathclyde, Glasgow, UK
4Magellium SAS, Ramonville-Saint-Agne, France
5Space Applications Services NV, Zaventem, Belgium

Corresponding author:

Raul Dominguez, DKFI, Robotics Innovation Centre, Robert-Hooke-

Strasse 1, 28359 Bremen, Germany.

Email: raul.dominguez@dfki.de

International Journal of Advanced

Robotic Systems

March-April 2020: 1–15

ª The Author(s) 2020

DOI: 10.1177/1729881420911767

journals.sagepub.com/home/arx

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License

(https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without

further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/

open-access-at-sage).



level representations of the world and of the robot’s

relation to the world.

The InFuse consortium, a partnership of six academic

and industrial actors in the European space sector, has

developed a modular software architecture for the

design, implementation, evaluation, and onboard deploy-

ment of multisensor data fusion algorithms. This soft-

ware architecture is called the Common Data Fusion

Framework (CDFF): common because it supports a wide

range of sensory modalities and is not specific to any

robotic middleware, and framework because it is “a col-

lection of software tools, libraries, and conventions,

aiming at simplifying the task of developing software

for a complex robotic device.”3 This framework is

designed for the needs of space robotics but can be used

in any robotic application domain, but it does have a

particular focus on space robotics. Relevance to space

has been ensured through the guidance of European

Union (EU)-mandated representatives of the European

Space Agency (ESA) and several national space agen-

cies. We have released it as free and open-source soft-

ware (https://gitlab.com/h2020src/og3), with optional

proprietary components provided by the french and ger-

man space agencies (CNES and DLR) for the usage of

follow-up EU-funded consortia.

At the conceptual level, the CDFF implements multi-

sensor data fusion tasks by breaking them down into small

atomic data processing tasks organized in a data flow

graph, with sensor data flowing in and data fusion products

flowing out. At its core, it features a collection of reusable

software modules that implement a large number of atomic

data processing tasks, each with a software library written

in Cþþ that exposes a common interface and uses Abstract

Syntax Notation One (ASN.1) data types. In addition to the

atomic modules, we have released a set of complete data

fusion pipelines as part of the framework, as examples and

for out-of-the-box operation. Finally, the framework is

completed by a set of user-facing development and proto-

typing tools for log replay and visualization written in

Python. Integration with robotic frameworks and

message-passing middlewares is planned but not yet

released.

Our previous papers have described the motivation

behind the project, the initial architectural design, the data

fusion techniques considered for implementation, the

ongoing work on the framework implementation, the orbi-

tal and planetary test scenarios considered for evaluation,

and finally the first applications of the framework to the

problems of stereo reconstruction, environmental map-

ping, vision-based localization, and visual tracking. In this

first publication since the release of the framework, we

describe the final architecture, give details on the avail-

able stereo reconstruction pipeline, and report on the final

evaluation of a visual tracking pipeline in an orbital simu-

lation facility and a vision-based localization pipeline in a

planetary analog site.

Related work

Multisensor data fusion. Decades of research in robotics have

brought about a large variety of multisensor data fusion

algorithms, many of which have been released as programs

or libraries of varying quality, reusability, and adoption

rate. These algorithms and their implementations offer

dynamic state estimation, environmental modeling, or both.

State estimation, for instance, can be achieved at low

computational cost using a nonlinear complementary filter4

or a gradient descent algorithm5 that fuses together angular

velocities, linear accelerations, and optionally magnetic

field readings into an orientation estimate: Reference

implementations of these methods in C, C#, and MATLAB

are available.6 If using video cameras as the main sensory

modality instead, images or image pairs can be fused

together across time into an ego-motion estimate by visual

odometry: Recent libraries available for that task, each with

their own particular focus and strong points, include LIB-

VISO,7 fovis,8 DVO,9 direct sparse odometry,10 and semi-

direct visual odometry,11 the latter a proprietary solution

contrary to the previous ones.

Environmental modeling can be performed by structure-

from-motion and multiview stereo methods that respec-

tively produce sparse and dense 3D point clouds of the

environment, which can then be postprocessed into possi-

bly textured 3D models such as object meshes and eleva-

tion maps. These methods fuse together images or more

usually image pairs across time. Well-known free and

open-source software for that task include Bundler12

(sparse only), CMVS/PMVS213 (dense only), VisualSFM14

(sparse) (proprietary graphical front-end but open-source

underlying libraries), OpenMVG15 (sparse), OpenMVS16

(dense), MVE17 (both), and the more recent Theia18

(sparse) and COLMAP19 (both). Additionally, other meth-

ods of environmental modeling are available for working

with depth cameras instead of, or in addition to, video

cameras. Volumetric 3D reconstruction based on truncated

signed distance functions, for instance, has been implemen-

ted a number of times by successors and variants of the

seminal KinectFusion method.20 An open-source example

of this approach, optimized for real-time large-scale depth

fusion, is InfiniTAM.21

Finally, multisensor data fusion methods that offer both

dynamic state estimation and environmental modeling are

of course a staple of robotics. All aforementioned recon-

struction methods recover the pose of the sensor relative to

the reconstructed model, but the most well-known example

is simultaneous localization and mapping (SLAM). ORB-

SLAM2,22 LSD-SLAM,23 and GTSAM,24 for instance, are

well-known libraries in the realm of visual SLAM, where

visual perception is fused with odometry readings or iner-

tial measurements into a map of the environment and the

sensor’s position. Other noteworthy libraries include,

among others, the recent RGB-D SLAM system
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ElasticFusion25 and the 2D and 3D lidar SLAM software

Cartographer.26

These data fusion libraries are always specific to the

problem they address: They implement a particular algo-

rithm, or a few related ones, to deal with a particular

robotics or computer vision problem. In contrast, the CDFF

strives to be wider in scope. It is a modular software archi-

tecture where any multisensor data fusion algorithm can be

implemented, whether it already exists or is being

designed: a common software framework for any kind of

data fusion work. In this respect, a close analog is the

recently released Sensor Fusion and Tracking Toolbox for

MATLAB,27 which like the CDFF “includes algorithms

and tools for the design, simulation, and analysis of systems

that fuse data from multiple sensors to maintain position,

orientation, and situational awareness.” The toolbox offers

orientation and pose estimators, Kalman and particle filters,

and multiobject trackers to realize data fusion on simulated

sensor data: altitude, GPS, inertial, magnetic, infrared,

radar, and sonar. Like the CDFF, this toolbox makes it

possible to prototype data fusion pipelines but is proprie-

tary and currently limited to simulated sensor data, whereas

the CDFF is open-source, meant for real-time data, and

targets onboard deployment.

Robotic frameworks. Given its framework nature and its

application domain, the CDFF also appears similar to

robotic frameworks such as the robot operating system

(ROS) and the robot construction kit (Rock) ROS and

Rock, which include their own data fusion features: ROS

nodes implementing orientation estimation,28 visual odo-

metry,29,30 or SLAM23,31 have been made from the afore-

mentioned data fusion libraries. ROS is a standard in many

application domains, where its simplicity, practicality, and

large community are appreciated. In space robotics, every

agency develops and uses mission-specific software.

NASA developed the CLARAty32 framework with 44

CLARAty modules which provides software components

for a higher level decisional layer and a lower level func-

tional layer. However, publication and development of

CLARAty has ended, and the only recent public reports

of middleware usage concern several prototype systems

using ROS and/or Real-Time Innovations’ commercial

middleware for mission critical systems.33,34

However, those are full data fusion pipelines, whereas

the focus of the CDFF is on assembling such pipelines. For

this task to be possible with ROS, the components of the

pipelines would have to be implemented as ROS nodes,

with a data exchange interface based on the publish–sub-

scribe model of the message-passing middleware. While

this is perfectly possible, this would make them ROS-

specific. Yet designing, assembling, evaluating, and

deploying data fusion pipelines is a task which does not

have to be ROS-specific. It can, and it should, be abstracted

away from the low-level aspects that are the primary focus

of ROS—abstracting hardware, handling device control,

and providing a message-passing middleware—so that it

can be performed in the context of other robotic frame-

works. For this reason, we have designed the CDFF to be

middleware agnostic. It focuses on data fusion only and

leaves out to an unspecified robotic framework the

responsibility of passing data between the pipeline com-

ponents or between the pipelines and the user-facing

development tools. The benefit is potential usage of the

resulting data fusion framework with any robotics frame-

work, and the disadvantage is that bindings must be writ-

ten for each robotics framework one wants to use the

CDFF with. As we used ROS during our experimental

validation of the framework, we have written such an

interface to ROS, but it is still experimental, so we have

not released it yet.

In Europe, the ESA has been investigating robotics soft-

ware for mission critical systems too, with the successive

projects The Assert Set of Tools for Engineering

(TASTE),35 Space Automation and Robotics General Con-

troller (SARGON), and European Space Robotics Control

and Operating System (ESROCOS).36,37 TASTE is an

open-source toolchain for the development of “correct-

by-construction” software for embedded, real-time, hetero-

geneous, mission critical systems. It has a strong focus on

formal modeling and on generating safe, optimized Ada

and C code from Architecture Analysis and Design Lan-

guage and ASN.1, two formal description languages. It is

the basis of SARGON and ESROCOS, two successive

steps toward a space-grade robotic framework for future

European missions, including software and hardware mod-

eling tools and communication and formal verification

tools. Thanks to its middleware agnosticity, the CDFF

could be integrated into ESROCOS, whose consortium

worked in parallel and in cooperation to ours. As a matter

of fact, to make it easier to integrate both projects, we have

used the same TASTE data types as ESROCOS, transcom-

piled to the same C structures by the same TASTE-

provided ASN.1-to-C compiler.

Structure of the CDFF

Data fusion nodes (DFNs), defined as atomic and reusable

processing units that perform a single data fusion function,

constitute the core of the CDFF. Their atomicity makes

them reusable and specialized. Consequently, they need

to be connected and coordinated to each other to produce

a particular data fusion product. We call a particular

arrangement of DFNs, together with the controller that

coordinates them, and the local data store (if any) for the

data they use or generate, a data fusion processing com-

pound (DFPC). Activation and deactivation of these

DFPCs, as well as all other control and data flows within

the framework, are the responsibility of an Orchestrator

component. Finally, the last component of the framework

is a data product manager Data Products Manager (DPM)

that stores and retrieves data from persistent memory on

Dominguez et al. 3



request from the Orchestrator. The three main components

of CDFF are the DFPCs, the Orchestrator, and the DPM.

These components are depicted in Figure 1.

The framework consists of three major components,

named CDFF-Core, CDFF-Support, and CDFF-Dev.

CDFF-Core and CDFF-Support are designed to be

deployed in the target robotic system, while CDFF-Dev is

intended for software engineering of data fusion software

and performance evaluation. The source code of the CDFF

that is designed to be deployed on a robotic system is

developed in C/Cþþ, while CDFF-Dev is implemented

in Python.

CDFF-Core

The CDFF-Core consists of a set of DFNs, each of which

performs a specific data processing task commonly part of

robotic perception tasks, for instance, feature extraction in

an image or Kalman filtering of a system state. They have a

minimalist interface consisting of inputs, outputs, a config-

uration, and a process operation. The implementation of a

DFNs can be as simple as a stand-alone Cþþ class or

involve the usage of complex libraries. All DFNs are Cþþ

instances of classes that inherit from a Common Data

Fusion Node Interface. An example of a DFN interface is

shown in the Code Sample 1. Although in our experiments

all DFNs have been deployed as single processes in the

target middleware (e.g. ROS), the CDFF does not impose

any particular deployment restriction: We consider the

deployment view a feature to be covered by the middleware

and very dependent of the particular robotic mission’s

hardware. DFNs, at the CDFF level, are abstract with

respect to this.

CDFF-Support

CDFF-Support is a set of more fully fledged DFPCs,

assembled by connecting DFNs together into larger soft-

ware modules that generate specific data fusion products

(e.g. pose estimation) from specific sensor data inputs.

CDFF-Support also includes two software modules

required for the actual execution of these DFPCs on a

robotic system: an Orchestrator which coordinates the data

fusion processes running on the system and a DPM which

maintains the data fusion products pertaining to environ-

ment representation during the lifetime of the system.

The DPM stores a consistent representation of the envi-

ronment, a history of acquired preprocessed sensor data,

estimated poses, and a selection of the generated fused data

products, to deliver them under request of the planning

modules. Data are also stored locally within DFPCs so that

it can be further exchanged between DFPCs as well as

made available for the central DPM.

Each DFPC is characterized by its function or functions,

the data streams that it receives and produces, including the

corresponding metadata (for instance, timestamps and geo-

metric models), the operations that it can execute on

demand, the DFNs it uses, and how these are configured

and set up. We use description files such as the one in Code

Sample 2 to have a clear definition of the functionality of

Figure 1. This diagram presents how the three components of
CDFF-Support interact and also how the CDFF interfaces with
the sensors and autonomy subsystems. CDFF: Common Data
Fusion Framework.

Code Sample 1. Definition of the interface of a DFN. Abstract
Syntax Notation One (ASN.1) has been used in the definition of
the types.
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each DFPC. Currently, the DFPCs that are available are

presented in Table 1; these DFPCs have been tested on real

systems in analog to planetary and orbital missions.

The Orchestrator has the main task of receiving queries

from the onboard planners (deliberative and executive),

which consists of symbolic, task, path, and motion planning

for planetary rovers and on-orbit servicing satellites. Here

the planning component is referred to as the autonomy

framework. The Orchestrator is in charge of controlling

DFPCs and providing the fused data products to the auton-

omy framework. It acts as the system integrating compo-

nent to coordinate the activation states of DFPCs for

processing raw or low-level processed data in the target

system to control. The Orchestrator has the following func-

tions: (1) interface between the autonomy framework and

DFPCs, (2) translate the perception and localization data

into the format as requested by the autonomy framework,

(3) interface with the sensors’ instrument control unit to

configure a limited set of operational modes and sensor-

specific parameters, (4) interface with the Data Products

Manager (DPM) to provide mechanisms for querying fused

data products, and (5) controlling the runtime life cycle of

configuring, activation, and deactivation of DFPCs accord-

ing to autonomy framework requests and corresponding

operational modes of the sensors. This last function does

not interfere with internal DFPC decision-making

processes.

The role of the DPM is to handle the selection, structur-

ing, and storage of all the data processed or produced by the

CDFF that may be reused, either internally by the CDFF

processes or to satisfy requests from the autonomy mod-

ules. Additionally, it is foreseen to become the interface

through which robots expose and retrieve the CDFF data

Code Sample 2. Description of the Reconstruction 3D DFPC.
Descriptions are available for each DFPC. The interfaces can be
created directly from them.

Table 1. DFPCs available in the initial release of the CDFF.

DFPC Description

Model-based visual
tracking

Target tracking in six degrees of freedom in
an image (or in stereo images) using the
target’s 3D model

Haptic scanning Environment reconstruction using a force
sensor for input

Model-based
tracking

Tracking of the pose of a robot in a scene
given its physical description

Model-based point
cloud localization

Estimate the position of a given 3D point
cloud (the model) in a larger 3D point
cloud (the scene)

Reconstruction 3D Build a 3D point cloud model of a target
from multiple stereo image pairs of it

Reconstruction and
identification

Build a 3D point cloud scene from multiple
stereo image pairs and estimate the
position of a given point cloud in the
larger point cloud

Visual stereo SLAM Simultaneous localization and mapping
based on stereo images

Map-based visual
localization

Localization within a previously built SLAM
map: alternate operating mode of the
visual stereo SLAM DFPC

CDFF: Common Data Fusion Framework; DFPC: data fusion processing
compound.
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products in multirobot scenarios and also the interface

through which ground operators can access the CDFF

data products. The DPM should become a robotics-

dedicated geographic information system. With

respect to the activated DFNs and DFPCs in the

CDFF, the DPM processes the data insertion requests.

Internally, it manages all the spatial-related data by

implementing insertion and retrieve functions; dele-

tion operations are not yet implemented, but the

back-end libraries support these features, aiming at

satisfying future needs for data products and storage

constraints.

Figure 2 shows a diagram that summarizes the pre-

sented architecture. On a robotic system, multiple DFPCs

can be dynamically instantiated by the Orchestrator

depending on factors such as the demands from the plan-

ning components, the environmental conditions, or the

achieved performance. A central data products manager

is available to store in, and retrieve from, permanent

memory data products that can be requested by other mod-

ules or by DFPCs. Internally, each DFPC has a number of

interconnected DFNs triggered by a controller which has

access to a local memory. Some DFN inputs and outputs

are respectively connected, through DFPC interfaces, to

sensors and to planning components.

CDFF-Dev: Development tools

CDFF-Dev provides software development, performance

analysis, and data management tools for implementing

and evaluating data fusion algorithms. Contrary to

CDFF-Core and CDFF-Support, which are deployed on

the robotic system, CDFF-Dev tools are meant to be used

in a development environment during implementation and

exploitation activities.

The first step to evaluate or implement a DFN or DFPC

using CDFF-Dev is to write a DFN or DFPC description

file. From these, code generators will produce a scaffold for

the actual implementation. This ensures that the code will

conform to interface conventions without having to rely on

a heavy framework. Furthermore, it allows to analyze

DFPCs before they are actually implemented and to check

connections of DFNs and DFPCs without running the code.

Testing DFNs or DFPCs off-line with log data is possi-

ble with the provided Python bindings. Two essential ele-

ments are needed for a user to be able to replay data logs

from a desired robotic middleware: (1) a conversion from

the data log format used by the middleware to an inter-

mediate format that is used by CDFF and (2) a data type

conversion from the middleware to CDFF data types. Mes-

sagePack is the intermediate log file format that can be

handled by CDFF-Dev. Although it is also easily possible

to extend CDFF-Dev to support new log formats, log itera-

tors will read log files and stream them to the data flow

control. Log iterators can be joined or replayed sequen-

tially. They can handle multiple files and extract only spe-

cific data streams from log files. Logs are replayed with a

data flow control module that emulates the communication

layer of a robotic middleware and a log player that replays

logged data chronologically. An example of a replay script

is shown in Code Sample 3.

During off-line execution of DFNs and DFPCs, we can

store log data and fused data in an EnviRe graph38; hence,

we can use the visualizer of EnviRe for 3D visualizations of

the data. We can visualize poses, models of robots (in

Universal Robot Description Format [URDF]), trajectories,

maps, (colored) point clouds, laser scans, and depth maps.

An example of a visualized point cloud is shown in

Figure 5.

CDFF-Dev also offers various tools that can be used to

analyze log data and configurations. It provides command

line tools for log inspection, a visualization of DFPC con-

figurations from DFPC description files, and a simple

exporter to comma-separated values files. The latter can

be used for easy integration with existing tools from the

Python scientific ecosystem, for example, pandas. From

pandas, we can easily use the log data for further statistical

analysis, visualization, or machine learning in Python. It is

also possible to visualize data flow from the data flow

control component in a graph, obtain DFN statistics like

execution time and memory consumption, or load ground

truth maps (digital elevation maps) from GeoTIFF format.

Figure 2. The Orchestrator manages the queries to the central
data product manager, the activation of different data fusion
processing compounds, and the operating modes of the sensors
to fulfill requests from the planning algorithms. DFPC: data fusion
processing compound.
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Stereo reconstruction

The most fundamental use of the CDFF is to reconstruct a

model of the environment around a robot by fusing data

from multiple sensors or multiple samples. For the case of

point cloud-based visual fusion, we use a rectified stereo

image pair to construct a 3D point cloud by computation of

a disparity map as implemented in OpenCV and Point

Cloud Library (PCL). The subsequent point cloud is then

transformed to the coordinate system of the previous point

cloud and fused with it. Two main approaches can compute

the pose of each point cloud differently.

Implemented approaches

(1) The first approach focuses on 3D registration of

point clouds. 3D features are extracted from a point

cloud, descriptors are computed, and from these

descriptors we find the transform that allows one

set of key points to be overlapped with the other.

(2) The second approach uses 2D feature matching.

2D features are extracted from each image and

their descriptors are computed. We then find the

matching features between the two images and

triangulate the locations of these points in 3D using

multiple-view geometry. To track the ego-motion

of the camera system, features from the left camera

are associated with previous triangulated points in

time and filtered based on the fundamental matrix

relation. The position of the left camera (and the

right camera by extension) is then computed using

the OpenCV perspective-n-point solver.

As part of CDFF-Support, we provide three variants of each

approach to 3D reconstruction, leading to a total of six

different algorithms that can be used within the 3D object

reconstruction DFPC. This leverages the modular design of

the CDFF to allow a great degree of flexibility in how

sensor fusion is implemented in a robotic system.

The first variant of the 3D registration approach works

as presented in Table 2 and uses PCL algorithms for feature

description and matching.39 The second variant uses PCL

functions and Iterative Closest Point (ICP) on extracted

features from the open-source CloudCompare library

encapsulated in the Registration3D DFN. The third variant

uses ICP on the entire point cloud. The ICP algorithm

implementation provided by PCL was found to produce

relatively large position errors over very small displace-

ments. After surveying alternate ICP implementations, an

Code Sample 3. Example of Python script to replay and visualize
logs from the SherpaTT rover.

Table 2. The 3D environment reconstruction steps.a

3D registration approach

DFNs used in order Main algorithm
ImageFiltering UndistortionRectification
StereoReconstruction DisparityMapping
FeatureExtraction3D HarrisDetector3D
FeatureDescription3D SHOTDescriptor3D
FeatureMatching3D RANSAC3D

2D feature matching approach

DFNs used successively Main algorithm
ImageFiltering UndistortionRectification
StereoReconstruction DisparityMapping
FeatureExtraction2D HarrisDetector2D
FeatureDescription2D ORBDescriptor2D
FeatureMatching2D FLANNMatcher
Reconstruction2DTo3D Triangulation
PerspectiveNPoint IterativePnPSolver
FundamentalMatrixComputation RANSAC

DFPC: data fusion processing compound; DFN: data fusion node.
aThe DFNs used for an environment reconstruction DFPC are listed on
the left, a typical algorithm used for each DFN is listed on the right. Many
different algorithms can be used within a given DFN, and these are known
as DFN Implementations.
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ICP algorithm from the open-source libpointmatcher

library was implemented and produced good results over

large numbers of input images.

The first variant of the 2D matching approach works as

presented in Table 3. The second variant extends the first

variant to improve subsequent pose estimateswhile satisfying

constraints on 3D pose estimate constraints from the projec-

tion matrix. In the third variant, both optimization problems

are solved numerically using the Ceres library (Table 4).

The two approaches, each with three variants, of 3D

reconstruction have been tested on PNG format image sets

captured by replaying ROS bag files that were recorded by

a mobile computing platform developed for easy handheld

operation and easy mounting on mobile robots: the Hand-

held Central Rover Unit (HCRU) depicted in Figure 3. The

bag files were captured in field trials where a mobile robot

ran a circular trajectory around a stationary object, captur-

ing one image per second. Figure 4 shows the object in a

sample input image, and Figure 5 shows a reconstructed 3D

point cloud after 10 image pairs have been processed by the

SparseRegistrationFromStereo DFPC.

Figure 5 shows a view of the reconstructed point cloud

in CDFF-Dev’s 3D visualizer. Using CDFF-Dev’s tools,

the logged data can be replayed, the relevant data given

as input to the DFPC, and the resulting data fusion product

displayed in an interactive 3D visualization software as the

data are replayed. In addition to point clouds, the visualizer

tool can also display coordinate frames (two frames, con-

nected by a red line, are visible in Figure 5), trajectories,

maps, and meshes loaded from URDF. This data fusion

product visualizer, is helpful for developing and examining

the results of data fusion solutions (DFPCs).

Choosing the algorithm parameters that lead to the best

reconstruction result is difficult because there are many

DFNs with many parameters. The main challenge faced

was that the complete point cloud is correctly reconstructed

only while the error is relatively small. After a certain

number of frames, large position errors may break the

reconstruction. To prevent this accumulation of error, a

DFN named “NeighbourPointAverage” was developed that

combines the nearest neighbors in successive point clouds

by statistical averaging of position. This DFN proved to

work well over large data sets and also proved to be more

robust to noise than a simple voxel-based filter, as the voxel

filter tended to expand the surface to volumes and the

NeighbourPointAverage did not.

Figure 4. Sample input image from a stereo pair (left camera
image) generated in the Planetary Exploration Laboratory of DLR
Institute of Robotics and Mechatronics.

Table 3. Final steps of 3D object reconstruction, in the 3D
registration approach, for three DFPC variants.

3D registration approach

Reconstruction SparseRegistration DenseRegistration
FromStereo

FromStereo FromStereo —
FeatureExtraction3D FeatureExtraction3D —
FeatureDescription3D — —
FeatureMatching3D Registration3D (ICP) Registration3D

DFPC: Data fusion processing compound.

Table 4. Optimization steps involved in 3D object
reconstruction, in the 2D feature-matching approach, for three
DFPC variants.

2D feature matching approach

Reconstruction
FromStereo

EstimationFromStereo AdjustFromStereo

— Transform3DEstimation
(LeastSquares
Optimization)

BundleAdjustment
(using Ceres)

DFPC: data fusion processing compound.

Figure 3. The HCRU engineered by DLR Institute of Robotics
and Mechatronics, includes two monochrome cameras, a color
camera, lidar, and IMU. In the figure, the device is mounted on the
side of DFKI’s SherpaTT robot. HCRU: Handheld Central Rover
Unit.
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Table 5 gives an estimate of processing times and result

quality for the environmental reconstruction DFPCs. The

best performing DFPCs are SparseRegistrationFromStereo

with PCL’s ICP and ReconstructionFromStereo. Dense-

and Sparse-RegistrationFromStereo produce similar

results, with Dense taking longer. RegistrationFromStereo

results in a much larger error, and when using CloudCom-

pare in place of ICP as a registration DFN, a larger error is

observed as well. Estimation- and Adjustment-FromStereo

have frequently shown poor results too, as bundle adjust-

ment fails to converge in the presence of many outliers.

One cause of this may be the small number of poses over

which the optimization is run, but this is necessary for

robotic navigation in many situations. Failed reconstruc-

tions cause the algorithm to skip steps and to complete

faster. Hence, some time measurements on full reconstruc-

tions are not representative of a complete functional

application.

Evaluation of the stereo reconstruction pipeline

A large amount of data is produced in the many processes

contained in the CDFF, especially taking into account the

number of DFNs that could be producing data. It is desirable

to be able to assess the quality of these data to enable a

continuous evaluation of DFNs and DFPCs. We have

defined a set of data quality assessment functions to be

applied to the vision-based process pipeline composed by

extraction and detection, matching, triangulation, and pose

estimation, which is used in several DFPCs. Four DFNs used

in this process are considered, applied in order for vision

processing with their functions clearly indicated by their

names: 1. FeatureExtraction2D, 2. FeatureMatching2D, 3.

Reconstruction2DTo3D, and 4. PerspectiveNPoint. A set

Table 5. Processing time and reconstruction quality for five
image pairs and different DFPC implementations.a

Implementation Time(s) Quality

RegistrationFromStereo 117 Bad
SparseRegistationFromStereo (PCL ICP) 8.96 Good
DenseRegistrationFromStereo
(libpointmatcher ICP)

7.27 Best

SparseRegistrationFromStereo
(CloudCompare ICP)

10.7 Poor

DenseRegistationFromStereo
(CloudCompare ICP)

42.9 Bad

ReconstructionFromStereo 5.30 Poor
EstimationFromStereo 6.48 Bad
AdjustmentFromStereo 6.63 Bad

DFPC: data fusion processing compound.
aTimes are measured on an Intel Core i7-2770, 8 GB RAM, Ubuntu 16.04
desktop computer.

Figure 5. View of a reconstructed point cloud from 10 image pairs in CDFF-Dev’s log replay tool. CDFF: Common Data Fusion
Framework.
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of indicators intrinsically present in the data produced by

DFNs is used for this scope. The definition of data quality

assessment methods, such as visual feature matchability,

enables a continuous evaluation of these algorithms.40

In feature extraction, the features are ranked by their

response value. It is desirable to extract as many matchable

features as possible; in fact, any unmatched image feature

is discarded in successive steps. We compared the response

of features with respect to the features that were matched in

the next DFN. This way one could obtain a preliminary idea

of the goodness of a feature set and eventually select a

subset to feed to the matcher (or even re-extract). While

some patterns were found, we found no statistically rele-

vant link between response and matchability. A high

response does not imply repeatability.40 Further in the pro-

cessing pipeline, we assessed how matching distance could

be used for similar goals. Using PnP estimation incorpo-

rated in a random sample consensus (RANSAC) scheme

benefits large sets of matches (which directly generate 3D

points). However, the set of matches surviving the filtering

process has to be accurate or will produce too many outliers

to handle by RANSAC. We define a data quality assess-

ment function based on the ratio between the sum of dis-

tances of accepted matches (i.e., good matches) and the

average distance of all the matches. This function (to be

ideally minimized) favors large set of accepted matches,

still penalizing large average distances. It proved useful as

a predictor of poor matching performances. Concerning

triangulation, it is possible to propagate the 2D point

extraction uncertainty through the triangulation process.

This yields the 3D point covariance which directly repre-

sents the accuracy of the point cloud. Beder and Steffen41

show how to estimate the covariance matrix of a 3D point

in Euclidean space and proposes a scalar measure based on

the matrix singular values to evaluate it. To predict poor

estimation by PnP, we used RANSAC inlier percentage

levels, which are a direct measure of when the pose estima-

tion cannot be trusted. Low-level inliers, even dropping to

zero in some cases, always resulted in a completely off

estimation. Having a predictor of reasonable motion esti-

mation is crucial in pose estimation for dead reckoning

processes such as visual odometry, where a single large

error can compromise the localization accuracy.

Planetary and orbital applications

Vision-based localization of a rover in an unstructured

environment

The InFuse CDFF release includes support for external

libraries to provide visual localization functions. Two

DFPCs for visual localization included: (1) visual stereo

SLAM does simultaneously localization and mapping and

(2) map-based visual localization uses a previously existing

map. Both DFPCs are optimized for space exploration

rovers.

Performances are evaluated using metrics described in

the study by Kümmerle et al.42 to provide a statistical anal-

ysis of localization accuracy. We use data sets acquired by

multiple robots over three campaigns for evaluation in the

context of planetary exploration, some of which are

planned for release.

(1) Indoor experiments done in the DLR Planetary

Exploration Lab (PEL): Data acquisition was per-

formed by the ExoMars BB2 prototype rover

shown in Figure 7, with the HCRU shown in Fig-

ure 3, running the CDFF on board. Ground truth is

provided by a tracking system for the full pose of

sensors and a custom-made scanner for the digital

elevation map (DEM). This smaller setup provides

high-accuracy ground truth (error less than 1 mm

in position, less than 1� in orientation for poses and

less than 4 mm in XYZ for the DEM) and has the

ability to easily configure operational parameters

such as the slope of the terrain, the number and size

of obstacles, and the lighting conditions. It will

enable the analysis of fusion algorithms when

strong wheel slippage is encountered and incoher-

ent information is then provided by localization

subsystems such as wheel odometry and visual

odometry.

Figure 6 illustrates an example of the performance eva-

luation tests in the PEL. For this test, the ExoMars proto-

type rover executed a short 12-m trajectory around the

facility at a speed of 2 cm/s, acquiring 1032 � 772 stereo

images at about 4 Hz. The terrain featured a few obstacles

such as bumps, depressions, and small-sized rocks. We can

observe that, in this controlled environment and over short

ranges, both the visual odometry and visual SLAM perform

well, converging to a relative accuracy of 1% of the tra-

veled distance.

(2) Experiments performed in Morocco with Sher-

paTT: We performed several experiments with the

SherpaTT robot,43 the HCRU as an additional sen-

sor module, and a differential GPS (D-GPS) mod-

ule for ground truth pose estimation (see Figure 7).

Ground truth digital elevation maps with 4 cm

resolution are available for the test site. The

experiments can be categorized as: (1) long tra-

verse (for localization and mapping), (2) driving

around a known object (for 3D reconstruction),

and (3) SherpaTT moving in front of an external

HCRU (for model-based tracking). We conducted

an off-line evaluation of these experiments with

CDFF-Dev. We will now describe two experi-

ments and show how CDFF-Dev can be used to

analyze the result.

In the first experiment, SherpaTT starts driving at a

workshop toward a road to enter the desert. We compare
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the wheel odometry of SherpaTT with the D-GPS position,

which represents ground truth in this experiment. We

visualize a simplified model of SherpaTT at the pose esti-

mate derived from wheel odometry, the trajectory of Sher-

paTT according to wheel odometry and D-GPS, and a

ground truth map obtained from a drone. Optionally, we

can show the joint movements of SherpaTT. A simple DFN

implemented in Python will compare both position esti-

mates and print the error between both to the terminal, but

it could also easily be stored or plotted. The visualization is

shown in Figure 8. The log files and the GeoTIFF file for

the ground truth map have been uploaded to Zenodo

(https://zenodo.org/record/2575416). The script can be

found in the CDFF-Dev repository (https://gitlab.com/

h2020src/og3/cdff_dev/blob/master/examples/morocco/

wheel_odometry_with_ground_truth.py).

In the second experiment, SherpaTT drives in a circle

around a box. The stereo cameras of the HCRU are used to

make a 3D reconstruction of the environment. The result is

shown in Figure 9. The log files have been uploaded to

Zenodo (https://zenodo.org/record/2576885). The script

can be found in the CDFF repository CDFF-Dev repositor-

y(https://gitlab.com/h2020src/og3/cdff_dev/blob/master/

examples/morocco/reconstruction3d.py).

(3) Experiments performed in Morocco with the Mana

and Minnie rovers: A great amount of data was

acquired during the test campaign in Morocco with

the help of two additional rovers, provided by

Figure 6. Relative localization accuracy of CDFF functions when
executing a short traverse in the PEL. Top: Visual odometry.
Bottom: Visual SLAM. CDFF: Common Data Fusion Framework;
PEL: Planetary Exploration Lab.

Figure 8.Wheel odometry (green line) versus ground truth (red
line). The map in the background is a digital elevation map cap-
tured with a drone. Each color cycle (blue to violet) indicates a
height difference of 1 m. The robot model is shown at the current
position estimate of the wheel odometry.

Figure 7. Test platforms. Top: ExoMars Prototype Rover, DLR’s
Institute of Robotics and Mechatronics. Bottom: SherpaTT, DFKI.
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LAAS-CNRS: Mana, equipped with a lidar, and

Minnie, which is focused on visual data, with its

three stereo benches. Ground truth data from a

RTK-GPS are also provided for both rovers.

Acquisitions were performed on three primary

sites, each with different terrain features, for exam-

ple, rocks, sand dunes, large changes in elevation,

and so on. The rovers executed various trajectories

targeted at common planetary exploration scenar-

ios, such as long traverses (up to 1 km), a traverse

followed by a return to base, and rendezvous

between two rovers.

The data sets acquired during this campaign were also

used for characterization and validation of the performance

of a subset of CDFF localization functions, that is, visual

odometry and visual SLAM, over very long trajectories and

in more demanding operational conditions than what could

be tested in the DLR PEL.

As an example, the visual odometry and visual SLAM

features were tested on one of the data sets, on which the

rover performed a 650-m-long traverse in a mostly flat

terrain, at a speed of 30 cm/s. Stereo images with a reso-

lution of 1920 � 1080 pixels were captured at a rate of 2

Hz. Figure 10 illustrates some evaluation results obtained

in this scenario.

Visual odometry shows the best performance, as its

relative localization error converges to about 2.6% of

the traveled distance. It is however clear that the more

difficult operational conditions, such as the higher rover

velocity, presence of dynamic shadows, and harsher ter-

rain, have a negative impact on localization accuracy

when compared to PEL trials and paint a more realistic

picture of expected real-world performance. Regarding

visual SLAM, relative position error converges to 3.8%

on this data set, but reaches up to 6% for shorter travel

distances. Analysis of the trajectory allowed us to

observe that the SLAM system is especially sensitive

to rapid perturbations in rover pitch angle, which results

in accumulation of position estimation bias in elevation.

These perturbations consist, in the case of this trajec-

tory, in two trench-like obstacles which are crossed by

the rover.

On-orbit vision-based tracking of a satellite

The CDFF also includes the model-based visual tracking

DFPC which exploits a geometric model of an object to

align the image edges, consequently enabling to estimate

absolute pose. This DFPC is composed of several DFNs

such as Canny edge detection, image filtering, image gra-

dient computation, Kalman prediction, and Kalman

Figure 9. 3D reconstruction: left camera image and point cloud obtained from 3D reconstruction in EnviRe visualizer.
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correction. The parameters and a geometric model of the

visual tracking DFPC can be configured and set in text

files, which are in turn used for configuring its DFNs

internally.

DLR’s OOS-SIM facility in Figure 11 served as a test

platform for validation of the orbital DFPCs. The data sets

and ground truth recorded by the sensor suite were relevant

for mid-range approach and close-range rendezvous sce-

narios. The facility consists of a servicer and target satellite

mock-ups mounted on large industrial KUKA robots, a

lightweight robotic manipulator on the chaser, environ-

ment, and lighting to simulate conditions in space. The

sensor suite consists of stereo cameras, inertial measure-

ment units (IMUs), and lidar systems.

We demonstrate here a sample pose (image shown in

Figure 12, taken from DLR OOS-SIM) where a pose track-

ing is successful, indicated by the precise alignment of

model contours onto the image at the estimated pose. The

visual tracking DFPC is a typical InFuse application for an

on-orbit satellite servicing. For on-orbit servicing, the tar-

get satellite needs to be tracked so that a servicer satellite or

robot can autonomously replace parts or refuel it.

Discussion

The CDFF is presented as an intermediate software com-

ponent between libraries from perception and robotic con-

trol frameworks. It is independent of the robotic

middleware (e.g. ROS) and is not pursuing its replacement.

In fact, it is intended to be used as a repository of solutions

which can be easily picked up and placed in the target

system which might use any robotic middleware. Thus, the

use of the CDFF is in principle compatible with any exist-

ing robotic framework known to us. In addition to this, it

has been designed to allow for the testing of data fusion

solutions on sensor data obtained from robots reducing as

maximum as much as possible the middleware software

overhead. The data fusion implementations provided in the

framework have been tested online and off-line.

The CDFF software will be maintained in the following

years by researchers and industry consortia in the context

Figure 10. Relative localization accuracy of CDFF. Top: Visual
odometry. Bottom: Visual SLAM functions when executing a 650-
m traverse during field trials in Morocco. CDFF: Common Data
Fusion Framework.

Figure 11. On-orbit simulation (OOS-SIM) facility at DLR.

Figure 12. Visual tracking DFPC: Alignment of model edges (in
red) on image edges indicate correct pose estimation. DFPC: data
fusion processing compound.
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of EU-Funded projects which ambitions include the use and

enhancement of the framework. Some of the already iden-

tified extensions that will be provided in the next years are

visual odometry, lidar-based SLAM, absolute localization,

DEM generation, pose fusion, coregistration, and moving

target suppression. Other already presented features will

gain robustness and maturity, like model detection and

tracking, point cloud model-based localization, and recon-

struction 3D, which will be used in orbital projects, and

CDFF-Dev, which will be used in the context of a valida-

tion toolset in the ground segment of a planetary navigation

project.

Conclusion

The CDFF environment for development, testing, and

deployment of perception, localization, and mapping algo-

rithms has been presented. The framework architecture has

been designed to produce solutions with highly reusable

components: DNFs, DFPCs, Orchestrator, and Data Prod-

ucts Manager. The CDFF provides the first modular open-

source framework for fusion of robotic data using a wide

variety of algorithms and is specifically focused on provid-

ing data products for space robotics both in orbit and on

other planets. Among other functions, the CDFF provides

data fusion for environmental reconstruction from multiple

sensors and views, map generation for navigational learn-

ing and reasoning, visual identification and tracking of

objects, and localization in both structured and unstruc-

tured environments. Furthermore, it allows to describe,

implement, and test off-line the software independently

of the Robotic Control Operating System that the final

robotic system might use. Finally, demonstration scenarios

and analysis have been described to illustrate the use and

effectiveness of the CDFF in robots for space and also for

many other applications.
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