3 research outputs found

    Design, characterization and control of thermally-responsive and magnetically-actuated micro-grippers at the air-water interface

    Get PDF
    The design and control of untethered microrobotic agents has drawn a lot of attention in recent years. This technology truly possesses the potential to revolutionize the field of minimally invasive surgery and microassembly. However, miniaturization and reliable actuation of micro-fabricated grippers are still challenging at sub-millimeter scale. In this study, we design, manufacture, characterize, and control four similarly-structured semi-rigid thermoresponsive micro-grippers. Furthermore, we develop a closed loop-control algorithm to demonstrate and compare the performance of the said grippers when moving in hard-to-reach and unpredictable environments. Finally, we analyze the grasping characteristics of three of the presented designs. Overall, not only does the study demonstrate motion control in unstructured dynamic environments-at velocities up to 3.4, 2.9, 3.3, and 1 body-lengths/s with 980, 750, 250, and 100 ÎĽm-sized grippers, respectively-but it also aims to provide quantitative data and considerations to help a targeted design of magnetically-controlled thin micro-grippers

    Vitrification within a nanoliter volume : oocyte and embryo cryopreservation within a 3D photopolymerized device

    Get PDF
    Open Access funding enabled and organized by CAUL and its Member Institutions. KRD is supported by a Mid-Career Fellowship from the Hospital Research Foundation (C-MCF-58–2019). KD acknowledges funding from the UK Engineering and Physical Sciences Research Council (grants EP/P030017/1). This study was funded by the Australian Research Council (ARC) Centre of Excellence for Nanoscale BioPhotonics (CE140100003).Purpose Vitrification permits long-term banking of oocytes and embryos. It is a technically challenging procedure requiring direct handling and movement of cells between potentially cytotoxic cryoprotectant solutions. Variation in adherence to timing, and ability to trace cells during the procedure, affects survival post-warming. We hypothesized that minimizing direct handling will simplify the procedure and improve traceability. To address this, we present a novel photopolymerized device that houses the sample during vitrification. Methods The fabricated device consisted of two components: the Pod and Garage. Single mouse oocytes or embryos were housed in a Pod, with multiple Pods docked into a Garage. The suitability of the device for cryogenic application was assessed by repeated vitrification and warming cycles. Oocytes or early blastocyst-stage embryos were vitrified either using standard practice or within Pods and a Garage and compared to non-vitrified control groups. Post-warming, we assessed survival rate, oocyte developmental potential (fertilization and subsequent development) and metabolism (autofluorescence). Results Vitrification within the device occurred within ~ 3 nL of cryoprotectant: this volume being ~ 1000-fold lower than standard vitrification. Compared to standard practice, vitrification and warming within our device showed no differences in viability, developmental competency, or metabolism for oocytes and embryos. The device housed the sample during processing, which improved traceability and minimized handling. Interestingly, vitrification-warming itself, altered oocyte and embryo metabolism. Conclusion The Pod and Garage system minimized the volume of cryoprotectant at vitrification—by ~ 1000-fold—improved traceability and reduced direct handling of the sample. This is a major step in simplifying the procedure.Publisher PDFPeer reviewe
    corecore