
DEEP REINFORCEMENT LEARNING

WITH CONSENSUS FOR

MANIPULATORS

A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy

in the Faculty of Science and Engineering

2023

Wenxing Liu

School of Engineering

Department of Electrical and Electronic Engineering

Contents

Abstract 11

Declaration 12

Copyright Statement 13

Abbreviations 14

Symbols 16

Publications 18

Acknowledgements 19

1 Introduction 22

1.1 Background . 22

1.1.1 Pick and Place . 23

1.1.2 Motion Planning . 24

1.1.3 Reinforcement Learning . 27

1.1.4 Consensus Control . 33

1.2 Motivation . 37

1.3 Contributions and Thesis Organisation 39

1.3.1 Contributions . 39

1.3.2 Thesis Organisation . 39

2 Preliminaries and Literature Review 42

2.1 Robot Kinematics . 42

2.1.1 Forward Kinematics . 43

2

2.1.2 Inverse Kinematics . 44

2.2 Motion Planning . 47

2.2.1 Optimization-based Method . 48

2.2.2 Heuristic-based Method . 50

2.2.3 Sampling-based Method . 52

2.3 Reinforcement Learning . 54

2.3.1 Mathematical Formulation . 57

2.3.2 On-policy and Off-policy Algorithms 60

2.3.3 Deep Q Learning . 65

2.3.4 Policy Gradient Method . 67

2.3.5 Actor-critic Method . 69

2.3.6 Deep Deterministic Policy Gradient Method 70

2.3.7 State-of-Art Algorithms . 71

2.4 Consensus Control . 74

2.4.1 Kronecker Product . 76

2.4.2 Graph Theory . 76

2.4.3 Consensus for a Single Integrator System 78

2.4.4 Consensus for a Linear Time-Invariant System 79

2.5 Summary . 80

3 A Deep Reinforcement Learning Approach for Robotic Manipulators 83

3.1 The Proposed Method . 84

3.1.1 Reward Design . 84

3.1.2 Action Space and Observation Space 85

3.1.3 Neural Network Structure . 85

3.1.4 Training Details . 86

3.2 Standard Path Planning Method . 87

3.3 Result and Analysis . 88

3.3.1 Evaluation on Training of the Proposed Method 88

3.3.2 Comparison with Standard Path Planning Method 90

3.4 Summary . 93

3

4 Deep Reinforcement Learning with Manipulators for Pick-and-place 94

4.1 The Proposed Method . 96

4.1.1 System Overview . 96

4.1.2 Reward Space . 97

4.1.3 Neural Network Structure . 97

4.1.4 State Space . 98

4.1.5 Height-sensitive Action Policy 98

4.2 Experiments and Results . 99

4.2.1 Training Details . 99

4.2.2 Evaluation Metrics . 100

4.2.3 Baseline Method . 100

4.2.4 Simulation Evaluation . 100

4.2.5 Real-world Evaluation . 101

4.3 Suction in Challenging Environments 104

4.4 Real-world Unseen Objects Challenge 105

4.5 Summary . 106

5 Distributed Neural Networks Training for Robotic Manipulation with

Consensus Algorithm 107

5.1 Problem Formulation . 108

5.1.1 Consensus-based Distributed Training 108

5.1.2 Actor-critic Based Off-policy Deep Reinforcement Learning . . . 110

5.1.3 Actor-critic Based Off-policy Deep Reinforcement Learning with

Consensus-based Distributed Training 112

5.2 Stability Analysis . 114

5.2.1 Convergence Analysis of a Type of Nonlinear Discrete Systems . 114

5.2.2 Convergence Analysis of the Critic Training Parameter 116

5.2.3 Convergence Analysis of the Actor Training Parameter 121

5.3 Experiments and Results . 124

5.3.1 Comparison with Existing Consensus-based RL Method 124

5.3.2 Deep Reinforcement Learning Setup 126

5.3.3 Training Details . 129

4

5.3.4 Simulation Results . 131

5.3.5 Comparison with Existing Multi-agent Algorithm 141

5.3.6 Discussion on Bandwidth and Privacy Protection 141

5.4 Summary . 143

6 Sim-and-Real Reinforcement Learning for Manipulation: A Consensus-

based Approach 144

6.1 Methodology . 145

6.1.1 System Overview . 146

6.1.2 Deep Reinforcement Learning Setup 146

6.1.3 Consensus-based Training . 151

6.1.4 Consensus-based Training with Deep Reinforcement Learning . 152

6.2 Experiments and Results . 153

6.2.1 Experiment Setup . 153

6.2.2 Sim-and-Real is Better Than Sim-to-Real 154

6.2.3 Best Policy in Simulation is Not the Best for Sim-and-Real

Training . 156

6.2.4 The More Agents in Simulation, the Better for Sim-and-Real

Training . 157

6.2.5 Generalisation of Real-world Unseen Objects 157

6.3 Summary . 158

7 Conclusion and Future Work 160

7.1 Conclusion . 160

7.2 Future Work . 162

Bibliography 164

Word count 34450 words

5

List of Figures

2.1 The interaction between agent and environment in a Markov decision

process. State represents the current status. Agent is an individual that

performs the action. Action stands for agent behaviour. Reward is the

feedback given after completing the action. Environment can judge the

next state and provide a reward. 58

2.2 SARSA algorithm. 61

2.3 An example of NN. x stands for the input signal. y represents the

output signal. 63

2.4 Three activation functions. 64

2.5 Q learning algorithm. 66

2.6 Policy Gradient Method. 68

2.7 (a) An undirected graph (b) A directed graph (c) A weighted graph. . . 77

3.1 The architecture of actor network (a) and critic network (b). 86

3.2 The process of the UR5 robot arm reaching the target position. The

pink disc depicts the position of the target. 88

3.3 Pick and place tasks via the standard path planning method. The UR5

robot arm with orange colour denotes the initial position of the actual

UR5 robot arm. The UR5 robot arm with grey colour represents the

current position of the actual UR5 robot arm. The image viewer at

the bottom right corner represents the view from the 3D camera. The

location of the box can be computed by the aruco marker [1] on top of it. 89

3.4 (a) Average reward of the proposed method. (b) Average Q value of

the proposed method. The transparent area indicates the standard

deviation of the results. 90

6

3.5 Solutions of reaching random target positions with the proposed method. 91

3.6 Failed path planning with the standard path planning method. The

orange UR5 robot arm stands for the initial position of the actual UR5

robot arm, the grey UR5 robot arm stands for the current position of

the actual UR5 robot arm, and the transparent UR5 robot arm denotes

the planned trajectory for the actual movement of the real UR5 robot

arm generated by OMPL in rviz. 92

4.1 Pick-and-place objects with the proposed method 95

4.2 Overview of the proposed framework. BN stands for Batch Normaliza-

tion. Conv represents convolution. Up stands for upsampling. The red

circle denotes the pixel-wise best suction position. More details can be

found from Algorithm 4.1. 96

4.3 The training environment in simulation 99

4.4 Suction success rates of the proposed method and the Visual Grasp-

ing method. The dotted lines represent methods without the height-

sensitive action policy. 101

4.5 Distance rates of the proposed method and the Visual Grasping method.

The dotted lines stand for methods without the height-sensitive action

policy. 102

4.6 Pick-and-place demonstration in simulation with the proposed approach.

The proposed method encourages the UR5 robot arm to suction the area

close to the centre of the target objects with the height-sensitive action

policy. 102

4.7 Real-world evaluation of the proposed method and the Visual Grasping

method . 103

4.8 Edge suctioning with the Visual Grasping method. Although the suc-

tions are considered successful in simulation, they will cause real-world

failures. 103

4.9 The demonstration of real-world evaluation with the proposed approach.

The training model with the proposed method can be implemented

directly to a real suction task without any fine-tuning from the real

world. 103

7

4.10 The demonstration of suctioning in challenging Environment 3 104

4.11 Suctioning in challenging environments: (a) Environment 1; (b) Envi-

ronment 2; (c) Environment 3 . 105

4.12 Examples of collisions without the height-sensitive action policy 105

4.13 Novel objects for real-world suctioning: (a) Environment 1; (b) Envi-

ronment 2 . 105

4.14 Pick-and-place novel objects with the proposed method 106

5.1 Training a group of nine UR5 robot arms to reach the random target

positions. The targets are represented by wooden boxes. 107

5.2 Consensus error of the actor network with 6 agents. The setup for both

methods are described in [2]. (a) With the algorithm proposed in [2]

(b) With our algorithm (c) With our algorithm except consensus-based

distributed training on the critic value training parameter 125

5.3 The joint positions of a UR5 robot arm. 127

5.4 The structure of the actor network. The fixed layers are marked with

yellow boxes. 128

5.5 The structure of the critic network. The fixed layers are marked with

yellow boxes. 128

5.6 Actor-critic based off-policy DRL and consensus-based distributed train-

ing with different numbers of UR5 robot arms. (a) With 4 UR5 robot

arms. (b) With 6 UR5 robot arms. (c) With 12 UR5 robot arms. . . . 129

5.7 Interaction topology of 4, 6, 9 and 12 agents. 130

5.8 Average reward graph of the algorithm with 4 UR5 robot arms compared

with single-agent DRL. (a) The feedback gain is set to 0.9. (b) The

feedback gain is set to 0.1. (c) The interaction topology is completely

connected with feedback gain set to 0.9. 132

5.9 Average reward graph of the algorithm with three groups of differ-

ent numbers of UR5 robot arms. (a) Performing consensus-based dis-

tributed training with 6 UR5 robot arms at every 1 step. (b) Performing

consensus-based distributed training with 9 UR5 robot arms at every 1

step. (c) Performing consensus-based distributed training with 12 UR5

robot arms at every 1 step. 133

8

5.10 Interaction topology of 6 agents, with the Fiedler eigenvalues equal to

1, 1.7, 4, and 6. 134

5.11 Consensus error of the actor network with 6 UR5 robot arms. (a) With

the Fiedler value equal to 1 (b) With the Fiedler value equal to 6 . . . 135

5.12 Consensus error of the critic network with 6 UR5 robot arms. (a) With

the Fiedler value equal to 1 (b) With the Fiedler value equal to 6 . . . 136

5.13 Iteration steps versus Fiedler eigenvalues of the actor network and the

critic network with 6 UR5 robot arms. The Fiedler eigenvalues are

calculated by the interaction topology shown in Fig. 5.10. 137

5.14 Box plot of the number of times that each UR5 robot arm reaches the

target point in 100 s with models at different training steps. The results

in each case are collected from 50 trials with random target positions. . 137

5.15 Performance tests of consensus-based distributed training with 4 UR5

robot arms. 138

5.16 (a) Trajectories of the end effector of 4 UR5 robot arms with the training

models at 6000 steps. (b) Trajectories of the end effector of 12 UR5

robot arms with the training models at 8000 steps. (c) Error rate of the

trajectories of the end effector of different numbers of UR5 robot arms

with different training models at one step. The result in each case is

collected from 50 trials with random target positions. 139

5.17 Average reward graph of 4 UR5 robot arms compared to single-agent

DRL with the algorithm proposed in [3]. 141

5.18 Examples of graph topologies. The star denotes the central agent. (a)

Centralized (b) Decentralized . 142

6.1 Pick-and-place objects with the CSAR approach 145

9

6.2 Overview of the proposed DRL framework with consensus-based train-

ing in the sim-and-real environment (substantiation of Figure. 6.1).

During each iteration, consensus-based training is applied to the train-

ing parameters of every suction net (multi-layer NN modelling the Q-

function for pick-and-place success through suction gripping). The suc-

tion executions occur simultaneously in both simulated and real envi-

ronments. BN represents Batch Normalization. Conv stands for Con-

volution. Up represents Upsampling. More details can be found in

Algorithm 6.1. 147

6.3 Suction success rates of the real robot between “Sim-to-Real” and “Sim-

and-Real” strategies . 155

6.4 Topology of the interaction of simulation and the real world: (a) 1

simulated robot and 1 real robot; (b) 2 simulated robots and 1 real

robot; (c) 3 simulated robots and 1 real robot 155

6.5 Suction success rates of the real robot with different initial weights when

applying the Sim-and-Real strategy. The number in brackets denotes

the suction success rate from the pre-trained simulation model. 156

6.6 Suction success rates of the real robot with different number of simulated

robots using Sim-and-Real strategy . 157

6.7 Novel objects for validation: (a) Environment 1; (b) Environment 2; (c)

Environment 3 . 158

6.8 The demonstration of picking novel objects. More details can be seen

in the video. 158

10

The University of Manchester
Wenxing Liu
Doctor of Philosophy
Deep Reinforcement Learning with Consensus for Manipulators
May 28, 2023

With the development of industrialization, the working environment of robotics
gradually becomes complex, diverse, and fast. Most manipulators at present are still
designed for simple action repetition, which means that the working environment is
determined and the target should be relatively fixed. Therefore, they lack the ability
to perceive the surrounding environment. The main purpose of this thesis is to develop
consensus-based training and deep reinforcement learning methods that enable robot
arms to interact with the environment autonomously.

First of all, a model-free off-policy actor-critic based deep reinforcement learning
method is proposed to solve the classical path planning problem of a UR5 robot arm.
The proposed method not only guarantees that the joint angle of the UR5 robotic arm
lies within the allowable range each time when it reaches the random target point, but
also ensures that the joint angle of the UR5 robotic arm is always within the allowable
range during the entire episode of training.

Moreover, a self-supervised vision-based deep reinforcement learning method that
allows robots to pick and place objects effectively and efficiently when directly trans-
ferring a training model from simulation to the real world is demonstrated. A height-
sensitive action policy is specially designed for the proposed method to deal with
crowded and stacked objects in challenging environments. The training model with
the proposed approach can be applied directly to a real suction task without any fine-
tuning from the real world while maintaining a high suction success rate. It is also
validated that the training model can be deployed to suction novel objects in a real
experiment with a suction success rate of 90% without any real-world fine-tuning.

Additionally, an algorithm that combines actor-critic based off-policy method with
consensus-based distributed training is proposed to deal with multi-agent deep rein-
forcement learning problems. Specially, a convergence analysis of a consensus algo-
rithm for a type of nonlinear systems with a Lyapunov method is developed, and this
result is used to analyse the convergence properties of the actor and the critic training
parameters. To validate the implementation of the proposed algorithm, a multi-agent
training framework is proposed to train each UR5 robot arm to reach the random tar-
get position. Experiments are provided to demonstrate the effectiveness and feasibility
of the proposed algorithm.

Finally, a Consensus-based Sim-and-Real deep reinforcement learning algorithm
is developed for manipulator pick-and-place tasks. Agents are trained in both simu-
lators and the real environment simultaneously to get the optimal policies for both
sim-and-real worlds. The proposed algorithm saves required training time and shows
comparable performance in both sim-and-real worlds.

11

Declaration

No portion of the work referred to in the thesis has been submitted in support of an

application for another degree or qualification of this or any other university or other

institute of learning.

12

Copyright Statement

i. The author of this thesis (including any appendices and/or schedules to this thesis)

owns certain copyright or related rights in it (the “Copyright”) and s/he has given

The University of Manchester certain rights to use such Copyright, including for

administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or electronic

copy, may be made only in accordance with the Copyright, Designs and Patents

Act 1988 (as amended) and regulations issued under it or, where appropriate, in

accordance with licensing agreements which the University has from time to time.

This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trade marks and other intel-

lectual property (the “Intellectual Property”) and any reproductions of copyright

works in the thesis, for example graphs and tables (“Reproductions”), which may

be described in this thesis, may not be owned by the author and may be owned by

third parties. Such Intellectual Property and Reproductions cannot and must not

be made available for use without the prior written permission of the owner(s) of

the relevant Intellectual Property and/or Reproductions.

iv. Further information on the conditions under which disclosure, publication and com-

mercialisation of this thesis, the Copyright and any Intellectual Property and/or

Reproductions described in it may take place is available in the University IP Policy,

in any relevant Thesis restriction declarations deposited in the University Library,

and the University Library’s regulations.

13

http://documents.manchester.ac.uk/display.aspx?DocID=24420
http://www.library.manchester.ac.uk/about/regulations/_files/Library-regulations.pdf

Abbreviations

A3C Asynchronous Advantage Actor-critic

CAD Computer Aided Design

CCD Cyclic-Coordinate Descent

CSAR Consensus-based Sim-and-Real

DDPG Deep Deterministic Policy Gradient

DRL Deep Reinforcement Learning

FABRIK Forward and Backward Reaching Inverse Kinematics

FK Forward Kinematics

GAN Generative Adversarial Network

IK Inverse Kinematics

MAS Multi-agent System

NN Neural Network

OMPL Open Motion Planning Library

PPO Proximal Policy Optimization

PRM Probabilistic Roadmaps Method

RGB-D Red Green Blue-Depth

RL Reinforcement Learning

14

ROS Robot Operating System

RRT Rapidly-exploring Random Tree

SAC Soft Actor-critic

SCP Sequential Convex Programming

SQP Sequential Quadratic Programming

SARSA State-Action-Reward-State-Action

TD3 Twin Delayed Deep Deterministic Policy Gradient

TRPO Trust Region Policy Optimization

UR5 Universal Robot 5

15

Symbols

R Space of real numbers

Rn Space of real vectors of dimension n

Rm×n Space of real matrices of size m× n

0n A column vector of size n with all entries equal to zero

0m×n A m× n matrix with all zeros

1n A column vector of size n with all entries equal to one

1m×n A m× n matrix with all ones

A Adjacency matrix

D In-degree matrix

G Graph

A Action space

S State space

diag{a1, · · · , an} A diagonal matrix with diagonal entries a1 to an

max{·} Maximum elements

min{·} Minimum elements

∥ · ∥ Standard L2 Euclidean norm of a vector

XT Transpose of matrix X

16

X−1 Inverse of matrix X

In n× n Identity matrix

⊗ Kronecker product

f : A→ B Function f with domain A and range B

J+ Pseudo Inverse of J

π Reinforcement learning policy

V π(s) Reinforcement learning policy function

Qπ(s, a) Reinforcement learning value function

ξ Reinforcement learning critic training parameter

η Reinforcement learning actor training parameter

17

Publications

[1] W. Liu, H. Niu, I. Jang, G. Herrmann and J. Carrasco, “Distributed Neural

Networks Training for Robotic Manipulation With Consensus Algorithm,” in IEEE

Transactions on Neural Networks and Learning Systems, 2022,

doi: 10.1109/TNNLS.2022.3191021.

[2] W. Liu, H. Niu, M. N. Mahyuddin, G. Herrmann and J. Carrasco, “A Model-free

Deep Reinforcement Learning Approach for Robotic Manipulators Path Planning,”

2021 21st International Conference on Control, Automation and Systems (ICCAS),

2021, pp. 512-517, doi: 10.23919/ICCAS52745.2021.9649802.

[3] W. Liu, H. Niu, W. Pan, G. Herrmann and J. Carrasco, “Sim-and-Real Reinforce-

ment Learning for Manipulation: A Consensus-based Approach,” accepted by IEEE

Conference on Robotics and Automation (ICRA 2023).

[4] W. Liu, H. Niu, R. Skilton and J. Carrasco, “Deep Reinforcement Learning with

Manipulators for Pick-and-place,” In progress.

18

Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor Dr.

Joaquin Carrasco, for his professional guidance and continuous support during my

PhD study. Dr. Carrasco is an expert in control engineering and has a very rigorous

attitude towards academic research. Under his influence, I also gradually become a

very rigorous person. Dr. Carrasco is also very patient and friendly. We have meet-

ings every week and he always provides me with his feedback as soon as possible. We

also hold weekly workshops on Deep Reinforcement Learning to discuss new ideas and

questions. It is my honour to be a PhD student under his supervision.

I am extremely grateful to my cosupervisor, Prof. Guido Herrmann, for his profes-

sional academic guidance during the past three years. Prof. Herrmann is very wise

and knowledgeable. I feel more confident to submit my papers after Prof. Herrmann

has reviewed them.

I would also like to thank Dr. Wei Pan for his collaboration during my PhD study.

I sincerely thank Dr. Farshad Arvin for his trust in my abilities. Thank Dr. Hanlin

Niu and Dr. Junyan Hu for their continuous help in the past three years.

I owe my deepest appreciation to my family. I would like to show my deep gratitude to

my mother, Yu Zhang, and my father, Xiaozhou Liu, for their continued unconditional

support. I am deeply indebted to my grandmother, Xinhua Guo, for her accompany

and encouragement all the time.

Last but not least, words cannot express my gratitude to my grandfather, Zhongtan

Liu, who gave me endless love and guidance over the past 24 years. His greatest wish

19

in life is to see me succeed in my studies. I could not have undertaken this PhD

journey without his trust and belief. He used to tell me the importance of persistent

studying when I was a child, which kept my motivation and spirits high during my

entire learning progress. My biggest regret is that he would not be able to see my

achievement and graduation in person. I miss him so much and he will always be in

my heart.

20

This thesis is dedicated to my grandfather,
Zhongtan Liu,

in loving memory.

You always believed in my ability to be successful in the academic arena.

Your belief in me has made this thesis possible.

Chapter 1

Introduction

1.1 Background

Robots are complex machines created with the purpose of performing tasks indepen-

dently or with minimal human input. With the rapid development of science and

technology, robots can be widely applied in a variety of different tasks such as path

planning [4; 5], obstacle avoidance [6; 7], pick-and-place objects [8; 9], goal reaching

[10; 11], etc. Robots come in different sizes and shapes, and they can be used for

various applications. Small and straightforward robots are typically used in factories

to perform repetitive tasks, while more complex systems are designed to function in

unpredictable and dynamic environments. The use of robots is becoming increasingly

popular in fields such as manufacturing [12], healthcare [13], exploration [14; 15] and

assembly [16]. With advancements in technology and ongoing research, robots are

becoming more versatile and adaptable, allowing them to handle a growing range of

complex and demanding tasks.

One of the most widespread applications of robotics is the robotic manipulator [17].

A robot manipulator [18] is a type of robot that is specifically designed to manipulate

objects in its environment. It achieves this by using mechanical arms and end-effectors,

such as grippers. The manipulator usually consists of a series of articulated arms or

links that are connected by joints or hinges, enabling the manipulator to move in

various degrees of freedom [19]. The gripper is typically attached to the last link of

the manipulator, and it is used to grasp and manipulate objects. Robot manipulators

22

CHAPTER 1. INTRODUCTION 23

are widely used in various industries such as manufacturing [20], assembly [21], and

other industrial settings [22]. They are particularly useful for performing repetitive

tasks with high precision and efficiency. Robot arms have a high technical value and

a wide range of practical applications which play an irreplaceable role in production

mode. The dynamic analysis of the robot arm has always been one of the hotspots in

scientific research.

1.1.1 Pick and Place

Pick-and-place is a common task performed by robots that involve picking up an ob-

ject and moving it to a different location [23; 24]. This task has a wide range of

applications, from industrial settings such as assembly lines [25], packaging [26], and

material handling [27], to everyday tasks like sorting [28] and organizing [29; 30]. To

perform a pick-and-place task, the robot arm must be equipped with a gripper that

can securely grasp the object, and it must be able to locate, approach, and move the

object to the desired location with precision [31; 32]. The success rate of the pick-and-

place task depends on the accuracy of the robot arm and its ability to identify objects

of various shapes, sizes, and materials [33; 34]. To execute a successful pick-and-place

task, the robot arm needs to have a perception system that can detect and locate

objects in the environment reliably [35]. Once the object has been located, the robot

needs to plan its motion to grasp the object using various techniques including Inverse

Kinematics (IK) [36; 37], path planning [38], or trajectory planning [39; 40]. Addition-

ally, obstacles must be taken into consideration when planning a path, and movements

should be adjusted accordingly to avoid collisions [41; 42]. In summary, pick-and-place

is an important task in both simulated and real-world applications, and it relies on

advanced robotic techniques like perception, motion planning, and manipulation to

perform with remarkable precision and dependability [43; 44].

Recently, there has been a growing interest in picking and placing objects [45]. For

instance, an industrial robot system with several stationary cameras was mentioned in

[46] to ensure safe human-robot cooperation. In [47], an application of visual serving

to a 4 degree-of-freedom robot manipulator was proposed to pick and place a target

using the edge detection method as visual input. A remote-controlled mobile robot

CHAPTER 1. INTRODUCTION 24

was developed and designed in [48] to deal with the pick-and-place task. In [49],

the software development for a vision-based pick-and-place robot was presented to

provide the computational intelligence required for its operation. In order to eliminate

human intervention or error and work more precisely, a pick-and-place robot using

Robo-Arduino was developed in [50] for any pick-and-place functions. A pick-and-

place robot which offered sensing, control and manufacturing assistance was present

in [51], which improved productivity and reduced the risk of injury because of repetitive

tasks. Nevertheless, in the works above, the authors focus on model-based grasping

with specific robotic manipulators, which may be regarded as a limitation. The pick-

and-place process requires a robot arm and end effector to work in coordination with

precision [52]. As the robot moves the object, it must be able to adjust its grip to

keep the object securely in place [53; 54]. Upon reaching its destination, the robot

must accurately position and orient the object [55; 56]. Pick-and-place is an important

task in both simulated and real-world applications, and it relies on advanced robotic

techniques like perception, motion planning, and manipulation [57]. Highly efficient

and sophisticated pick-and-place systems can handle a wide variety of objects and

tasks with remarkable precision and dependability [58; 59].

1.1.2 Motion Planning

Motion planning [60] is a critical process in the field of robotics that involves generat-

ing a safe and feasible path or trajectory for a robot or autonomous system to move

from one state to another while satisfying specific constraints and objectives. The

aim of motion planning is to enable the robot to perform its intended task, such as

transporting an object or moving to a particular location [61]. Since the development

of effective and robust motion planning algorithms is crucial for the widespread im-

plementation of automation technologies, researchers have been actively investigating

this field. To tackle the various challenges involved in motion planning, several dif-

ferent techniques and algorithms have been developed, including optimization-based

techniques [62], heuristic-based techniques [63], and sampling-based techniques [64].

The contributions of these techniques have been vital in achieving safe and efficient

motion planning in robotics. The early work on motion planning [65] provided a foun-

dation for further research in this field.

CHAPTER 1. INTRODUCTION 25

Optimization-based approaches are a particular type of motion planning algorithm

that aims to find a suitable path for a robot by formulating the problem as an op-

timization problem [66; 67]. These algorithms aim to find a path for the robot by

formulating the problem as an optimization problem, which involves identifying the

best path that either maximizes or minimizes a specific objective function while also

meeting certain constraints [68]. This approach has proven to be successful in various

scenarios, leading to the development of several advanced algorithms that can tackle

the complex optimization problems that arise in motion planning. The Covariant

Hamiltonian Optimization for Motion Planning (CHOMP) is an optimization-based

motion planning algorithm presented in [69]. It aims to generate a collision-free trajec-

tory for a robotic system by minimizing a cost function that takes into account both

task objectives and obstacle avoidance. Sequential Convex Programming (SCP) [70]

is another optimization-based approach for solving motion planning problems, which

is particularly useful for systems with non-linear constraints. The goal of SCP is to

find an optimal solution to a problem by iteratively solving a sequence of convex sub-

problems, where each sub-problem is a simplified version of the original problem that

is easier to solve [71]. Optimization-based approaches have gained popularity in mo-

tion planning due to their capability to handle problems with intricate constraints and

locate solutions that are globally optimal [72]. However, these approaches may not

be ideal for dynamic environments where the surroundings of robots undergo frequent

change. This is because solving the optimization problem may need to be performed

repeatedly to account for the changing environment, which can be time-consuming

and computationally intensive.

Heuristic-based approaches have been widely used in motion planning algorithms,

leveraging heuristics or rules of thumb to guide the search for a solution [73]. These

algorithms aim to identify feasible and safe paths for a robot to traverse while satisfying

constraints and reaching a desired goal [74]. The fundamental idea behind heuristic-

based approaches is to employ a heuristic function that can estimate the distance or

cost between two points in space [75]. These approaches are popular in motion plan-

ning due to their efficiency, ease of implementation, and efficacy in low-dimensional

CHAPTER 1. INTRODUCTION 26

spaces. One of the most well-known heuristic-based approaches in motion planning is

the A* algorithm [76]. This algorithm uses a heuristic function to guide the search for

the shortest path between two points in a graph. Another popular heuristic-based ap-

proach is the D* algorithm [77], which is designed to update a precomputed path in the

presence of dynamic obstacles. Cyclic-Coordinate Descent (CCD) algorithm [78; 79]

is another heuristic-based approach to performing motion planning. This method is

easy to implement and computationally fast, but may need longer iterations to reach

the target point. Besides, this method is more suitable for solving snake robots rather

than the Universal Robot 5 (UR5) robot arm. Heuristic-based approaches have been

widely used in motion planning due to several strengths, including their ability to

handle problems with well-defined goals and constraints, their simplicity and ease of

implementation, and their potential for efficiency in low-dimensional spaces. Never-

theless, heuristic-based approaches may struggle with complex constraints. Besides,

achieving desirable performance requires careful tuning of the heuristic function.

Sampling-based approaches are a class of motion planning algorithms that construct

a graph or a tree of feasible paths through random sampling of points in the robot’s

configuration space [80; 81]. These approaches have become increasingly popular due

to their ability to handle motion planning problems with high-dimensional state spaces

and complex constraints. In addition, sampling-based algorithms are often computa-

tionally efficient, making them an attractive option for real-time motion planning [82].

Kavraki [83] illustrated the Probabilistic Roadmaps method (PRM) which connects

the sampled points based on a roadmap to manage obstacle avoidance motion plan-

ning. In [84], a geometry-based, multilayered synergistic approach was developed to

solve motion planning problems for mobile robots involving temporal goals. How to

effectively combine a sampling-based method with the PRM was introduced in [85] to

deal with the problem of single query motion planning. Sampling-based approaches

are able to find feasible paths in a wide range of problems, making them versatile solu-

tions for many different applications. However, these algorithms may face challenges

in problems with narrow passages or obstacles with small gaps, which can make it dif-

ficult to construct a valid path. Additionally, long time fine-tuning may be necessary

to achieve optimal performance in more complex scenarios.

CHAPTER 1. INTRODUCTION 27

1.1.3 Reinforcement Learning

Reinforcement Learning (RL) [86] is a subfield of machine learning that involves train-

ing agents to make decisions and take actions within an environment by receiving

feedback in the form of rewards or penalties. RL enables intelligent agents to learn

and adapt to complex environments through experience and feedback [87]. Tradi-

tional rule-based approaches [88; 89] to problem-solving can be limited by the need

for extensive human expertise and may not be suitable for uncertain and complex

environments. In contrast, RL allows agents to learn from experience and optimize

their decision-making policies based on feedback from the environment, without re-

quiring explicit instructions or prior knowledge from a human [90]. The so-called RL

refers to the learning of the mapping relationship from the environment state to the

action space, so as to maximize the cumulative reward the system obtains from the

environment [91]. The goal of RL is to develop intelligent agents that can learn to

perform tasks through trial and error without explicit instructions from a human. The

concept of reward in RL was first introduced in [92] to train the machine to make it

understand how to play chess games. Consequently, the machine is able to make better

decisions after several training steps. Sutton [93] illustrated a model-free algorithm

called the Temporal Difference error algorithm which could be used in both on-line

RL and off-line RL. The update of a model state depends on the value function of the

next state and the reward to reach the next state. As a result, RL has been widely

applied in the field of model control and prediction.

RL has become a very active branch in the field of machine learning research. RL has

been successfully applied in a wide range of fields, including robotics [94; 95], game

playing [96], natural language processing [97; 98], finance [99; 100], etc. One strength

of applying RL to robots is that it does not need an accurate dynamic model of robots

[101], [102]. The agent is not told what to do in the learning process, but must obtain

a certain strategy by interacting with the environment, which can guide the agent to

obtain the maximum reward from the environment [103; 104]. In many scenarios, the

current behaviour will affect not only the immediate rewards but also the subsequent

actions and final rewards. Lange [105] demonstrated an algorithm called Deep Fitted

CHAPTER 1. INTRODUCTION 28

Q learning which could be applied in vehicle control. RL has also been utilized in cre-

ating game-playing agents that can outperform world champions in games like Go and

Chess [106]. In 2017, Google DeepMind [107] published their latest result in Nature.

A new artificial intelligence system called Alpha Zero is able to beat Alpha Go after

only three days of training. Compared to Alpha Go which mainly uses deep learn-

ing, Alpha Zero is based on RL which does not rely on any chess manual provided

by humans or any human chess-playing experience. The way how Alpha Zero ac-

quires chess playing skills is only by competing against itself. RL is an important area

of research in artificial intelligence, and it continues to advance our understanding of

how intelligent agents can be designed and trained to achieve sophisticated tasks [108].

When dealing with random and unpredictable tasks, RL methods [109; 110] have shown

great benefits. RL methods enable agents to learn the mapping relationship between

the environment and their actions [111; 112]. Therefore, each agent can adjust its

action on the basis of the feedback signal in order to maximize the cumulative reward

from the environment [113; 114]. Off-policy RL is independent of the agent’s actions,

which means that it can figure out the optimal policy regardless of the actions [115].

Recently, many RL methods have been investigated to perform multi-agent tasks. In

[116], Tan claimed that agents could share instantaneous information such as actions,

rewards, etc. Therefore, each agent is able to benefit from the information of neigh-

bours. An actor–critic framework for Multi-agent Systems (MASs) was developed in

[117] to deal with the input of a system with consensus control. In [3], a single-agent

actor-critic algorithm was combined with a consensus-like algorithm to improve the

convergence speed of a distributed actor-critic algorithm. One major challenge of RL

is the requirement for large amounts of data to train the agent effectively. In addition,

designing appropriate reward functions that accurately reflect the desired behaviour

is not always straightforward and may require careful consideration. Furthermore,

RL can be computationally expensive, requiring significant computational resources

to train and optimize the agent’s policies [118].

With the rapid development of artificial intelligence, great achievements have been

made in the research and application of RL. One of the core technologies used is Deep

CHAPTER 1. INTRODUCTION 29

Reinforcement Learning (DRL) [119]. DRL is a specialized field within RL that lever-

ages the power of deep Neural Networks (NNs) to enable agents to learn and improve

their decision-making abilities in complex environments [120]. DRL algorithms use

deep NNs to approximate either the value function or policy function of an agent in

an RL problem, allowing them to handle high-dimensional input spaces and learn rep-

resentations that capture the underlying structure of the input data [121; 122]. This

capability enables DRL algorithms to learn directly from raw input data such as images

or audio and extract relevant features and patterns that are useful for decision-making

[123]. DRL enables end-to-end behavioural decision-making by learning decisions di-

rectly from features from raw information [124]. In recent years, DRL has developed

vigorously to provide new ideas for autonomous learning and control of robotic arms.

In [125], a robust end-to-end closed-loop grasping DRL model was trained using grasp-

ing demonstrations by people, which was able to grasp novel or moving objects in

various scenarios. In [126], an end-to-end DRL approach was proposed for a UR5 arm

to jointly learn pushing and grasping objects. A grasping and throwing system called

TossingBot was developed in [127] to make a UR5 robot arm throw arbitrary objects

into boxes via DRL, which could also generalize to novel objects. A DRL algorithm

that mapped the elementary movement to the meta-parameters of its representation

was introduced in [128] for hitting movements of robot arms such as playing table

tennis. In [129], a Form2Fit system was designed using DRL to learn assembling a

wide variety of objects and kits. When using DRL to train models, one of the most

challenging tasks is dealing with a large number of failed experiment samples. Hind-

sight Experience Replay [130] is a technique that has been developed for DRL, aimed

at improving the sample efficiency and effectiveness of DRL algorithms. It involves

reframing failed experiences as successes, thereby providing agents with additional

learning opportunities. This technique has proven to be particularly useful in tasks

with sparse rewards or where the desired outcome may be difficult to achieve. While

Hindsight Experience Replay has several strengths, including the ability to improve

sample efficiency, it also has limitations. For instance, careful goal definition is neces-

sary to avoid overfitting a specific goal.

CHAPTER 1. INTRODUCTION 30

Training a DRL model directly in a real environment is difficult since it relies on sev-

eral conditions. One of the major challenges of DRL is the need for large amounts of

data [131], which can be time-consuming and expensive to collect. Another challenge

is the difficulty in training and optimizing deep NNs [132], which require careful pa-

rameter tuning and can be computationally expensive. Additionally, DRL algorithms

may require significant computational resources to train and optimize, making it dif-

ficult to scale up to larger and more complex problems [133]. Collecting real-world

training images will take a lot of time, which increases the training cost significantly

[134]. Sim-to-real DRL is particularly useful when it is difficult or expensive to train

robots in the real world due to safety concerns or limited access to hardware [135].

Therefore, an alternative method is training on simulated images and then adapting

the features to real-world data [136]. Existing methods can be roughly divided into

two categories: high-fidelity simulation and domain randomization.

High-fidelity simulation means adjusting the virtual environment through real data,

thereby improving the suction success rate in the real environment. High-fidelity sim-

ulation is an approach in which a simulated environment is designed to closely mirror

the real world, incorporating realistic graphics, physics simulations, and other details

that accurately capture the dynamics of the real world [137]. This approach is partic-

ularly valuable when it is possible to create a simulation that accurately models the

real world, allowing for a detailed and accurate exploration of the system. In [138],

an end-to-end pipeline was proposed to generate realistic depth data from 3D mod-

els. By modelling vital real-world factors such as sensor noise and surface geometry

accurately, the proposed framework was able to accomplish more realistic results than

baseline methods. An approach to creating pixel-accurate semantic label maps for

images extracted from modern computer games was developed in [139]. Data created

with the proposed method could improve the performance of semantic segmentation

models on real-world images, which reduced the requirement for expensive real-world

labelling. In [140], the problem of transferring policies from simulation to the real

world was solved by training on the distribution of simulated scenarios. A few real-

world samples were used to adapt the simulation parameter distribution instead of

tuning the randomization of simulations manually. By matching the policy behaviour

CHAPTER 1. INTRODUCTION 31

in both environments, the simulated policy could be successfully transferred to the

real world [141].

The utilization of high-fidelity simulation has the potential to enhance the efficiency

and effectiveness of robot learning, as the robot can leverage the model to plan and

make decisions strategically [142]. By minimizing the discrepancy between the sim-

ulation and the real world, a complete system framework was proposed in [143] to

optimize trajectories of a bipedal robot with a very small number of real-world experi-

ments. In [144], a framework was developed for identifying the mechanical parameters

of robots before real-world deployment. The simulation parameters were well approx-

imated in order to match real-world trajectories. In [145], a new Grounded Action

Transformation algorithm was fully implemented and evaluated using a high-fidelity

simulator. However, additional models for simulator inverse dynamics and real-world

forward dynamics were required in [145]. An iterative optimization framework was

implemented in [146] to speed up robot learning with an imperfect simulator. After

optimising the behaviour in the simulation, the resulting behaviour was tested on the

real robot and the simulator was modified according to the real-world performance.

By training in high-fidelity simulation, models can learn to perform well in the tar-

get environment, even if the target environment may not be available during training

[147]. Nevertheless, humans were required in the loop to choose the best simulation

training parameters, which might be regarded as a limitation.

Domain randomization [148] is randomly adjusting the shape, brightness and size of

objects in the simulated environment in order to make the real-world experiment more

robust and feasible. The main goal of domain randomization is to expose the robot

to a diverse set of environments during training, with the hope that it will learn to

generalize to real-world conditions that it has not previously encountered [148]. By

training the robot in a variety of simulated environments, it will be better equipped to

handle the unpredictability and variability of real-world scenarios, and thus improve

its ability to perform tasks in the real world [149]. A simple technique for training

models was developed in [150] on sim-to-real image transfer by randomizing rendering

in the simulator. If the simulator had enough variability, the model might treat the

CHAPTER 1. INTRODUCTION 32

real world as just another variation. In [151], a pick-and-place task trajectory was

computed in a simulator to collect a series of control velocities. In order to general-

ize to real-world images, domain randomisation was used to map observed images to

velocities. In [152], in-hand manipulation was completely trained in simulation and

performed in the real world. A large number of physical properties such as friction

coefficients were randomized to perform sim-to-real transfer accurately. A CAD2RL

method was proposed in [153] to perform collision-free indoor flight in the real world

on the basis of 3D Computer Aided Design (CAD) models. By highly randomizing

the rendering settings in simulation, the policy in simulation could generalise to the

real world. The key strength of domain randomization is that it does not require a

detailed model of the real-world environment, making it easier to apply in practice

[154]. Nevertheless, the problem of large sample complexity happened in the works

mentioned above, which may be viewed as a restriction.

When a DRL model is transferred from simulation to the real world, the adoption

problem becomes challenging as real-world environments contain unpredictable distur-

bances [149]. Fine-tuning has been widely used to bridge the gap between simulated

and real environments [155; 156; 157; 158]. However, fine-tuning usually takes a long

time to perform parameter adaptation, which increases the experimental cost. Some

recent works use only simulation but work well in the real world. For instance, with

only simulation, a distance function was trained in [159] between the current pose and

the nearest optimal pose. In [160], a grasp quality network was proposed to evaluate

robust grasp configuration based on the antipodal grasping sampling method. The

key idea of these two papers is to use depth data rather than Red Green Blue (RGB)

images since depth images contain less information. Nevertheless, it is challenging for

a depth camera to measure thin, dark colour objects because of their physical proper-

ties in the real world. Under this condition, performance cannot be guaranteed.

Sim-and-real training [161; 162] is a recent research topic compared with the sim-to-real

training method. By training simulated and real environments at the same time with

the DRL method, the mixed training model is able to benefit from both environments,

which improves the performance in real-world experiments. A model that discovers

CHAPTER 1. INTRODUCTION 33

cross-domain relations with Generative Adversarial Networks (GANs) was mentioned

in [163]. Unlike other methods, the authors investigated the relationship between real

systems and simulations. The simulated data were utilized for learning a generalized

perception system and the real data were used to learn the dynamics of the system.

A novel domain adaptation approach for robot perception was developed in [164] to

close the sim-and-real gap by finding common features of real and synthetic data.

In [165], the difference between the simulation and the real world was diminished

by applying models that made synthetic images more realistic. In [140], the agent’s

parameters in the simulation were updated to match the behaviour in the real world.

In [166], a method was proposed to learn from both simulation and interaction with

the real environment at the same time. With the aim of balancing less accurate but

cheap samples in simulation and accurate but costly samples from the real world, a

simulated environment was selected by an agent with probability and interacts with

it. Simultaneously, the agent also chose real-world actions with probability from the

replay butter. However, generating transitions is inevitable in the aforementioned

works, which is less effective and efficient.

1.1.4 Consensus Control

Since it is difficult to use one agent to deal with the problem of competition and coor-

dination among multiple decisions, it is necessary to extend to multi-agent DRL[167;

168]. A MAS refers to a group of autonomous agents that collaborate with each other

and with the environment to achieve a shared objective [169]. Each agent has its own

sensors and actuators, which allow it to sense its local environment and make decisions

based on its observations and interactions with other agents. The agents can differ

in terms of their capabilities, goals, and strategies [170]. In multi-agent DRL, each

agent has its own NN that learns from its own experiences and the experiences of other

agents in the system. These agents may have diverse perceptions of the environment

and may have varying objectives or reward systems, but must coordinate their actions

to achieve the common goal [116]. An interactive partially observable Markov decision

process which considered each agent separately was introduced in [171] for multiple

agents within a common environment. In [116], Q learning was extended straightfor-

wardly to multiple agents. However, the performance of MASs was not satisfactory

CHAPTER 1. INTRODUCTION 34

when applying single-agent DRL algorithms directly to multiple agents [172]. The

problems faced in DRL in complex task environments were large-scale information

acquisition and exchange [173; 174]. A multi-agent bidirectionally coordinated net-

work was proposed in [175] to coordinate multiple agents to defeat their enemies as

a team in the StarCraft combat game. In [176], a novel counterfactual multi-agent

policy was introduced to address the challenges of multi-agent information exchange

with a centralized critic. In [177], an adaptation of actor-critic methods was developed

to learn complex coordination policies successfully with centralized critics. Neverthe-

less, in the works mentioned above, centralized training is implemented in multi-agent

DRL instead of decentralized training. The proposed systems may suffer from limited

bandwidth when a large number of agents are taken into consideration.

For MASs, the communication channel between agents will introduce fundamental

constraints. A key challenge in MAS communication is finding the right balance be-

tween information sharing and privacy [178]. While agents need to share information

to coordinate their actions effectively, they also need to maintain privacy to safeguard

their individual goals and strategies [179]. Achieving this balance is complicated by

the fact that agents in a MAS may have varying levels of trust and may be competing

against each other [180]. Another challenge is minimizing communication overhead

and avoiding redundancy by selectively communicating relevant information [181]. In

the simplest case, each agent performs its own local training and no information shar-

ing happens between any agent [182]. Since each agent cannot learn from the training

of other agents, the training time of this training method is lengthy. Another approach

guarantees the communication between agents, but with a large communication band-

width caused by real time information sharing [183]. Furthermore, because of the

hardware and software limitations, processing the data communicated between agents

is daunting [184]. The communication between different agents may cause privacy

issues. In [185], an efficient method to solve the privacy violation problem based on

weighted averages of the update vectors taken over a random subset of users was

proposed. A distributed and privacy-preserving algorithm was developed in [186] for

dealing with user-generated data streams.

CHAPTER 1. INTRODUCTION 35

The robustness and reliability of agents have aroused considerable interest in the re-

search of MASs [187]. A pulse width modulation protocol was mentioned in [188] for

the distributed consensus of MASs. A distributed multi-vehicle controller system was

introduced in [189] to deal with coordinating platoon formation. In [190], a two-step

distributed model predictive control strategy was developed to solve the cooperative

vehicle platooning problem. Collaborative learning [191; 192] plays an important role

in the field of robotics, where MASs can learn jointly from the environment.

Nowadays, consensus control has been widely used in the coordination and cooperation

of MASs [193; 194]. Consensus control is a field of control theory that is concerned

with achieving consensus or agreement among a group of agents in a distributed sys-

tem [195]. The aim of consensus control is to develop control strategies that enable

the agents in a network to converge to a common decision or a shared state [196; 197].

In nature, the phenomenon of consensus is very common, such as the migration of

birds [198], the parade of fish [199], etc. These simple biological entities can complete

relatively complex tasks through cooperation, thereby improving survival rates. Con-

sensus control has numerous applications in various fields such as robotics [200; 201],

swarm intelligence [202; 203], social networks [204; 205], distributed computing [206],

etc. In robotics, it is used to coordinate the motion of multiple robots to achieve a

common goal, such as exploring hazardous environments [207] or transporting heavy

objects [208]. In swarm intelligence, consensus control can help to achieve coordinated

behaviour among a large group of agents, such as a swarm of drones [209]. In social

networks, consensus control can be utilized to analyze the spread of information and

opinion among a group of individuals [210]. In distributed computing, consensus con-

trol plays a crucial role in reaching an agreement among a group of computing nodes

on a shared decision or a computation result [211]. A distributed consensus problem

was discussed in [212] for linear heterogeneous MASs with both bounded unknown

control input and matching uncertainties. In [213], a linear consensus protocol was

introduced to solve the consensus problem of dynamic MASs. In [214], observer-based

controllers were designed for distributed consensus control of MASs under different

denial-of-service attacks on different channels. A distributed feedback controller was

proposed in [215] to handle cluster consensus problems for linear MASs under directed

CHAPTER 1. INTRODUCTION 36

graph topologies. An event-triggered control mechanism was developed in [216] to

deal with the security consensus problem for time-varying MASs with parameter un-

certainties and false data-injection attacks. In [217], novel finite-time adaptive control

algorithms were introduced for leaderless nonlinear consensus control of MASs with

parametric uncertainties. Consensus control can not only effectively reduce the com-

plexity of MASs, but also greatly improve the working efficiency [218].

Achieving efficient and timely convergence to a desired consensus state while ensur-

ing robustness and stability against disturbances and uncertainties is one of the main

challenges in consensus control [219]. This requires a careful design of the control

law that considers various factors, such as the dynamics of the agents, the commu-

nication topology, and the consensus objective [220]. Scalability is another critical

consideration in consensus control algorithms, particularly in large-scale systems with

a significant number of agents [221; 222]. Despite these challenges, consensus control

has proven to be a powerful tool for achieving coordinated behaviour in distributed

systems, with numerous applications in various fields [223].

Consensus control of MASs has become an emerging topic in the field of robotics.

Different from centralized control, distributed consensus control has stronger robust-

ness and better scalability, which solves the shortcoming of the whole system getting

paralyzed due to a certain link failure [224]. A smooth time-varying controller was

proposed in [225] to deal with leaderless consensus control problems in vehicles un-

der communication delays. An adaptive distributed consensus tracking protocol was

developed in [226] for a class of nonlinear mobile robots with mismatched uncertain-

ties. In [227], a well-designed radial basis function NN was used to solve the problem

of nonlinear time-delay consensus control for multiple collaborative manipulator sys-

tems. In [228], a NN-based consensus control framework was introduced for multiple

robotic manipulator systems under both fixed and switching leader-follower commu-

nication topologies. However, in the aforementioned works, the authors only verify

their theorems from a theoretical point of view. Real-world robot experiments are not

considered to validate the feasibility of the proposed theorems.

CHAPTER 1. INTRODUCTION 37

In recent years, many adaptive [229; 230] and consensus-based distributed training

methods [231] have been developed to perform tracking and multi-agent tasks. By im-

plementing consensus control, multiple agents are able to exchange their information

and coordinate their positions under the control of a distributed protocol. Ultimately,

their respective agents will be kept in a consistent state and some specific tasks such

as monitoring or rounding up can be accomplished. In [232], an event-triggered con-

trol algorithm was developed to solve the consensus problem of multiple single-link

robot arms in a finite time. In [233], a framework to solve bearing-only collision-

free formation of distributed multiple agents based on directed information flow over

the formation graph was proposed. Consensus algorithms with a time-varying ref-

erence state were proposed in [234] for multi-vehicle formation control. Even though

consensus-based distributed training has been extensively developed, an open question

remains in handling completely random and unpredictable tasks with consensus-based

distributed training.

1.2 Motivation

Although motion planning, DRL, and consensus control have gained significant at-

tention in the field of robotics, several challenges and research gaps still need to be

addressed. These limitations and gaps can potentially hinder the performance of these

techniques in real-world applications. Addressing these limitations and research gaps

is crucial for advancing the capabilities and practical use of these techniques in robotics

applications.

The field of motion planning algorithms for robots faces challenges in handling complex

environments and tasks while maintaining computational efficiency and adaptability.

The demand for faster and more efficient algorithms capable of handling complex en-

vironments and tasks has been increasing [235]. Additionally, these algorithms must

be robust enough to cope with minor changes in initial conditions and adaptable to

changing environments and tasks [236].

One of the main challenges of DRL algorithms is improving their data efficiency, as

CHAPTER 1. INTRODUCTION 38

they typically require a large amount of data to learn robust policies [237]. Another

challenge is ensuring their safety and reliability in safety-critical applications, which

is crucial for their practical deployment [238]. Additionally, developing interpretable

DRL algorithms that can explain the decision-making process of the learned policies

is a research gap that can enhance the transparency and trustworthiness of these al-

gorithms in real-world applications.

Consensus control algorithms are facing challenges related to scaling up to large-

scale MASs with minimal communication overhead and computational complexity

[239; 240]. Communication networks between agents must be reliable and robust to

ensure the performance of consensus control algorithms [241; 242]. Additionally, de-

veloping algorithms that can handle heterogeneous agents with different dynamics and

objectives is a challenging problem that requires further research.

Addressing these limitations and research gaps is critical to advancing the field of

robotics and enabling robots to operate effectively and safely in real-world environ-

ments. Motivated by the aforementioned works and challenges, the aim of this thesis

is to develop a theory that combines the strengths of DRL with consensus control and

implements it in real-world applications to improve the performance and scalability of

robotic systems. The specific objectives of this thesis include:

• Developing new algorithms that integrate the strengths of DRL with consensus

control to achieve robust control of MASs.

• Evaluating the proposed algorithms through simulations and real-world exper-

iments to demonstrate their effectiveness and practicality in solving complex

robotic tasks.

• Investigating the scalability and generalizability of the proposed algorithms, par-

ticularly in scenarios with high-dimensional state and action spaces, and in en-

vironments with significant uncertainties and dynamic changes.

• Analyzing the trade-offs between different approaches in terms of computational

complexity, memory requirements, and learning speed, and providing insights

into the design choices and parameter tuning for optimal performance.

CHAPTER 1. INTRODUCTION 39

1.3 Contributions and Thesis Organisation

1.3.1 Contributions

This thesis focuses on DRL with manipulators, particularly UR5 robot arms. The

contributions of this thesis can be concluded as follows.

• A novel off-policy DRL method is developed to tackle the UR5 robot arm path

planning problem. A standard path planning method has been implemented in

the actual UR5 robot arm as a baseline in order to make a comparison of the

advantages and disadvantages of both methods.

• After exploring the path planning problem, a vision-based self-supervised DRL

method is proposed for UR5 robot arms to learn to pick and place objects.

The proposed method can pick and place stacked and crowded objects safely in

challenging environments.

• Considering the benefits of collaborative learning, it is interesting to expand

from single robotic arm control to multiple robotic arm control. A novel algo-

rithm which combines actor-critic based off-policy DRL with consensus-based

distributed training is proposed for nonlinear MASs.

• After the study on multiple robotic arm control, sim-and-real training is con-

sidered for manipulators. A Consensus-based Sim-and-Real (CSAR) method is

illustrated for UR5 robot arms to learn pick-and-place tasks.

1.3.2 Thesis Organisation

This thesis is organized as follows:

Chapter 2: Preliminaries and Literature Review

This chapter introduces some related preliminaries including robot kinematics, motion

planning, RL methods, and consensus control.

Chapter 3: A Deep Reinforcement Learning Approach for Robotic Manip-

ulators

CHAPTER 1. INTRODUCTION 40

A new off-policy DRL method is proposed to handle the problem of the UR5 robot

arm path planning. Unlike standard path planning methods, the proposed method

can guarantee a smooth movement of the UR5 robot arm. During each movement, all

joint angles of the UR5 robot arm lie within the allowable range. Moreover, a standard

path planning method has been applied to the real UR5 robot arm as a baseline to

make a comparison of the benefits and drawbacks of both methods. The results in

this chapter have been published in [243].

Chapter 4: Deep Reinforcement Learning with Manipulators for Pick-and-

place

A complete self-supervised vision-based DRL method is developed for manipulators

to learn to pick and place objects. Under the implementation of the height-sensitive

action policy, the proposed method is able to pick and place crowded and stacked ob-

jects safely in challenging environments. The performance of the proposed approach

is validated in both simulated and real-world environments. By stimulating the UR5

robot arm to suction the area closer to the centre of targets, the training model with

the proposed method can accomplish pick-and-place tasks with a suction success rate

of 90% without any fine-tuning from the real world. The presented approach can also

be implemented to novel objects with a suction success rate of 90%.

Chapter 5: Distributed Neural Networks Training for Robotic Manipula-

tion with Consensus Algorithm

This chapter illustrates a novel approach which combines distributed NNs with con-

sensus algorithms. A multi-agent training algorithm with actor-critic based off-policy

DRL and consensus-based distributed training is proposed. A multi-agent training

framework is developed to validate the implementation of the proposed algorithm. The

convergence of this algorithm is verified in the presence of the actor and critic training

parameter. Compared with traditional centralized training, the proposed distributed

multi-agent training framework has better scalability with a limited bandwidth when

dealing with lots of agents and protects the privacy of each agent. The efficiency and

feasibility of the proposed method are validated by experiments with several groups

of UR5 robot arms. The results in this chapter have been published in [224].

CHAPTER 1. INTRODUCTION 41

Chapter 6: Sim-and-Real Reinforcement Learning for Manipulation: A

Consensus-based Approach

This chapter describes a complete CSAR method for manipulators to learn pick-

and-place tasks. By implementing consensus-based training, the proposed approach

saves training time and decreases the number of required real-world robot training

steps while keeping a comparable suction success rate, which is also cost-effective. A

lightweight and end-to-end NN is developed to train the suction policy, which uses vi-

sual data directly. The feasibility and effectiveness of the CSAR method are validated

via simulation and real-world experiments.

Chapter 7: Conclusion and Future Work

This chapter summarizes this thesis and discusses the potential future work.

Chapter 2

Preliminaries and Literature

Review

Some related preliminaries are illustrated in this chapter. The concept of forward

and inverse kinematics are first demonstrated, together with some existing motion

planning methods. Additionally, mathematical formulation and typical RL algorithms

are elucidated, which provides inspiration for the proposed methods in this thesis.

Moreover, Kronecker product and graph theory are also introduced, and some existing

consensus theorems are reviewed.

2.1 Robot Kinematics

Over the past two decades, robots have already established their worth in both theory

and practical applications, including motion planning tasks [244], formation techniques

[231], human-robot interaction [245], collision avoidance [233; 102], pick and place tasks

[246]. Since the applications of robot arms are quite comprehensive, there are many

studies that are related to the kinematics of the robot arm. One of the fundamental

goals of robotics is to control a robot’s movements and accurately determine its position

and orientation in space. Two fundamental concepts that are widely used in robotics

to achieve this goal are Forward Kinematics (FK) [247] and IK [248]. FK [249] refers

to the process of determining the position and orientation of a robot’s end effector

based on its joint angles. IK [250] refers to the process of determining the joint angles

required to position a robot’s end effector at a particular location and orientation in

42

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 43

space.

2.1.1 Forward Kinematics

FK is a relatively straightforward concept and is widely used in robotics for tasks such

as trajectory planning and motion control. As depicted in [251], FK refers to using

joint angles and kinematic equations of robot arms to compute the position of the end

effector. FK is a key concept in robotics that plays a significant role in determining

the position and orientation of a robot’s end-effector based on the joint angles and

link lengths of the robot’s arm [252]. The FK model essentially maps the robot’s

joint space to its task space, making it a crucial component in enabling the robot to

move to a desired position and orientation and perform a specific task. This makes

FK an essential tool for various industrial applications where precise movements are

required, including manufacturing [253] and assembly lines [254]. Accurately reaching

the desired position and orientation of the end-effector of a robot is critical to ensure

successful task execution.

When dealing with the FK of robot arms, there is only one solution to a robot arm

movement and for that reason, the rotation angles of each joint in a robot arm are pro-

vided. The mathematical representation of FK in robotics is commonly based on the

Denavit–Hartenberg parameters [255], which is a widely used convention in robotics

due to its simplicity and computational efficiency. As a result, the final position of the

robot arm end effector can be easily calculated by multiplying Denavit–Hartenberg

parameters of each link. The Denavit–Hartenberg parameters can be computed as

follows:

Td =

1 0 0 0

0 1 0 0

0 0 1 d

0 0 0 1

, Rθ =

cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 1 0

0 0 0 1

. (2.1)

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 44

Ta =

1 0 0 a

0 1 0 0

0 0 1 0

0 0 0 1

, Rα =

1 0 0 0

0 cosα − sinα 0

0 sinα cosα 0

0 0 0 1

(2.2)

TD−H = TdRθTaRα =

cos θ − sin θ cosα sin θ sinα a cos θ

sin θ cos θ cosα − cos θ sinα a sin θ

0 sinα cosα d

0 0 0 1

(2.3)

where Td stands for the translation along z-axis, Rθ is the rotation around z-axis, Ta
represents the translation along x-axis and Rα stands for the rotation around x-axis.

In addition to the Denavit–Hartenberg method, Dual Quaternions [256] and Screw

theory [257] are two widely-used mathematical tools in robotics for modelling and

controlling the motion of robot manipulators. Dual Quaternions are a mathemati-

cal representation that combines a quaternion and its dual, providing a concise and

computationally efficient way to represent rigid body transformations [247]. This ap-

proach is often used to model the kinematics of robotic systems in a way that is easy

to implement and computationally efficient. Screw theory is a mathematical frame-

work that describes the motion of a rigid body as a combination of a translational

and a rotational component [258]. This approach is particularly useful for modelling

the motion of robots that have both rotational and translational degrees of freedom.

By integrating Denavit–Hartenberg parameters to describe the kinematic structure of

the robot, dual quaternions to represent the rigid body transformations, and screw

theory to model the motion, it is possible to develop advanced algorithms for motion

planning, control, and simulation of robotic systems.

2.1.2 Inverse Kinematics

Although the position of the robot arm end effector is unique by applying FK, it can-

not deal with the demand of making the robot arm end effector reach a specific point.

In order to accomplish this requirement, the IK solutions of a robot arm are needed.

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 45

By using IK, it is possible to calculate each joint angle rotation of each robot arm link

if the end effector position of the robot arm is given. Nevertheless, the nonlinear prop-

erty of the robot movement makes it harder to find analytical solutions in working out

robot IK solutions compared to finding numerical solutions. Due to the limitations

of each robot joint rotation, using numerical solutions to handle robot arm motion

planning is more convenient than using analytical solutions.

IK is a crucial concept in robotics that deals with determining the joint angles of a

robot necessary to achieve a desired end-effector pose. One of the most widely used

methods for solving IK problems is Jacobian IK [36], which leverages the Jacobian

matrix to relate the velocities of the end-effector to the velocities of the joints. The

Jacobian matrix maps the joint velocities to the end-effector velocities in a particular

configuration. Jacobian IK method is able to solve the IK problem recursively by

updating the inverse Jacobian of the robot arm and the position of the robot arm end

effector inside each loop. The end effector velocity of a robot arm can be represented

by

ẋ = Jθ̇ (2.4)

where J stands for the Jacobian matrix, ẋ represents the velocity of end effector, θ̇ is

a vector of joint angles. Therefore, equation (2.4) can be rewritten as

θ̇ = J−1ẋ (2.5)

where J−1 stands for the inverse matrix of Jacobian. However, the inverse of the

Jacobian does not exist if J is not a square matrix. Furthermore, there is always a

possibility that the Jacobian matrix could be a singular matrix, which means the de-

terminant of J will be 0. As a result, the value of J−1 will be infinity and the robot arm

will suffer from Singularities. Singularities arise when the Jacobian matrix becomes

non-invertible. In such cases, it is impossible to determine the required joint velocities

for achieving the desired end-effector pose. Another limitation of the Jacobian IK

method is the presence of local minima, which occurs when the solution space is not

unique and there are multiple solutions that can result in the desired end-effector pose

[259].

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 46

In order to solve this problem, the Jacobian pseudo-inverse is used to deal with singu-

larity problems [37]. As stated in [39], the solution of equation (2.5) can be illustrated

as

θ̇ = J+ẋ+ (I − J+J)ζ̇ (2.6)

If J is full row rank, the pseudo-inverse of the Jacobian can be expressed as

J+ = JT (JJT)−1 (2.7)

where J+ is the pseudo-inverse of the Jacobian, ζ̇ stands for an arbitrary n-dimension

vector in θ̇ space. Although using J+ is able to handle the non-square matrix prob-

lem of J , Equation (2.7) can not be used if J does not have full rank. Moreover, it

cannot make the robot arm get rid of oscillation and movement discontinuities when

its position is close to a singularity. Due to calculation inaccuracy, the joint values

calculated by the pseudo-inverse method could be a hundred times larger than the

desired movement when the robot arm moves near singularities.

With the aim of solving the drawback of J+ above, Wampler [260] and Nakamura

[261] had developed damped least square method which substitute J+ as

J+ = JT (JJT + λ2I)−1 (2.8)

Compared to equation (2.7), an extra parameter, λ, was added to the denominator of

J+. As a consequence, when the value of JJT is close to zero, the value of the extra

parameter will make the denominator part of J+ larger, thereby decreasing the whole

value of J+ in order to minimize the robot arm oscillation when it reaches singularities.

An extension of the damped least square method was illustrated by Maciejewski [262]

which combined the damped least square method with singular value decomposition.

Therefore, equation (2.8) can be illustrated as

J+ =
n∑
i=1

σi
σ2
i + λ2viu

T
i (2.9)

where σi, vi and ui provide singular value decomposition of J . Compared to traditional

singular value decomposition, an extra term λ2 was added into the denominator of J+.

Similar to equation (2.8), the movement discontinuities of a robot arm when it gets

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 47

close to the singularities can be significantly diminished, thus making the performance

of the robot arm smoother near singularities.

In addition to the Jacobian IK method, there exist several other advanced IK algo-

rithms, such as Artificial Neural Network (ANN) based IK [263], Genetic Algorithm

(GA) based IK [264], Simultaneous Localization And Mapping (SLAM) based IK [265],

etc. ANN-based IK leverages a NN to map the end-effector position to joint angles

and can handle high-dimensional systems through training with large amounts of data

[266]. However, it can suffer from overfitting and necessitates substantial computa-

tional resources. GA-based IK involves using a population of candidate solutions and

iteratively selecting and breeding the fittest individuals to find an optimal solution

[267]. This approach can handle non-linear and non-convex optimization problems

but may require careful tuning of parameters and can be computationally expensive.

SLAM-based IK employs sensor data to estimate the robot’s pose and environment

and then uses this information to perform IK [268]. This technique can handle complex

and uncertain environments but necessitates sophisticated sensors and algorithms.

2.2 Motion Planning

Motion planning is a fundamental problem in robotics and control systems [269]. It

involves finding a collision-free path for a robot to move from its initial position to

a goal position [270]. The problem can be considered as finding a feasible trajectory

for the robot to follow while satisfying certain constraints and objectives. To solve

the motion planning problem, various approaches have been developed over the years,

including optimization-based methods [271], heuristic-based methods [272; 273], and

sampling-based methods [274; 275]. Optimization-based methods [276] formulate the

motion planning problem as an optimization problem and use optimization techniques

to find the optimal solution. These methods are often computationally expensive

but can find optimal solutions. Heuristic-based methods [277] use a set of rules or

heuristics to generate feasible trajectories for the robot. These methods are fast and

efficient, but they may not always find an optimal solution. Sampling-based methods

[278] generate a set of random configurations and connect them to form a collision-free

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 48

path. These methods are often probabilistically complete, meaning that they can find

a solution if one exists.

2.2.1 Optimization-based Method

Optimization-based methods are commonly employed for motion planning in robotics

[279]. These approaches typically involve formulating the motion planning problem

as an optimization problem, which is then solved using numerical optimization tech-

niques. The objective function of the optimization problem is usually defined to min-

imize some cost, such as the distance travelled, the time required, or the energy con-

sumed, while taking into account various constraints, including obstacle avoidance,

collision avoidance, and kinematic constraints [280]. One of the most representative

examples is TRAC-IK proposed by Beeson [276]. Aiming at finding the best possible

motion planning solution, the optimization target function of Sequential Quadratic

Programming (SQP) can be represented as

argmin (qseed − q)T (qseed − q) (2.10)

s. t. fi(q) ≤ bi, i = 1, ...,m (2.11)

where qseed stands for the n-dimensional seed value of joints and fi(q) represents in-

equality constraints which are composed by joint limits of the robot arm, the error

of the euclidean distance, and the error of angular distance. The minimized objective

function for SQP-SS in [276] can be described as

ϕss = perrp
T
err (2.12)

The TRAC-IK algorithm is made up of both the KDL-RR algorithm and the SQP-

SS algorithm, where the KDL-RR algorithm represents the traditional pseudo-inverse

Jacobian algorithm. Two algorithms work simultaneously when the whole TRAC-IK

algorithm is initiated until either algorithm finds the one IK solution of the robot arm.

As a result, the average solution time of TRAC-IK is less than the single SQP-SS

algorithm and the IK solve rate of TRAC-IK is higher than the single KDL-RR al-

gorithm. As shown in [276], taking Atlas 2015 as an example, the average solution

time of TRAC-IK is 0.1ms while the average solution time of the SQP-SS algorithm

is 0.25ms. The average solve rate of TRAC-IK is 96.56% while the average solve rate

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 49

of KDL-RR is only 94.13%.

The main limitations of TRAC-IK are having self-collisions, reaching singularities, and

dealing with movement discontinuities. In order to refine these imperfections, Rakita

introduced an optimization-based IK solver called RelaxedIK [281]. Similar to Trac-

IK, optimization target functions are also used in RelaxedIK. The key optimization

function of RelaxedIK in [281] can be demonstrated as

θ = argmin f(θ) (2.13)

s.t. ci(θ) ≥ 0 (2.14)

ce(θ) = 0 (2.15)

li ≤ θi ≤ ui, (2.16)

where ci(θ) stands for inequality constraints, ce(θ) stands for equality constraints, li
is the lower bound of robot joints, ui is the upper bound of robot joints, f represents

the target objective function which is composed of a weighted sum of individual op-

timization functions such as end effector position matching, singularity distance, and

minimum joint jerk. The value of f(θ) in equation (2.13) can be expended as follows:

f(θ) =
n∑
i=1

wihi(θ, v(t))fi(θ, ωi) (2.17)

where wi is each weight term value, hi(θ, v(t)) stands for the dynamic weight function,

fi(θ, ωi) stands for the single objective function. Compared to TRAC-IK, RelaxedIK

trains a NN to teach the robot arm to avoid self-collision. Although the solution time

of RelaxedIK is more than using TRAC-IK, the joint jerk of RelaxedIK is much less

than that using TRAC-IK. In other words, the joint performance of RelaxedIK is much

smoother than that of TRAC-IK.

Although optimization-based motion planning has achieved significant progress, there

are still several challenges and limitations that need to be overcome. One of the pri-

mary challenges is the high computational complexity and memory requirements of

these methods, especially for high-dimensional problems. Additionally, formulating

an accurate and tractable cost function that captures real-world objectives and con-

straints is another challenging task. Furthermore, optimization-based methods may

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 50

be sensitive to the initial conditions and can get stuck in local minima, which may

lead to suboptimal solutions.

Trajectory optimization methods, such as SQP [271], Interior-Point methods [282], and

Gradient-Based Optimization [283], represent state-of-the-art approaches in optimization-

based motion planning. These methods employ various techniques, such as gradient

descent and nonlinear optimization, to find the optimal solution to the motion plan-

ning problem [69]. Trajectory optimization methods have the advantage of producing

high-quality trajectories that satisfy constraints and optimize the cost function.

2.2.2 Heuristic-based Method

Heuristic-based methods are a class of problem-solving approaches that rely on prac-

tical and intuitive techniques to find solutions when exact methods are not feasible or

efficient [284]. Unlike exact algorithms, heuristic methods do not guarantee optimal

solutions, but instead aim to find solutions that are acceptable or satisfactory within a

reasonable amount of time [285]. Heuristic-based methods are often useful in scenarios

where the problem is complex or has a large number of variables, making it challenging

to find an exact solution using traditional methods.

Despite the lack of optimality guarantees, heuristic-based methods have proven to

be efficient in finding satisfactory solutions within a reasonable time frame. One of

the advantages of heuristic-based methods is their flexibility and adaptability, making

them suitable for various problem types and sizes [272; 277]. Heuristic iterative search

algorithms are able to simplify the joint chain problem of multiple joints into a single

joint problem. Since minimizing the objective function of one single joint is quite sim-

ple, the computation speed of each iteration can be quite fast. CCD algorithm is one

of the most representative heuristic iterative search algorithms. This algorithm was

first introduced by Lander [78] in 1998, after which many scholars have made their

own contributions to improve the performance of the CCD algorithm with the aim of

meeting typical demands. Algorithm 2.1 details this algorithm.

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 51

Algorithm 2.1 Cyclic-Coordinate Descent (CCD) algorithm
1: Initialize the joint angles of the robot arm to an initial guess.

2: Compute the FK of the robot to obtain the position and orientation of the end-

effector.

3: Compute the vector from the current joint to the end-effector.

4: For each joint, starting from the first joint and ending at the last joint:

a. Compute the vector from the current joint to the end-effector.

b. Compute the vector from the current joint to the next joint.

c. Compute the angle between the two vectors.

d. If the angle is greater than a threshold value, update the joint angle by rotating

the joint about its axis in the direction that brings the end-effector closer to the

target pose.

5: Compute the FK again to obtain the new position and orientation of the end-

effector.

6: If the difference between the desired end-effector pose and the actual end-effector

pose is less than a tolerance value, terminate the algorithm. Otherwise, go to step

3.

CCD is a heuristic-based optimization algorithm commonly used in motion planning

and IK problems for manipulators with a serial chain structure [78]. CCD optimizes

each joint angle sequentially in a cyclical manner until the end effector of the robot

reaches the desired position and orientation. The algorithm has gained popularity due

to its simplicity, fast convergence, and ability to handle complex kinematic structures

efficiently.

The CCD algorithm offers several advantages that make it a popular choice for solv-

ing motion planning and IK problems. Firstly, it is computationally efficient and can

handle complex robotic systems with numerous degrees of freedom. Additionally, the

algorithm has demonstrated the ability to converge to a solution from a wide range

of initial joint configurations. However, one limitation of the CCD algorithm is that

it can be sensitive to the ordering of the joints, which can lead to different solutions

for different joint orderings. Additionally, it can get stuck in local minima, which can

result in suboptimal solutions. If the location of the final desired point is close to the

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 52

baseline, the trajectory of the robot arm will be a zigzag curve rather than a straight

line. Thus, the motion planning of the robot arm needs to be optimized. Aiming at

solving this problem, Mukundan [79] developed an improved CCD algorithm called

the improved triangulation algorithm. Instead of moving all the links of the robot arm

one by one from the end effector to the base, this improved triangulation algorithm

divided the links of the robot arm through midpoints. As a result, half of the robot

arm moves together instead of a single link of a robot arm, thereby enabling large-

angle rotations rather than oscillating trajectories.

There are also other state-of-art heuristic-based methods for solving motion planning

problems in robotics, such as Forward and Backward Reaching Inverse Kinematics

(FABRIK) [286]. FABRIK uses heuristics to iteratively update the joint angles until

an acceptable solution is found. What distinguishes itself from the CCD algorithm is

that FABRIK updates the position of the joints from both the start and end of the

chain. FABRIK is a heuristic-based method that is based on the assumption that each

link in a chain can be modelled as a straight line. The algorithm iteratively updates the

joint angles of the chain until the end effector position is within an acceptable tolerance

of the desired position. FABRIK is computationally efficient and can be used in real-

time applications. However, it should be noted that FABRIK does not guarantee an

optimal solution and can result in suboptimal solutions [273]. Despite this limitation,

FABRIK’s ability to solve for both position and orientation simultaneously makes it

a versatile method that can be used for a wide range of robotic applications.

2.2.3 Sampling-based Method

Sampling-based motion planning algorithms are employed to find a feasible path for

a robot to move from an initial to a desired goal configuration, while ensuring that it

avoids obstacles in the environment [275]. Unlike optimization-based methods, which

utilize mathematical models to compute an optimal trajectory, sampling-based meth-

ods generate a set of feasible paths by randomly sampling the configuration space of

the robot. From the generated set of paths, the best path is then selected.

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 53

Algorithm 2.2 Probabilistic Roadmaps Method (PRM)
1: Create a roadmap by randomly sampling configurations of the robot in the environ-

ment. Each configuration is checked for collision with obstacles in the environment

using collision detection.

2: Connect nodes in the roadmap to form edges between them if the straight-line

path between them is collision-free.

3: Given a start configuration and a goal configuration, find the nodes in the roadmap

that are closest to the start and goal configurations. Then, use a search algorithm

(such as A* [76]) to find the shortest path between the start and goal configurations

in the roadmap.

4: The resulting path may not be collision-free, so refine the path by performing local

planning to adjust the path to avoid collisions. This can be done by applying IK

to find the joint angles that correspond to the waypoints in the path and then

smoothing the resulting path.

5: Execute the refined path on the robot.

Sampling-based motion planning methods are preferred in many cases because of

their simplicity, scalability, and ability to handle high-dimensional configuration spaces

[274]. Among these methods, PRM [83] is one of the most widely used algorithms.

PRM constructs a roadmap, which is a graph representation of the free space, and can

be used to efficiently answer queries regarding motion planning in that space. The

PRM algorithm works by randomly sampling the free configuration space of a robotic

system, and connecting these samples in a graph using collision-free paths. This graph

can then be used to find a feasible path between any two configurations of the robotic

system [287]. Algorithm 2.2 details this algorithm.

The PRM algorithm has several advantages over other motion planning algorithms, in-

cluding scalability to high-dimensional configuration spaces and the ability to handle

complex obstacle shapes [287]. It is computationally efficient and can handle high-

dimensional configuration spaces. However, it can be difficult to tune the parameters

of the algorithm to obtain good performance, and it may not always find a feasible

path if the configuration space is highly cluttered or has narrow passages.

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 54

Sampling-based motion planning algorithms are a powerful tool for solving complex

motion planning problems with high-dimensional configuration spaces [288]. Apart

from the PRM method, there exist numerous other state-of-the-art sampling-based

motion planning algorithms that have been developed and shown to be effective in

solving a wide range of motion planning problems. With the aim of solving the single-

query motion planning problems, the Rapidly-exploring Random Trees (RRTs) method

[289; 290] has been widely used. RRT generates a tree-like structure by iteratively

adding new nodes to the tree through random sampling of the configuration space.

The RRT algorithm has been successfully applied to various robotic tasks such as

path planning for mobile robots [291] and manipulators [292]. The core of the RRT

algorithm is to generate random points evenly in order to find the possible route

solution [293]. During each iteration, a random point is generated and the RRT

algorithm will try to link the newly generated point with the current RRT tree [294].

An RRT-connect method was proposed in [295] with the aim of improving the efficiency

of finding motion planning solutions. In the proposed algorithm, two RRT trees can be

generated both from the start point and the goal point. If two RRT trees are connected,

they should be swapped to reverse their roles. As a consequence, the performance of

using two RRT trees at the same time is much better than using a single RRT tree.

One of the limitations of using the RRT algorithm to do motion planning is that the

performance of the RRT tree is not that desirable when the algorithm is used to find a

path inside a maze. This is because the extending point is totally randomly generated,

which leads to a large number of unnecessary RRT tree expansions.

2.3 Reinforcement Learning

RL is a branch of machine learning that focuses on training an agent to make deci-

sions that lead to maximum cumulative reward in a given environment [296]. Unlike

other popular machine learning approaches such as supervised [297] or unsupervised

learning [298], RL is characterized by trial-and-error learning. During training, the

agent interacts with the environment, taking actions that lead to rewards or penalties,

which inform future decision-making [299]. RL autonomously enables the machine to

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 55

learn the mapping relationship between the state of the environment and its actions

[300]. Therefore, the machine can adjust its action output according to the feedback

signal in order to maximize the cumulative reward from the environment [301].

RL can be particularly advantageous in complex and dynamic environments where the

optimal solution may change over time or where the rules of the game are not fully

understood [302]. Moreover, RL algorithms can efficiently handle high-dimensional

and continuous state spaces, making them suitable for a wide range of applications

[115]. Agents are encouraged to learn mapping relationships between the environment

and action with RL techniques [303]. Recently, many RL methods have been investi-

gated to solve classical problems. For instance, an actor-critic based RL approach was

developed in [304] to deal with the input of a classical formation control problem. In

[305], a solution for achieving consensus of multiple agents under sudden total com-

munication failure was proposed by using the actor-critic RL method. A distributed

off-policy actor-critic method was developed in [2] to deal with RL problems in a MAS.

To summarize, RL has become increasingly popular in recent years due to its ability

to solve complex problems that are difficult or impossible to solve using traditional

rule-based programming or other machine learning approaches [306].

RL has the potential to transform the field of robotics by enabling robots to learn

to perform tasks that are too complex for conventional control methods [307]. By

leveraging RL, robots can learn from their experiences and dynamically adapt their

behaviours to changes in their environment [308; 309]. This enables them to complete

tasks with greater accuracy and speed than traditional control methods. One of the

main advantages of RL in robotics is that it allows robots to learn from their expe-

riences, instead of relying solely on pre-programmed instructions [310]. As a result,

robots can now perform tasks that are too complex or too dynamic for traditional

control methods. Furthermore, RL enables robots to learn from their mistakes, which

is critical for tasks that demand high precision [311]. However, there are also some

drawbacks to using RL in robotics. One of the primary challenges is that RL requires

a large number of trials before a robot can learn a control policy that performs well

[312]. This can be a time-consuming and expensive process, particularly for tasks that

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 56

require a lot of interaction with the environment. Additionally, RL is susceptible to

overfitting, which can result in poor performance when the robot is placed in a new

environment [127]. Despite these challenges, RL has been successfully applied to a

broad range of robotic tasks, including grasping [313; 314], navigation [315], and ma-

nipulation [316; 317].

With the rapid development of science and technology, RL is required to handle com-

plex tasks [318; 319]. In order to solve this problem, people combine deep learning with

RL with the aim of tackling the complex real environment [320]. Deep learning [321] is

a subfield of machine learning that utilizes NNs with multiple layers to model and solve

complex problems. Deep learning [322] requires extracting feature information from

raw data to complete learning through NN [323], which has been used extensively in

computer vision [324; 325], natural language processing [326; 327], etc. RL is a subset

of machine learning that deals with training agents to make decisions in an environ-

ment to maximize rewards [328]. DRL [329] is an exciting and rapidly evolving field of

Artificial Intelligence that combines the power of deep NNs [330] with RL algorithms

to enable agents to learn from high-dimensional sensory input and make intelligent

decisions in complex and dynamic environments. DRL is a method that utilizes deep

NNs to approximate the optimal policy function of a RL problem. This approach

is particularly effective in learning complex and high-dimensional state-action spaces,

and it enables the agent to make decisions based on raw sensory input [331].

In recent years, DRL has emerged as a powerful tool in the field of robotics, as it

has enabled robots to learn complex motor skills [224]. By combining deep NNs with

RL, DRL has enabled robots to adapt to changing environments and perform a wide

range of tasks [332]. An efficient real-time hybrid path planning scheme was proposed

in [333] to handle the uncertain dynamics of a robot manipulator by combining the

PRM method with DRL. In [131], a robot arm was trained to learn how to fold a

towel diagonally with DRL. In [334], a robotic manipulator was trained using DRL

to solve the task of grasping an initially invisible object via a sequence of grasping

and pushing actions. A high-precision peg-in-hole target task was selected in [335] for

force-controlled robotic assembly with DRL. Specifically, the force and moment of the

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 57

robotic manipulator end effector were chosen as the state. Although DRL has shown

great promise in various applications, it is not without its challenges and limitations.

One of the main hurdles is the requirement for vast amounts of data to train deep NNs.

Furthermore, the process of training DRL agents can be computationally expensive and

time-consuming, posing a significant practical challenge in some cases [336]. Designing

appropriate reward functions that effectively capture the true objectives of the task is

another challenging aspect of DRL. Incorrectly specified reward functions can lead to

undesirable behaviours, and even cause harm in certain situations.

2.3.1 Mathematical Formulation

Markov Decision Process [303] is a mathematical framework for modelling decision-

making problems in situations where outcomes are partly random and partly under

the control of a decision-maker. It is a fundamental concept in the field of RL and

decision theory. In Markov Decision Process, the decision-maker takes actions that

transition the system from one state to another according to a probabilistic rule called

the transition function. The transition function defines the probability of moving from

one state to another as a result of a specific action. In addition, the reward function

defines the amount of reward or penalty that the decision-maker receives when transi-

tioning between states. The objective of the Markov Decision Process is to find a policy

that maximizes the expected cumulative reward over time. Figure 2.1 introduces the

interaction between the agent and environment in a Markov decision process. At each

iteration t, the agent receives information from the environment’s state st and selects

an action at. At next iteration t+ 1, the agent receives the reward rt+1 and finds itself

in a new state st+1 [303]. The key elements of Markov decision process can be listed

as follows [303]:

Action: A decision made by the agent at a particular state. The action can affect the

state and the reward.

State: A particular situation or condition that the agent is in at a given time. The

state can affect the action and the reward.

Agent: The entity that is learning and making decisions based on the environment.

The agent takes actions and receives rewards from the environment.

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 58

Figure 2.1: The interaction between agent and environment in a Markov decision
process. State represents the current status. Agent is an individual that performs
the action. Action stands for agent behaviour. Reward is the feedback given after
completing the action. Environment can judge the next state and provide a reward.

Reward: A numerical value that the agent receives from the environment based on

the action taken and the current state. The goal of the agent is to maximize the

cumulative reward over time.

Environment: The external system or process that the agent interacts with. The

environment provides feedback to the agent in the form of rewards based on the actions

taken and the current state.

Discounted Reward

The discounted reward is a way to quantify the cumulative future rewards an agent

can expect to receive when following a specific policy in an environment. As stated in

[303], the goal of the agent is to maximize the total amount of reward. In the simplest

case, the reward can be represented by

Gt = Rt+1 +Rt+2 + · · ·+RT (2.18)

where T is the final step. However, we take future rewards into consideration in the

actual RL implementation. Therefore, the discounted reward is given by

Gt = Rt+1 + ρRt+2 + ρ2Rt+3 + · · · =
∑∞

k=0 ρ
kRt+k+1 (2.19)

where 0 ≤ ρ ≤ 1, and ρ is the discounted factor.

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 59

State Value Function

If a policy π denotes a mapping from states to probabilities of choosing each possible

action [303], the state value function vπ(s) of a state s under π can be defined by

vπ(s) = E[Gt|St = s] = E[
∑∞

k=0 ρ
kRt+k+1|St = s] (2.20)

where E is the expected value, St stands for the current state.

Action Value Function

Similarly, by following [303], the action value function qπ(s, a) taking action a in state

s can be described as follows

qπ(s, a) = E[Gt|St = s, At = a] = E[
∑∞

k=0 ρ
kRt+k+1|St = s, At = a] (2.21)

where E is the expected value, St stands for the current state, At is the current action.

Bellman Equation

As stated in [303], RL satisfies recursive relationships. For any policy π and any state

s, the following condition holds

vπ(s) = E[Gt|St = s]

= E[Rt+1 + ρGt+1|St = s]

=
∑
a

π(a|s)
∑
s′,r

P (s′, r|s, a)[r + ρvπ(s′)]

(2.22)

where s′ is the next state, a stands for the action, r represents the reward, P (s′, r|s, a) =

Pr{St = s′, Rt = r|St−1 = s, At−1 = a}. Equation (2.22) is the Bellman equation. The

value function vπ(s) is the unique solution to its Bellman equation [303].

Optimal Policy and Optimal State Value Function

As described in [303], there always exists at least one policy which is better than or

equal to all other policies. This is the definition of optimal policy. The optimal state

value function v∗(s) is defined as

v∗(s) = max
π
vπ(s) (2.23)

for all s ∈ S.

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 60

Optimal Action Value Function

Following [303], the optimal action value function q∗(s, a) can be described by

q∗(s, a) = max
π
qπ(s, a) (2.24)

for all s ∈ S and a ∈ A(s).

As stated in [303], the optimal action value function q∗(s, a) can be written in terms

of the optimal state value function v∗(s):

q∗(s, a) = E[Rt+1 + ρv∗(St+1)|St = s, At = a] (2.25)

where E is the expected value, St+1 stands for the next state, Rt+1 represents the next

reward, ρ is the discounted factor.

2.3.2 On-policy and Off-policy Algorithms

RL algorithms can be broadly classified into two categories: on-policy and off-policy

algorithms [303]. Both these algorithms are used to learn an optimal policy for an agent

to take actions in an environment to maximize its rewards. On-policy algorithms learn

from the policy that they are currently following, while off-policy algorithms learn from

a different policy than the one being used to select actions.

On-policy Algorithms

On-policy algorithms [303] are a class of RL algorithms that learn optimal policies

by generating experience from the current policy. These algorithms work by using

the current policy to both generate trajectories and update the policy parameters.

In other words, the policy used to collect experience is the same policy that is being

learned and updated. On-policy algorithms are often used in situations where it is

difficult or expensive to obtain data from other policies, or when the current policy is

already close to optimal and only small refinements are needed [337].

The most common on-policy algorithm is the SARSA (State-Action-Reward-State-

Action) algorithm [303] which is shown in Figure 2.2. The SARSA algorithm updates

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 61

Figure 2.2: SARSA algorithm.

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 62

the Q-function using the current policy’s action and the resulting next state and re-

ward. The policy is then updated to be epsilon-greedy with respect to the updated

Q-function. SARSA updates its policy based on the actions actually taken under

the current policy, allowing it to learn policies that are better suited to changing

environments. However, SARSA may be less effective than off-policy algorithms like

Q-learning in environments where exploration is difficult or expensive, as SARSA relies

on the current policy for exploration. This can make it more challenging for SARSA

to learn an optimal policy, as it may not explore all possible actions in a given state.

Activation Functions

SARSA requires a finite number of states and actions, which can be a limiting factor in

certain applications where the state space is continuous or the action space is infinite.

To address this issue, deep learning approximates infinite-dimensional functions ((2.23)

and (2.24)) by finite-dimensional functions parameterized by NNs. As stated in [338],

if the parameterization is linear, the state value function v(s) and the action function

q(s, a) can be described as:

v(s) = ηTϕ(s) (2.26)

q(s, a) = ξTψ(s, a) (2.27)

where η and ξ are training parameters. ϕ(s) and ψ(s, a) denote the feature functions

that correspond to the state value function and the action value function, respectively.

Activation functions [339] are a critical element in the architecture of artificial NNs,

as they enable the introduction of non-linearity into the output of neurons. These

functions receive the weighted sum of the inputs and a bias term and then transform

it into an output value, which determines the degree to which the neuron is activated.

By introducing non-linearity, activation functions allow NNs to approximate complex

non-linear relationships between inputs and outputs [340]. An example of a NN is

visualized in Figure 2.3. The input signal enters from the input layer, passes through

the nonlinear activation function and then is transmitted to the next hidden layer.

This process will repeat until the input signal reaches the output layer. Thus, the NN

has enough capacity to extract features from input. If there is no activation function,

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 63

Figure 2.3: An example of NN. x stands for the input signal. y represents the output
signal.

the NN can only process linear mapping, which makes it equivalent to a single-layer

network. To sum up, the NN is able to acquire hierarchical nonlinear modelling ability

by using the activation functions [341].

As illustrated in Figure 2.4, there are three activation functions that are mainly used

in the NN. The first one is the sigmoid function [342], which is defined as follows:

σ(x) = 1
1 + e−x (2.28)

where σ(x) is the sigmoid function. Although the sigmoid function is convenient for

derivation, sometimes it causes gradient vanishing. In this situation, the NN cannot

be optimized and the training parameters cannot be updated. Moreover, the output

of the sigmoid function is always greater than 0, which is not zero-centred. This will

slow down the convergence speed of NN.

The second activation function is the tanh function [343], which is given by

tanh (x) = ex − e−x

ex + e−x (2.29)

where tanh (x) represents the tanh function. Compared with the sigmoid function,

it solves the zero-centred problem, which allows for faster convergence speed. Never-

theless, the gradient vanishing issue still exists when using the tanh activation function.

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 64

Figure 2.4: Three activation functions.

The last activation function is the ReLu function [344], which is computed by

δ(x) = max(0, x) (2.30)

where δ(x) is the ReLu function. In the positive interval, the ReLu function is able to

solve the gradient vanishing problem. The computation speed of the ReLu function is

very fast since it only needs to judge whether the input is greater than 0. Consequently,

the convergence speed of the ReLu function is much faster than the sigmoid function

and the tanh function.

Off-policy Algorithms

Off-policy algorithms [303] are a type of RL method that learns a policy from a differ-

ent policy than the one being optimized. Specifically, they learn a target policy based

on data generated by a behaviour policy. This enables the algorithm to learn from

a broader range of experiences than on-policy algorithms, which can only use data

generated by the current policy. Off-policy methods are often preferred in scenarios

where exploration is expensive or difficult because they allow for the use of previously

collected data to improve the policy [345].

Q learning [346] is a well-known RL algorithm that has been applied to solve prob-

lems in a variety of domains. It is categorized as a model-free method since it does

not require an explicit model of the environment to learn. Instead, it approximates

the optimal action-value function, which estimates the expected reward for taking a

specific action in a given state and following an optimal policy thereafter. Q learn-

ing is a variant of Temporal Difference (TD) learning, which means that it updates

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 65

the estimates of the action-value function based on the observed rewards and state

transitions. The flowchart of the Q learning algorithm is shown in Figure 2.5.

2.3.3 Deep Q Learning

Algorithm 2.3 Deep Q Learning
1: Initialize training parameter ξ, target training parameter ξ′, learning rate α, dis-

counted factor γ, replay buffer Rp, action value function Q, target action value

function Q′.

2: for episode = 1, N do

3: Reset the environment.

4: Receive state st.

5: for t = 1, T do

6: Choose random action at with probability ϵ.

7: Otherwise select at = arg max
a

(Q(ξ, st, a)).

8: Execute action at and get reward rt, next state st+1.

9: Store (st, rt, st+1, at) to Rp.

10: Sample a minibatch (st, rt, st+1, at) from Rp.

11: yt = rt + γmax
a′

(Q′(ξ′, st+1, a
′)).

12: Perform a gradient descent step on Loss L with respect to ξ:

13: L = 1
2(yt −Q(ξ, st, at))2.

14: Every M steps reset Q′ = Q.

15: end for

16: end for

Deep Q Learning [347] is a variation of Q Learning that utilizes deep NNs to approx-

imate the Q-value function. The idea is to use a deep NN as a function approximator

for the Q-value function, instead of a table. In Deep Q Learning, the NN takes in the

state as input and outputs the Q-values for all possible actions. The network is trained

using an experience replay buffer and a target network to stabilize the learning process.

Deep Q Learning has several advantages including the ability to deal with high-

dimensional state spaces and the ability to generalize well to unseen state-action pairs.

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 66

Figure 2.5: Q learning algorithm.

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 67

However, Deep Q Learning also presents some challenges that must be addressed to

ensure its effectiveness. One of the main difficulties is the instability of training, which

stems from the use of non-linear function approximators that can lead to overfitting

and divergence of the Q-values. Another challenge is the need for large amounts of

training data, which can be particularly time-consuming and computationally expen-

sive in certain scenarios. The Deep Q learning algorithm can be described as shown

in Algorithm 2.3.

2.3.4 Policy Gradient Method

The Policy Gradient method [348] is a well-known class of RL algorithms that directly

optimizes the expected cumulative reward via gradient ascent to learn a policy. Un-

like value-based methods such as Q learning, which estimate the optimal action-value

function, the policy gradient method learns a parameterized policy function that maps

states to actions directly. This feature enables the agent to learn policies that are con-

tinuous and stochastic, making it a suitable method for handling high-dimensional and

continuous state spaces.

The policy gradient method aims to learn a parameterized policy by directly opti-

mizing the expected cumulative reward. To achieve this, the method estimates the

gradient of the expected reward with respect to the policy parameters using stochastic

gradient ascent. The objective function, which represents the expected cumulative

reward under the policy, is typically used as the optimization criterion. The policy

parameters are then updated by following the gradient direction of the objective func-

tion, which can be estimated using Monte Carlo methods.

The policy gradient method has several advantages, including the ability to learn

policies that can handle continuous and high-dimensional state and action spaces.

These advantages make the policy gradient method a promising option for a variety

of real-world applications. However, it also has some drawbacks, including a tendency

to converge slowly and get stuck in local optima. Tuning the hyperparameters of

the policy gradient method can also be a challenging task, which can lead to poor

performance. The flowchart of the policy gradient method is shown in Figure 2.6.

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 68

Figure 2.6: Policy Gradient Method.

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 69

2.3.5 Actor-critic Method

Algorithm 2.4 Actor-critic Method
1: Initialize actor training parameter η0, critic training parameter ξ0, critic learning

rate α, critic network g, policy function π, actor learning rate β, initial state s0,

fixed behaviour policy µ, discounted factor ρ, maximum time limit T̂ , maximum

episode limit N̂ , exploration noise Ot.

2: for episode = 1, N̂ do

3: Reset the environment.

4: Receive initial state s1.

5: for t = 1, T̂ do

6: Select action at = µ(st) + Ot for action exploration according to the fixed

behaviour policy and the exploration noise.

7: Execute at, calculate reward rt+1 and get new state st+1.

8: Store transition (st, at, rt, st+1) in the replay buffer Rp.

9: Sample a minibatch (st, at, rt, st+1) from transitions in Rp.

10: Compute temporal difference error:

κt = rt+1 + ρgξ(st+1, at+1)− gξ(st, at).

11: Update critic training parameter:

ξt+1 = ξt + ακt∇ξg(st, at).

12: Update actor training parameter:

ηt+1 = ηt + β∇ηπ(st)∇agξ(st, a)|a=πη(s).

13: end for

14: end for

Actor-critic method [338] is a popular RL algorithm that combines the benefits of both

policy-based and value-based methods. This algorithm consists of two components:

the Actor and the Critic. The Actor is responsible for selecting actions based on the

current state, while the Critic evaluates the action taken by the Actor by estimating

the value function. The value function provides feedback to the Actor, which is then

used to improve the policy. Compared to pure policy-based or value-based methods,

actor-critic method is more efficient because it utilizes the value function to decrease

the variance of the policy gradient. This is achieved by subtracting a baseline from

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 70

the action-value estimate to get an advantage estimate, which reduces the gradient es-

timate’s variance. Actor-critic method can also be used with function approximation

techniques, such as deep NNs, to learn complex policies and value functions.

One of the main strengths of the actor-critic method is its ability to learn from ex-

perience, which allows it to adapt to changing environments and tasks. Moreover,

it can efficiently handle high-dimensional state and action spaces, making it suitable

for many real-world applications. However, the actor-critic method is sensitive to the

choice of hyperparameters, and can suffer from instability and convergence issues if

not properly tuned. Additionally, the use of function approximation techniques may

lead to overfitting. Actor-critic method can be briefly described in Algorithm 2.4.

2.3.6 Deep Deterministic Policy Gradient Method

Deep Deterministic Policy Gradient (DDPG) [349] is a popular algorithm in RL that

can handle continuous action spaces, which are often encountered in robotics and con-

trol applications. DDPG is an actor-critic method that combines the advantages of

policy gradient and Q-learning. DDPG is an off-policy algorithm that uses experience

replay to learn from previous experiences. The agent stores experiences in a replay

buffer and randomly samples them to train the networks. DDPG has demonstrated

strong performance in various environments and is a powerful tool for addressing com-

plex problems in continuous action spaces.

One of the major advantages of the DDPG algorithm is its ability to handle continuous

action spaces, which are challenging for discrete action algorithms such as Q-learning.

Moreover, compared to other RL methods, DDPG is more sample-efficient and has

a faster convergence rate. Despite these strengths, DDPG has several limitations.

It is sensitive to hyperparameters and can be unstable during training, potentially

leading to divergent policies. Additionally, DDPG requires significant memory to

store the replay buffer, which may be a concern in resource-limited environments. A

brief algorithm of how DDPG works is shown in Algorithm 2.5.

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 71

Algorithm 2.5 DDPG Method
1: Initialize actor network ϕ(s|η) with weight η, critic network Q(s, a|ξ) with weight

ξ, maximum time limit T , maximum episode limit N , replay buffer R, maximum

size of the replay buffer Rm, target actor network ϕ′ with weight η′ ← η, target

critic network Q′ with weight ξ′ ← ξ.

2: for episode = 1, N do

3: Reset the environment.

4: for t = 1, T do

5: Initialize a random exploration noise ot for action exploration.

6: Choose action at = ϕ(st) + ot according to the current policy and exploration

noise ot.

7: Execute action at, calculate reward rt and get new state st+1.

8: Store (st, at, rt, st+1) in the replay buffer R.

9: Sample a minibatch (sj, aj, rj, sj+1) from R if size(R) > Rm.

10: Set yj = rj + γQ′(sj+1, ϕ
′(sj+1|η′)|ξ′).

11: Update critic by minimizing the loss:

12: L = 1
2(yj −Q(sj, aj|ξ))2

13: Update actor with policy gradient ascent:

14: ∇ηJ = E[∇aQ(s, a|ξ)|s=sj ,a=ϕ(sj)∇ηϕ(s|η)|sj]

15: Update the target actor and critic networks:

16: η′ ← τη + (1− τ)η′

17: ξ′ ← τξ + (1− τ)ξ′

18: end for

19: end for

2.3.7 State-of-Art Algorithms

RL is a subfield of machine learning that focuses on training an agent to interact with

an environment and learn from the feedback it receives in the form of rewards [115].

Over the years, various RL algorithms have been proposed to solve different problems,

ranging from classic control tasks to complex games and robotics applications [350].

State-of-art RL algorithms typically have the ability to handle high-dimensional input

spaces, model complex dynamics, and generalize well to unseen data [351]. Some of

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 72

the most prominent state-of-art RL algorithms include Soft Actor-critic (SAC) [352],

Proximal Policy Optimization (PPO) [353], Trust Region Policy Optimization (TRPO)

[354], Asynchronous Advantage Actor-critic (A3C) [355], and Twin Delayed Deep De-

terministic Policy Gradient (TD3) [356], etc.

SAC [352] is a recent RL algorithm that has shown outstanding performance in contin-

uous control tasks. This algorithm combines ideas from maximum entropy RL and soft

Q-learning, and it is capable of learning optimal policies with high sample efficiency

in continuous state and action spaces. SAC is an off-policy, model-free algorithm that

maintains a stochastic policy and learns an approximation of the state-action value

function by minimizing the mean squared Bellman error. One of the main characteris-

tics of SAC is its use of the maximum entropy framework, which encourages the policy

to explore more widely and learn more efficiently by maximizing an objective function

that combines the expected cumulative reward with an entropy term. This results in

a policy that is more robust and adaptive to changing environments. Furthermore,

SAC uses a target network, similar to the one used in deep Q learning, to reduce

the correlation between the Q-function updates and the policy updates. Additionally,

SAC uses automatic entropy tuning to optimize the trade-off between exploration and

exploitation, leading to better performance and faster convergence.

PPO [353] is another state-of-the-art RL algorithm that was introduced by OpenAI

in 2017. PPO is an on-policy algorithm that directly optimizes the policy objective.

PPO aims to maximize the expected cumulative reward obtained from executing a

policy in a given environment, which is also less sensitive to hyperparameter choices.

Additionally, PPO has a strong theoretical foundation and is guaranteed to converge

to a locally optimal policy. PPO achieves its state-of-the-art performance through

several key innovations. One of the most important is the use of a clipped surrogate

objective, which helps to prevent the policy from deviating too far from the current

policy distribution. Another key innovation is the use of a value function that is

learned simultaneously with the policy. This helps to improve sample efficiency and

reduce variance in the policy gradient estimates.

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 73

TRPO [354] is a policy optimization method that is commonly used in RL. TRPO is

designed to find an optimal policy that maximizes the expected cumulative reward of

an agent, subject to constraints. One of the key features of TRPO is that it is a trust

region method, which means that it limits the amount of change to the policy during

each update. This helps to prevent large policy updates that could potentially lead to

instability or divergence in the learning process. By constraining the size of the up-

date, TRPO ensures that the new policy remains close to the previous policy while still

allowing for improvement. TRPO utilizes a surrogate objective function that approxi-

mates the performance of the true objective function, which is the expected cumulative

reward. This surrogate objective function ensures that the new policy is always an

improvement over the previous policy. Additionally, TRPO includes a constraint on

the size of the policy update to ensure that the new policy is not too different from

the previous policy. One of the limitations of TRPO is that it requires a large amount

of data to achieve good performance, which can be a bottleneck in many applications.

A3C [355] is a state-of-art RL algorithm that combines Asynchronous and Advantage

Actor-critic methods. The algorithm has multiple agents, each running an indepen-

dent copy of the same NN. These agents are trained asynchronously, meaning that they

are not synchronized with each other, and each agent interacts with the environment

and updates the shared network independently. A3C utilizes an actor-critic architec-

ture, with the actor network responsible for selecting actions and the critic network

estimating the value of state-action pairs. To reduce the variance in the estimated

value, A3C employs an Advantage function that estimates the advantage of taking a

particular action in a given state. This feature helps to improve the stability of the

algorithm. A3C offers several benefits, including its ability to handle high-dimensional

state spaces such as images or sensor readings. It can also handle continuous action

spaces, making it a promising choice for robotic control tasks. Additionally, the asyn-

chronous training scheme used in A3C enables scalability and makes it well-suited

for large-scale distributed systems. However, A3C also has some limitations. The

algorithm requires a significant amount of training data to learn accurately and may

require careful hyperparameter tuning to achieve optimal performance.

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 74

TD3 [356] is also a state-of-the-art RL algorithm that is designed to solve continuous

control tasks. It is an extension of the original DDPG algorithm, which improves

its stability and sample efficiency. TD3 employs a twin network architecture that

consists of two NNs, both of which learn the same function but with different noise

added to their outputs. The goal of this approach is to reduce overestimation of the

Q-function, which is a common issue in Q-learning-based methods. In addition to the

twin network architecture, TD3 also uses a delayed policy update mechanism. This

means that the policy network is updated less frequently than the Q-network, which

reduces the variance of the policy updates and improves the stability of the learning

process. Furthermore, TD3 uses target policies for both the Q-function and the policy

network. These target policies are updated slowly using a moving average of the main

network weights, which ensures that the target values are more stable and less prone to

changes. One of the primary advantages of TD3 is its sample efficiency. By reducing

the overestimation of the Q-function and using delayed updates, TD3 requires fewer

data than other algorithms to achieve good performance. Additionally, TD3 is capable

of handling high-dimensional continuous action spaces, which is a common challenge

in robotics and control applications. Despite its advantages, TD3 still suffers from

the problem of local optima, which can limit its performance. Moreover, tuning the

hyperparameters can be a challenging task.

State-of-art RL algorithms are continuously evolving, and researchers are constantly

proposing new ideas and techniques to improve their performance and applicability.

As the field of RL continues to grow, more advanced algorithms that can handle even

more complex tasks and improve the efficiency and stability of RL-based systems will

be carried out.

2.4 Consensus Control

Consensus control is a field of control theory that deals with the problem of coordi-

nating a group of agents to achieve a common goal [357; 358]. The goal of consensus

control is to develop control strategies that enable the agents to converge to a common

state or behaviour through local interactions with their neighbours, without the need

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 75

for a centralized controller [359]. The problem of consensus control is motivated by a

wide range of applications, including robotics [360], swarms [361], and social networks

[362]. In these applications, the agents are often distributed and autonomous, and the

communication among them is subject to delays [363], noise [364], etc.

The research on the issue of consensus can be traced back to 1974 when DeGroot

[365] first proposed the concept of consensus. The problem of asynchronous consensus

control and its application in distributed systems was first proposed in [366]. In 1987,

Reynolds [367] proposed a “Boid” model that uses a computer program to simulate the

motion behaviour of birds. In 1995, Vicsck [368] studied the motion behaviour of par-

ticle swarms and proposed the simplest swarm kinematics model. Later, Jadbabaiel

[369] further discussed the “Vicsck” model and made the first theoretical research

analysis on distributed consensus. The problem of consensus control has attracted

significant attention from researchers over the past few decades, leading to the devel-

opment of various control strategies [370]. Broadly, these strategies can be categorized

into two groups: decentralized [371] and centralized [372] control. Decentralized con-

trol methods rely on local interactions between agents without the need for a central

authority to coordinate their actions [373]. Centralized control approaches involve a

central controller that collects and processes information from the agents and provides

them with appropriate control signals [374].

Consensus control is a popular approach for MASs due to its desirable properties such

as scalability, robustness, and adaptability [375]. However, there are still several chal-

lenges that need to be addressed to make consensus control more effective in real-world

applications. One of the key challenges is the ability to design control strategies that

can handle uncertainties and disturbances in the system, which can greatly affect the

performance of the system [376]. Another important consideration is the scalabil-

ity of the consensus control strategies, which can be limited by the communication

bandwidth and computational resources available to the agents [377]. Moreover, the

implementation of consensus control strategies in real-world applications can be chal-

lenging due to the need for reliable communication networks and accurate sensing and

actuation devices [378]. In recent years, there have been quite a few satisfying results in

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 76

various types of consensus control [379; 380]. A first-order continuous-time integrator

was used in [369] to describe the dynamic model of the agent. Moreaul [381] analyzed

the consensus theory of discrete systems and proved the relationship between com-

munication network connectivity, convexity conditions and consensus. Ren and Bread

[382] proved that the sufficient condition for the first-order MAS to achieve consensus

is that the fixed communication topology should have a directed spanning tree.

2.4.1 Kronecker Product

The Kronecker product [383] is a mathematical operation that combines two matri-

ces to create a larger block matrix. The Kronecker product is particularly useful in

representing and manipulating large, complex systems that can be decomposed into

smaller subsystems [384]. The Kronecker product of matrices X ∈ Rn×m and Y ∈ Rp×q

is defined as

X ⊗ Y =

x11Y x12Y . . . x1mY

x21Y x22Y . . . x2mY
...

xn1Y xn2Y . . . xnmY

∈ Rnp×mq

As stated in [383], important properties of the Kronecker product are listed in the

following equations:
X ⊗ (Y + Z) = X ⊗ Y +X ⊗ Z

(cX)⊗ Y = X ⊗ (cY) = cX ⊗ Y

(W ⊗X)(Y ⊗ Z) = WY ⊗XZ

(X ⊗ Y)−1 = X−1 ⊗ Y −1

(X ⊗ Y)T = XT ⊗ Y T

where W,X, Y, and Z are the matrices with compatible dimensions for multiplication.

2.4.2 Graph Theory

Graph theory is a field of mathematics concerned with studying graphs, which are

mathematical structures that are used to represent pairwise relationships between ob-

jects [385]. A graph consists of a set of vertices and a set of edges connecting pairs of

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 77

(a) (b) (c)

Figure 2.7: (a) An undirected graph (b) A directed graph (c) A weighted graph.

vertices [386]. The degree of a vertex, which is the number of edges that are incident

to it, is a fundamental concept in graph theory [387]. Paths are another important

concept in graph theory, which refer to a sequence of edges connecting a sequence of

vertices [385]. Paths can be used to determine the connectivity and distance between

vertices [388]. While graph theory is a powerful tool that has numerous applications,

it also has limitations. One of the main challenges in graph theory is computational

complexity, particularly when working with large-scale graphs [389].

Graphs are mathematical structures used to model pairwise relationships between ob-

jects [390]. There are several types of graphs, including undirected graphs, directed

graphs, and weighted graphs [391]. An undirected graph is a graph where edges have

no direction. That is, the relationship between the two nodes connected by an edge

is symmetric, as shown in Figure 2.7 (a). When it comes to the directed graph, edges

have a direction associated with them. This means that the relationship between two

nodes connected by an edge is asymmetric, as depicted in Figure 2.7 (b). A directed

graph is said to have a spanning tree if there exists at least one node having a directed

path to all the other nodes [392]. A weighted graph [393] is a graph where edges have

weights or values associated with them. These weights can represent various things,

such as the distance between two nodes or the cost of traversing an edge.

The interaction topology of a MAS with N agents is depicted by a graph G = (V , E)

[394]. V is a vertex set V = {1, 2, · · · , N}. The edge set E ⊂ V × V . If pth and

kth agents can share information with each other, (p, k) ∈ E [395]. If (p, k) ∈ E ,

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 78

apk > 0, where apk represents the connection strength [396]. Let the Adjacency matrix

A = [apk] ∈ RN×N of G be

[apk] =

apk, p ̸= k, (p, k) ∈ E ,

0, otherwise.
(2.31)

The degree matrix D ∈ RN×N is a diagonal matrix which indicates the number of

connections in each vertex [391]. The degree matrix D can be expressed as follows:

D =

d(v1) 0 0 0

0 d(v2) 0 0
...

0 0 . . . d(vN)

(2.32)

where d(vp) = ∑N
k=0,k ̸=p apk stands for the degree of vertex.

The Laplacian matrix [397] is a fundamental tool in graph theory that describes the

structure of a graph. It is a matrix that captures the relationship between the nodes

in the graph and is defined as the difference between the degree matrix and the adja-

cency matrix [398]. The Laplacian matrix is a symmetric positive-semidefinite matrix.

The Laplacian matrix’s eigenvectors are important because they represent the graph’s

modes of vibration or oscillation, and the eigenvalues represent the frequencies of

these modes [399]. The smallest eigenvalue of the Laplacian matrix, also known as the

graph’s algebraic connectivity, is a measurement of how well-connected the graph is.

According to [391], the Laplacian matrix L of G can be defined as

L = D −A (2.33)

Lemma 1. [391] If G contains at least one spanning tree, the Laplacian matrix L

has one eigenvalue equal to zero with associated right eigenvector 1N , where 1N =

[1, · · · , 1]T , and all the other eigenvalues have nonnegative real parts. Specially, L is

positive semi-definite if the graph G is undirected.

2.4.3 Consensus for a Single Integrator System

As stated in [391], the dynamics of the ith agent with a single integrator system can

be represented by

ẋi(t) = ui(t) (2.34)

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 79

where xi ∈ R represents the state of each agent, and ui denotes the control input of

each agent.

Following [391], all the agents are said to achieve consensus if

lim
t→∞
∥xi(t)− xj(t)∥ = 0, ∀i, j ∈ {1, · · · , N}. (2.35)

Accordingly, the consensus protocol for a single integrator system in (2.34) can be

designed as

ui(t) =
N∑
i=1

aij(xj(t)− xi(t)). (2.36)

As mentioned by [391], let the globe vector x be x = [x1, · · · , xN]T , the compact form

of (2.34) under the consensus protocol (2.36) can be described as

ẋ = −Lx (2.37)

Theorem 1. [400] The consensus of a single integrator system in (2.34) can be ensured

by the protocol (2.36) if and only if G has one spanning tree. Furthermore, denote p =

[p1, · · · , pN]T as normalised left eigenvalue of L for the zero eigenvalue, the consensus

state x̄ of each agent is given by

x̄ =
N∑
i=1

pixi(0) (2.38)

where xi(0) denotes the initial value of the ith agent.

2.4.4 Consensus for a Linear Time-Invariant System

Considering a linear time-invariant system with N agents, the dynamics of the ith

agent can be expressed as

ẋi(t) = Axi(t) +Bui(t) (2.39)

where xi ∈ Rn represents the state of each agent, and ui ∈ Rm denotes the control

input of each agent. A ∈ Rn×n and B ∈ Rn×m are constant matrices.

According to [401], the consensus protocol for single integrator system in (2.39) can

be designed as

ui(t) = cK
N∑
i=1

aij(xi(t)− xj(t)), (2.40)

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 80

where c ∈ R+ is the positive coupling gain, and K ∈ Rm×n denotes the feedback gain

matrix.

Define the globe vector x as x = [xT1 , · · · , xTN]T , the compact form of (2.39) under the

consensus protocol (2.40) can be described as

ẋ = (In ⊗ A+ cL ⊗BK)x (2.41)

Theorem 2. [402] Suppose G has at least one spanning tree, The consensus of the

linear time-invariant system (2.39) can be ensured by the protocol (2.40) if c and K

are selected such that

A+ cλiBK, i = 1, 2, · · · , N (2.42)

are Hurwitz, where λi are the nonzero eigenvalues of L. Furthermore, denote p =

[p1, · · · , pN]T as normalised left eigenvalue of L for the zero eigenvalue, the consensus

state x̄ of each agent is given by

x̄ = (pT ⊗ eAt)x(0) (2.43)

where x(0) = [xT1 (0), · · · , xTN(0)]T denotes the initial value of each agent.

2.5 Summary

Robot kinematics, motion planning, RL, and consensus control are all important re-

search areas in robotics and control. Despite significant progress in these areas, there

are still many research gaps to be addressed.

FK is a widely used method in robotics to determine the position and orientation

of the end-effector. FK offers several benefits, including simplicity, speed, and ease

of implementation in real-time applications. However, FK suffers from limitations in

terms of accuracy and precision. Despite the significant advancements in modelling

and computation techniques, the precision of the joint angle and position sensors is

still a limiting factor in the accuracy of the FK model. Additionally, environmental

factors, such as temperature, can also affect the accuracy of the FK model.

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 81

IK is a fundamental component of robotics that enables the calculation of joint angles

or positions necessary for a robotic system to achieve a desired end-effector position

or orientation. Compared to FK, which determines the end-effector’s position and ori-

entation given the joint angles or positions, IK provides greater flexibility and enables

the robot to perform more complex tasks. However, IK problems can be challenging

due to the existence of multiple solutions and non-solutions, which can lead to difficul-

ties in finding the optimal solution. Therefore, finding efficient and reliable methods

to handle multiple solutions and non-solutions is a critical research gap.

Motion planning is a crucial aspect of robotics research that seeks to create efficient

and safe algorithms for planning the motion of robots within a given environment. This

technology has the potential to optimize robot trajectories for improved performance,

reduced errors, and increased safety. However, the present state-of-the-art algorithms

for motion planning can be computationally demanding and may require a significant

amount of time to converge. Moreover, the algorithm may struggle if the environment

contains uncertainty and incomplete information.

RL is a prominent research area in machine learning that focuses on developing al-

gorithms and methodologies for training agents to make sequential decisions in an

environment. RL does not require labelled training data, and the agent learns from

interactions with the environment, making it suitable for situations where manual la-

belling is either expensive or impractical. Additionally, RL has the capability to adapt

to changes in the environment and can generalize to new situations. Despite its ad-

vantages, RL still faces several challenges that need to be addressed. One significant

challenge is the trade-off between exploration and exploitation, where the agent must

balance between learning from new experiences and exploiting its current knowledge

to make decisions. Another challenge is the slow convergence of RL algorithms, which

can be a significant issue in large-scale problems with high-dimensional state spaces.

Additionally, RL algorithms can suffer from high variance and instability during train-

ing, which can significantly affect the overall performance of the agent.

Consensus control is a critical area of research in control theory that deals with the

CHAPTER 2. PRELIMINARIES AND LITERATURE REVIEW 82

coordination of agents in networked systems to reach an agreement or consensus. The

primary objective is to develop control strategies that allow the agents to converge

to a common state or decision despite the presence of communication constraints or

external disturbances. One of the main advantages of consensus control is its abil-

ity to achieve cooperation and coordination among agents in a decentralized manner,

which can lead to improved system performance, scalability, and robustness. Moreover,

consensus control is flexible, allowing for the addition or removal of agents without

significantly affecting the overall system behaviour. Nonetheless, there are several chal-

lenges to using consensus algorithms to handle uncertainties and disturbances in the

system. Additionally, optimizing consensus control algorithms for large-scale systems

can be difficult due to limited computational resources and communication bandwidth.

To sum up, the continued development and integration of robot kinematics, motion

planning, RL, and consensus control will play a critical role in advancing the field of

robotics. There is a need for combining consensus control with other fields such as RL

to address more complex and dynamic systems.

Chapter 3

A Deep Reinforcement Learning

Approach for Robotic Manipulators

When dealing with path planning problems, standard methods are always considered

as the primary solution. However, how to avoid the occurrence of jerks in path planning

remains an open question. Therefore, a vital question will be ensuring the smoothness

of the manipulator trajectory while accomplishing path planning tasks. In order to

overcome the difficulties encountered in a path planning problem, RL techniques have

been widely used to solve challenging problems in engineering, computer science and

robotics [333]. However, the problem of solving path planning problems with a DRL

method is not considered in the aforementioned works.

The goal of this chapter is to propose a new off-policy DRL method to deal with the

problem of path planning of the UR5 robot arm. Different from standard path planning

methods, this method is able to guarantee a smooth movement of the UR5 robot arm,

and all joint angles of the UR5 robot arm lie within the allowable range during each

movement. Moreover, a standard path planning method has been implemented on the

real UR5 robot arm as a baseline to compare and contrast the benefits and drawbacks

of both methods.

83

CHAPTER 3. A DRL APPROACH FOR ROBOTIC MANIPULATORS 84

3.1 The Proposed Method

In this section, we present the reward design, action space, observation space, NN

structure, and training details of the proposed method.

3.1.1 Reward Design

The reward should make the UR5 robot arm reach the target position smoothly while

keeping the end effector orientation of the UR5 robot arm as straight as possible

downwards. The reward function is given as follows:

r = rd + ro + ra + rk (3.1)

where r represents the total reward, rd stands for the distance reward, ro represents the

orientation reward, ra is the arrive reward, and rk stands for the smoothness reward.

The distance reward rd is computed as follows:

rd = dp − dc (3.2)

where dp stands for the previous distance between the end effector position of the UR5

robot arm and the target position, and dc denotes the current distance between the

end effector position of the UR5 robot arm and the target position. The time step

between dp and dc is set to 0.01 seconds. If dp is smaller than dc, the UR5 robot arm

will receive a negative reward since it gets further to the target position.

The orientation reward ro is given by

ro =

rop if |oe − od| < oth

0 otherwise
(3.3)

where rop equals to a positive orientation reward, oe denotes the current end effector

orientation of the UR5 robot arm, od represents the desired end effector orientation of

the UR5 robot arm which is as straight as possible downwards, oth is the orientation

threshold. By introducing ro in the reward function, the end effector orientation of

the UR5 robot arm is more likely to be as straight as possible downwards.

CHAPTER 3. A DRL APPROACH FOR ROBOTIC MANIPULATORS 85

The arrive reward ra can be calculated by

ra =

rap if |dc| < rah

0 otherwise
(3.4)

where rap equals to a positive arrive reward, and rah represents the distance threshold.

Therefore, ra equals a positive reward if |dc| lies within the distance threshold, or it

remains 0.

The smoothness reward rk can be computed by

rk =

−rj if |rd| > rth

0 otherwise
(3.5)

where rj represents a positive smoothness reward, and rth stands for the smoothness

threshold. As a result, rk will receive a negative reward if |rd| is above the smoothness

threshold. By introducing rk in the total reward, the smooth movement of the UR5

robot arm can be ensured.

3.1.2 Action Space and Observation Space

The shoulder pan joint of the UR5 robot arm is actuated in this training scenario,

together with the shoulder lift joint, elbow joint and wrist 1 joint. As a result, the

action space is a vector that contains the joint angle of the shoulder pan joint, shoulder

lift joint, elbow joint and wrist 1 joint. The observation space includes the action space,

the location of the elbow joint and wrist 2 joint, the distance between the elbow joint

and the goal, the distance between the wrist 2 joint and the goal and the distance

between the end effector and the goal.

3.1.3 Neural Network Structure

The proposed method is on the basis of actor-critic off-policy DRL method. The

structure of the actor network is shown in Fig. 3.1 (a). The input of the actor network

is a vector that contains 17 elements, which are the joint angle of shoulder pan joint,

shoulder lift joint, elbow joint and wrist 1 joint, the location of the elbow joint and

CHAPTER 3. A DRL APPROACH FOR ROBOTIC MANIPULATORS 86

(a)

(b)

Figure 3.1: The architecture of actor network (a) and critic network (b).

wrist 2 joint, the distance between the elbow joint and the goal, the distance between

the wrist 2 joint and the goal and the distance between the end effector and the goal.

The input of the actor network is connected with three dense layers with ReLu [403]

activation function, which also belongs to the input of the critic network architecture.

The output of the actor network contains 4 elements, which are the joint angle of the

shoulder pan joint, shoulder lift joint, elbow joint and wrist 1 joint. Tanh function is

the activation function of the output of the actor network, which also belongs to the

input of the critic network architecture, as depicted in Fig. 3.1 (b). The output of the

critic is a Q value which is engendered by a linear activation function.

3.1.4 Training Details

The proposed method was trained in CoppeliaSim [404] simulation environment for

efficiency. The process of the UR5 robot arm reaching the target position is demon-

strated in Fig. 3.2. The UR5 robot arm is connected with a suction gripper. The

experiment is considered to be successful if the UR5 robot arm is able to reach the po-

sition of the pink disc within the allowable range during each iteration. The first three

pictures describe how the UR5 robot arm gradually reaches the target point within

the allowable range, while the last three pictures depict another solution. Algorithm

3.1 details the proposed off-policy actor-critic based DRL method.

CHAPTER 3. A DRL APPROACH FOR ROBOTIC MANIPULATORS 87

Algorithm 3.1 The proposed method
1: Initialize actor network ϕ(s|η) with weight η, critic network Q(s, a|ξ) with weight

ξ, maximum time limit T , maximum episode limit N , replay buffer R, maximum

size of the replay buffer Rm, target actor network ϕ′ with weight η′ ← η, target

critic network Q′ with weight ξ′ ← ξ.

2: for episode = 1, N do

3: Reset the environment.

4: for t = 1, T do

5: Initialize a random exploration noise ot for action exploration.

6: Choose action at = ϕ(st) + ot according to the current policy and exploration

noise ot.

7: Execute action at, calculate reward rt and get new state st+1.

8: Store (st, at, rt, st+1) in the replay buffer R.

9: Sample a minibatch (sj, aj, rj, sj+1) from R if size(R) > Rm.

10: Set yj = rj + γQ′(sj+1, ϕ
′(sj+1|η′)|ξ′).

11: Update critic by minimizing the loss:

12: L = 1
2(yj −Q(sj, aj|ξ))2

13: Update actor with policy gradient ascent:

14: ∇ηJ = E[∇aQ(s, a|ξ)|s=sj ,a=ϕ(sj)∇ηϕ(s|η)|sj]

15: Update the target actor and critic networks:

16: η′ ← τη + (1− τ)η′

17: ξ′ ← τξ + (1− τ)ξ′

18: end for

19: end for

3.2 Standard Path Planning Method

A standard path planning method was implemented in the real UR5 robot arm with

Robot Operating System (ROS) [405]. The Open Motion Planning Library (OMPL)

[406] is a widely used open-source software library for motion planning that provides a

set of standard path planning methods. It is integrated into the ROS and can be used

with various robotic platforms. OMPL includes a variety of algorithms for solving

CHAPTER 3. A DRL APPROACH FOR ROBOTIC MANIPULATORS 88

Figure 3.2: The process of the UR5 robot arm reaching the target position. The pink
disc depicts the position of the target.

motion planning problems, such as the RRT algorithm and its variants, which have

proven to be effective in complex and high-dimensional environments. Robotiq 3 finger

gripper was tested in accomplishing pick and place tasks with 3D camera rs-visard.

Fig. 3.3 shows the rviz [407] view of the actual UR5 robot arm, which demonstrates

how the UR5 robot arm can accomplish pick and place tasks via the standard path

planning method. To avoid potential crashes on the actual UR5 robot arm, OMPL

[406] was used in rviz to move the actual UR5 robot arm to the position above the

aruco marker, as shown in the first picture of Fig. 3.3. Then the actual UR5 robot

arm went down to grasp the box first, then move the box to the target location and

release the box in the end.

3.3 Result and Analysis

In this section, we demonstrate the evaluation on the training of the proposed method

and compare the performance of the proposed method with the standard path planning

method.

3.3.1 Evaluation on Training of the Proposed Method

Fig. 3.4 (a) demonstrates the average reward of the proposed method and Fig. 3.4

(b) describes the average Q value of the proposed method. The batch value is set to

512. Each average value is computed by averaging the results within a fixed batch

size. The maximum episode limit is set to 215 and the maximum time limit is set

CHAPTER 3. A DRL APPROACH FOR ROBOTIC MANIPULATORS 89

Figure 3.3: Pick and place tasks via the standard path planning method. The UR5
robot arm with orange colour denotes the initial position of the actual UR5 robot arm.
The UR5 robot arm with grey colour represents the current position of the actual UR5
robot arm. The image viewer at the bottom right corner represents the view from the
3D camera. The location of the box can be computed by the aruco marker [1] on top
of it.

to 200. The simulation of the UR5 robot arm is trained to arrive at the position of

the target. In the initial stage, the robotic arm performs action exploration, so the

reward at the beginning did not increase immediately. As can be seen from the figure,

the reward and Q value get stable when it reaches 35000 steps, which indicates the

off-policy actor-critic based DRL training is successful.

Fig. 3.5 shows solutions of reaching random target positions after training for 43000

steps. The aim of the proposed method is to train the UR5 robot arm to reach the

target position (the pink disc) smoothly while keeping the end effector orientation of

the UR5 robot arm as straight as possible downwards. The first and the last picture

depict how the UR5 robot arm is trying to find path planning solutions at the right

half plane, where the joint value of the shoulder pan joint, shoulder lift joint, elbow

joint and wrist 1 joint are all within the allowable range. The second and the third

picture depict how the UR5 robot arm is trying to find path planning solutions at the

left half plane. It can be deduced from Fig. 3.5 that the proposed training method is

feasible.

CHAPTER 3. A DRL APPROACH FOR ROBOTIC MANIPULATORS 90

(a)

(b)

Figure 3.4: (a) Average reward of the proposed method. (b) Average Q value of the
proposed method. The transparent area indicates the standard deviation of the results.

3.3.2 Comparison with Standard Path Planning Method

Unlike the standard path planning method, the proposed method can not only guar-

antee that the joint angle of the UR5 robotic arm is within the allowable range each

time when it reaches the target point, but also ensure that the joint angle of the UR5

robotic arm is always within the allowable range during the entire episode of training.

Fig. 3.6 shows an example of failed path planning. It can be seen from the pictures in

Fig. 3.6 that the planned trajectory generated by the standard path planning method

contains a severe jerk, which makes it impossible to execute in the actual experiment.

CHAPTER 3. A DRL APPROACH FOR ROBOTIC MANIPULATORS 91

Figure 3.5: Solutions of reaching random target positions with the proposed method.

Table 3.1 depicts the method of successful rate comparison for path planning of both

methods. If the planned trajectory does not contain any severe jerk, path planning

is considered to be successful. It can be inferred that the standard path planning

method failed to complete the task around 20% more than the proposed method.

On one hand, the allowable joint angle range of both methods is different. With

the proposed method, each joint on the UR5 robot arm has its unique allowable

range, thereby saving training time and improving the training speed. Nevertheless,

with the standard path planning method in ROS, all the joint range of the UR5

robot arm is set to [−2π, 2π] due to various application environments. On the other

hand, there exist multiple solutions when performing path planning with the standard

method. This may lead to path planning joint solutions with large jerk manoeuvre.

The total reward of the proposed method contains smoothness reward according to

equation (3.1). By introducing the smoothness reward inside the total reward, it is

more likely to reduce the occurrence of a large jerk manoeuvre when performing path

planning with the proposed method. A minor drawback of the proposed method falls

in the requirement of training before using it. However, this can be overcome by

implementing the proposed method in the simulation environment.

CHAPTER 3. A DRL APPROACH FOR ROBOTIC MANIPULATORS 92

Figure 3.6: Failed path planning with the standard path planning method. The orange
UR5 robot arm stands for the initial position of the actual UR5 robot arm, the grey
UR5 robot arm stands for the current position of the actual UR5 robot arm, and the
transparent UR5 robot arm denotes the planned trajectory for the actual movement
of the real UR5 robot arm generated by OMPL in rviz.

Table 3.1: Algorithm comparisons for path planning.

Success rate (%) 10 trials 20 trials 40 trials
Standard method 80 75 77.5
The proposed method 100 100 100

CHAPTER 3. A DRL APPROACH FOR ROBOTIC MANIPULATORS 93

3.4 Summary

An off-policy actor-critic based DRL method is proposed to solve the problem of

path planning. The simulation results in CoppeliaSim validated the feasibility of

the proposed method. When it comes to the hardware implementation, a standard

path planning method has been implemented as a baseline to compare and contrast

both methods. It can be deduced that the proposed method can generate a smooth

trajectory and keep the joint angles of the UR5 robot arm always within the allowable

range. In future work, the proposed method will also be implemented on the real

UR5 robot arm. Besides, vision information can be applied in the proposed method

to accomplish more complicated tasks.

Chapter 4

Deep Reinforcement Learning with

Manipulators for Pick-and-place

In the last chapter, we develop an off-policy DRL method to solve the path planning

problem of the UR5 robot arm. In this chapter, we focus on real-world applications

and propose a self-supervised vision-based DRL method for manipulators to learn to

pick and place objects.

Transferring a DRL model from simulation to the real world is difficult because it

depends on several conditions. Since the simulation cannot imitate the real world

very well in many cases, fine-tuning usually requires lots of time to adapt simulated

model parameters to real environments. However, the time to use a robot arm in a

real environment is limited. Therefore, a vital question will be to reduce the required

real-world fine-tuning time while maintaining high accuracy when picking and placing

objects in the real environment.

With the emergence of robotic technology, robots have witnessed innovations in goal

reaching [224; 231], picking and placing objects [408; 246], formation tracking [409],

human-robot interaction [410], collision avoidance [233; 102], path planning [243; 411],

etc. DRL has been widely used in robotic applications as an important component

in robotic control. Although there is no instruction for the agent in the learning pro-

cess, it must gradually generate a certain strategy by interacting with the environment

to obtain the maximum reward. Compared to using traditional methods to pick and

94

CHAPTER 4. DRL WITH MANIPULATORS FOR PICK-AND-PLACE 95

Figure 4.1: Pick-and-place objects with the proposed method

place objects, the challenges of using DRL are 1) feature extraction, for instance, using

NNs to extract features from visual information to suction objects, 2) novel objects

generalisation, such as suctioning objects with various shapes and heights, 3) data

collection, for example, developing a self-supervised approach to avoid pre-labelling

training data, 4) challenging environments adaptation, such as suctioning crowded

and stacked objects. We introduce a self-supervised end-to-end DRL approach that

allows robots to pick and place objects effectively and efficiently when directly trans-

ferring a training model from simulation to the real world, as shown in Fig. 4.1.

The main goal of this chapter can be summarized as follows. A complete self-supervised

vision-based DRL method is proposed for manipulators to learn to pick and place

objects. By encouraging the UR5 robot arm to suction the area close to the centre

of target objects, the training model with the proposed method is able to accomplish

pick-and-place tasks in the real world with a suction success rate of 90% without

any real-world fine-tuning. Specially, a height-sensitive action policy is developed for

the proposed self-supervised vision-based DRL method to suction in a challenging

environment, i.e., crowded and stacked objects. The performance of the proposed

method is validated in both simulated and real environments. The presented approach

can also be applied to novel objects with a suction success rate of 90% without any

fine-tuning from the real world.

CHAPTER 4. DRL WITH MANIPULATORS FOR PICK-AND-PLACE 96

Figure 4.2: Overview of the proposed framework. BN stands for Batch Normalization.
Conv represents convolution. Up stands for upsampling. The red circle denotes the
pixel-wise best suction position. More details can be found from Algorithm 4.1.

4.1 The Proposed Method

The proposed method is completely trained under self-supervision through the inter-

actions between the UR5 robot arm and the simulated environment. In this section,

we present the system overview, reward space, NN structure, state space, and height-

sensitive action policy of the proposed method.

4.1.1 System Overview

The overview of the proposed DRL framework is shown in Fig. 4.2. The Red Green

Blue-Depth (RGB-D) image gt, captured by a fixed camera, is orthographically pro-

jected in the gravity direction to construct the colour heightmap ct and the depth

heightmap dt. Then both heightmaps are fed into the suction network to generate a

suction Q map qt. By detecting different heights from dt, a clutter probability map lt

can be obtained. The position with the highest probability in the action map denotes

the pixel-wise best suction position [xt, yt]. The suction height zt is obtained from dt.

The use of depth information alone can be inadequate in certain scenarios, such as

those with low light or reflective surfaces, where the data obtained can be ambiguous

or incomplete. By supplementing depth data with RGB images, the resulting data

CHAPTER 4. DRL WITH MANIPULATORS FOR PICK-AND-PLACE 97

can provide a more comprehensive and precise representation of the objects and envi-

ronments being analyzed. Moreover, RGB images can contribute to object recognition

and segmentation tasks by providing colour information. This integration of RGB

and depth data can lead to improved performance and reliability in computer vision

applications.

4.1.2 Reward Space

For each suctioned object, the centre distance ψt can be computed by

ψt =
√

(xt − σt)2 + (yt − ιt)2 (4.1)

where σt and ιt denote x, y positions of the centre of the suctioned object.

The reward function can be defined as follows:

r = rp
(ψt + δ)rg (4.2)

where rp is a positive constant reward, δ is a small positive number which prevents zero

division, rg = 1 if the object is successfully suctioned, otherwise rg = 0. As a result,

the reward in the simulated environment stimulates agents to suction the area close to

the centre of the expected suctioned object, which increases the suction success rate.

4.1.3 Neural Network Structure

As shown in Fig. 4.2, the input of the suction network passes data through ResNet-50

[412] to extract features from both heightmaps. Then the aforementioned features are

fed into a Batch Normalization layer [413] with 4096 input features, a ReLu layer [413],

a Convolution layer [413] with 4096 input channels, and 1024 output channels. After

passing data through another Batch Normalization layer [413], ReLu layer [413] and

Convolution layer [413], data are processed by a bilinear upsample layer [413] with a

scale factor of 16. The output of the suction network shares the same image size as

the heightmap input, which is a dense pixel-wise Q map. The pixel with the highest

probability in the action map denotes the best suction position.

CHAPTER 4. DRL WITH MANIPULATORS FOR PICK-AND-PLACE 98

Algorithm 4.1 Vision-based DRL for Pick-and-place
1: Initialize training parameter ϕt, learning rate α, RGB-D image gt, discounted

factor γ, training steps parameter T , replay buffer Rp.

2: while t < T do

3: Generate ct and dt from gt.

4: Generate lt from dt.

5: if object number bt < empty threshold then

6: Feed ct and dt into the suction network with the height-sensitive action policy

to get action-value function Q(ϕt, st, at).

7: if t > 2 then

8: Use Q(ϕt−1, st−1, at−1) to generate rt.

9: Minimize the temporal difference error ξt−1:

yt−1 = rt + γmax
a

(Q(ϕ−
t−1, st, a)).

ξt−1 = Q(ϕt−1, st−1, at−1)− yt−1.

10: Sample a minibatch from Rp for experience replay.

11: end if

12: Suction objects.

13: Store (ct, dt, at) in Rp.

14: else

15: Reposition objects.

16: end if

17: end while

4.1.4 State Space

The state space st contains the colour heightmap ct and the depth heightmap dt.

4.1.5 Height-sensitive Action Policy

To effectively suction in a challenging environment, a height-sensitive action policy is

proposed. As can be seen from Fig. 4.2, qt can be acquired from ct and dt. However, the

information contained in qt is not enough to make the proposed framework sensitive

to the heights of the grasped objects. As a result, we introduce the clutter probability

CHAPTER 4. DRL WITH MANIPULATORS FOR PICK-AND-PLACE 99

map lt. The depth heightmap is shifted along one axis for 60 pixels to generate a

translated map. By comparing the depth difference between the translated and the

original depth heightmap, the pixel with enough depth difference is counted as 1

otherwise 0, which builds the clutter probability map lt. Therefore, the action space

at can be computed as follows:

at = arg max
a

(qtlt) (4.3)

4.2 Experiments and Results

The feasibility of the proposed method is validated in both simulated and real envi-

ronments. The proposed approach is implemented on a desktop with Nvidia GTX

2080 and Intel Core i9 CPU with 64 GB RAM. In this section, we demonstrate train-

ing details, evaluation metrics, baseline method, simulation evaluation and real-world

evaluation of the proposed method.

4.2.1 Training Details

The proposed method is trained in Coppeliasim [404] using Python [414] and Pytorch

[413]. The UR5 robot arm is connected with a suction gripper [415] to pick and place

objects, as shown in Fig. 4.3. During each training iteration, a vision sensor captures

RGB-D images of the UR5 robot arm in a 0.448×0.448 m2 workspace. The resolution

of the RGB-D images is 640× 480. The UR5 robot arm motion planning task can be

accomplished using Coppeliasim [404] internal IK. The suctioned objects are 5× 5× 5

cm3 cubes.

Figure 4.3: The training environment in simulation

CHAPTER 4. DRL WITH MANIPULATORS FOR PICK-AND-PLACE 100

Depending on the size of the suction gripper and the intrinsic of the vision sensor,

we set rp = 15 and δ = 0.00001 in (4.2). For other robotic platforms, these values

can also be reconfigured. In Algorithm 4.1, the learning rate α is set to 0.0001. The

discounted factor γ has a fixed value of 0.5. The training steps parameter T is set to

400. The training is considered to be successful if the UR5 robot arm is able to pick

and place target objects which are randomly dropped into the workspace.

4.2.2 Evaluation Metrics

We design two metrics to evaluate the suction performance of the UR5 robot arm. For

all these metrics, a larger value leads to better performance.

The suction success rate Sr is given by

Sr = Ns

Ni

× 100% (4.4)

where Ns stands for the number of successful suctions, Ni represents the number of

training steps.

The distance rate Dr is defined as follows

Dr = Nd

Ni

× 100% (4.5)

where Nd is the number of times when ψt < 0.015 m.

4.2.3 Baseline Method

The performance of our system is compared with the following baseline approach:

Visual Grasping method shares the same input as our proposed method to generate

the probability maps for best suction positions. However, it takes binary classification

for the reward space design in which 1 stands for successful grasp and 0 otherwise. This

baseline method is analogous to the Visual Pushing Grasping (VPG) method [126].

Nevertheless, we extend this method to our suction framework for a fair comparison.

4.2.4 Simulation Evaluation

To confirm the validity of our design, we train both methods in simulation for 400

steps. Overall the proposed method outperforms the Visual Grasping method in terms

CHAPTER 4. DRL WITH MANIPULATORS FOR PICK-AND-PLACE 101

of both suction success rate and distance rate by large margins. It can be obtained

from Fig. 4.4 that the proposed method arrives at around 97% suction success rate

at 150 training steps, while the Visual Grasping method shows only 52%. When the

height-sensitive action policy is removed from both methods, it takes longer for both

methods to achieve the same suction success rate. As can be seen from Fig. 4.5,

the distance rate of the proposed method reaches around 80% at 400 training steps,

whereas the Visual Grasping method shows only 58%. When the height-sensitive

action policy is separated from both methods, the distance rates are reduced by 20%

and 33%, respectively. A pick-and-place demonstration with the proposed method is

shown in Fig. 4.6. The simulation results confirm the validity of our reward space

design which stimulates robots to suction the area close to the centre of the expected

suctioned object, thereby improving the suction success rate.

0 50 100 150 200 250 300 350 400

Number of training steps

0.0

0.2

0.4

0.6

0.8

1.0

S
u
c
ti

o
n
 s

u
c
c
e
s
s
 r

a
te

The Proposed Method

Visual Grasping Method

Figure 4.4: Suction success rates of the proposed method and the Visual Grasping
method. The dotted lines represent methods without the height-sensitive action policy.

4.2.5 Real-world Evaluation

We evaluate both methods in the real environment using the models trained in Fig. 4.4.

Each model is executed 10 times, and the maximum number of actions is 20 for each

run. The UR5 robot arm is connected to a Robotiq EPick vacuum gripper for real-

world evaluation. A fixed Azure Kinect camera is used to capture RGB-D images with

a resolution of 1280× 720. The suctioned objects are 7× 7× 7 cm3 cubes.

Fig. 4.7 depicts the box plot of real-world evaluation with the proposed method and the

CHAPTER 4. DRL WITH MANIPULATORS FOR PICK-AND-PLACE 102

0 50 100 150 200 250 300 350 400

Number of training steps

0.0

0.2

0.4

0.6

0.8

1.0

D
is

ta
n
c
e
 r

a
te

The Proposed Method

Visual Grasping Method

Figure 4.5: Distance rates of the proposed method and the Visual Grasping method.
The dotted lines stand for methods without the height-sensitive action policy.

Figure 4.6: Pick-and-place demonstration in simulation with the proposed approach.
The proposed method encourages the UR5 robot arm to suction the area close to the
centre of the target objects with the height-sensitive action policy.

Visual Grasping method. The proposed method achieves a 90% suction success rate at

200 training steps in real-world evaluation, while the Visual Grasping method shows

only 40%. When the height-sensitive action policy is separated from both methods,

the suction success rates drop to 65% and 30%, respectively. By implementing the

proposed method, the suction success rate gap between the simulation and the real

environment is only 6%, much smaller than the gap using the Visual Grasping method

(26%). Although the suctions are considered successful in Fig. 4.8, they will result

in real-world failures because of edge suctioning, which enlarges the gap between the

CHAPTER 4. DRL WITH MANIPULATORS FOR PICK-AND-PLACE 103

Figure 4.7: Real-world evaluation of the proposed method and the Visual Grasping
method

(a) (b)

Figure 4.8: Edge suctioning with the Visual Grasping method. Although the suctions
are considered successful in simulation, they will cause real-world failures.

simulation and the real world. The demonstration of real-world evaluation with the

proposed method is shown in Fig. 4.9. By encouraging the UR5 robot arm to suction

the area close to the centre of the target objects, the proposed method has a higher

suction success rate than the Visual Grasping method.

Figure 4.9: The demonstration of real-world evaluation with the proposed approach.
The training model with the proposed method can be implemented directly to a real
suction task without any fine-tuning from the real world.

CHAPTER 4. DRL WITH MANIPULATORS FOR PICK-AND-PLACE 104

Figure 4.10: The demonstration of suctioning in challenging Environment 3

Table 4.1: Average performance in challenging environments

Collision rate (%) Env 1 Env 2 Env 3
The proposed method 0 0 5
The proposed method (No Policy) 0 45 50
Visual Grasping method 0 1 9
Visual Grasping method (No Policy) 5 55.5 60

* No Policy means without the height-sensitive action policy.

4.3 Suction in Challenging Environments

The performance of the height-sensitive action policy in our proposed method is vali-

dated in this section. When humans try to pick and place crowded or stacked objects,

they tend to grasp top objects first and then bottom objects since it’s safer to do so.

Inspired by this, we design a height-sensitive action policy that makes the UR5 robot

arm take the heights of objects into consideration in order to avoid potential collisions

when applying the presented approach. The testing environments are elucidated in

Fig. 4.11. Environment 1 contains fully stacked objects. Environment 2 consists of

half stacked objects, which is more challenging. Environment 3 is the most challenging

environment which contains both half stacked objects and novel objects. As shown in

Fig. 4.10, the proposed method is able to handle crowded and stacked objects in a safe

manner. It can be obtained from Table 4.1 that the more challenging the environment

is, the more effective the height-sensitive action policy is. If the height-sensitive action

policy is removed from both methods in Environment 3, the collision probability will

increase by 45% and 51%, respectively. Some failed examples are shown in Fig. 4.12,

which are due to the fact that the UR5 robot arm tries to suction the object below

first rather than the object above, thus colliding with the object above. This confirms

the necessity of the proposed height-sensitive action policy which ensures safety during

the entire movement of the UR5 robot arm.

CHAPTER 4. DRL WITH MANIPULATORS FOR PICK-AND-PLACE 105

(a) (b) (c)

Figure 4.11: Suctioning in challenging environments: (a) Environment 1; (b) Environ-
ment 2; (c) Environment 3

(a) (b) (c)

Figure 4.12: Examples of collisions without the height-sensitive action policy

4.4 Real-world Unseen Objects Challenge

In this section, we validate the generalisation capability of our proposed vision-based

DRL method. As shown in Fig. 4.13, novel objects contain cylinders of different heights

as well as irregularly shaped objects. The proposed method can generalise to novel

objects with a suction success rate of 90% without any real-world fine-tuning. More

details can be seen in Fig. 4.14.

(a) (b)

Figure 4.13: Novel objects for real-world suctioning: (a) Environment 1; (b) Environ-
ment 2

CHAPTER 4. DRL WITH MANIPULATORS FOR PICK-AND-PLACE 106

Figure 4.14: Pick-and-place novel objects with the proposed method

4.5 Summary

In this chapter, we propose a self-supervised vision-based DRL method to bridge

the gap between simulated and real environments. Overall the proposed approach

outperforms the Visual Grasping method in terms of both suction success rate and

distance rate by large margins. By implementing the proposed approach, the suction

success rate of the real robot achieves 90% at 200 training steps, while the Visual

Grasping method shows only 40%. By implementing the height-sensitive action policy,

the proposed method is able to pick and place crowded and stacked objects safely in

challenging environments. Not only can our model be applied to the real experiment

directly, but also it is capable of generalising to novel objects with a success rate of

90% without any fine-tuning from the real world. In the future, an optimisation of the

proposed method will be explored to handle more complicated scenarios.

Chapter 5

Distributed Neural Networks

Training for Robotic Manipulation

with Consensus Algorithm

In Chapter 3 and Chapter 4, we pay attention to simulations and real experiments

of single-agent DRL. In this chapter, we aim to propose an off-policy algorithm that

combines multi-agent actor-critic based DRL with consensus-based distributed train-

ing. Compared to the policy gradient [416] method, the actor-critic based off-policy

algorithm can perform single-step updates which lead to faster update speed. Addi-

tionally, the actor-critic based off-policy algorithm can select actions on a continuous

action space whereas the Q learning [417] algorithm must have a discrete action space.

Figure 5.1: Training a group of nine UR5 robot arms to reach the random target
positions. The targets are represented by wooden boxes.

107

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 108

Our work builds on the algorithm presented in [2], but our novel algorithm allows us

to update both actor and critic parameters at each time step. As a result, the system

is no longer a single excitation system and the consensus error of the actor network

with our proposed method converges 50 times faster than the algorithm proposed in

[2]. Furthermore, even if the consensus-based distributed training on the critic value

training parameter is removed from our proposed algorithm, the consensus error of the

actor network is still 25 times faster than the algorithm proposed in [2]. To guarantee

convergence of the novel algorithm, a convergence analysis of a consensus algorithm

for a type of nonlinear systems with a Lyapunov method is developed. We use this

result to analyse the convergence properties of both actor and critic training parame-

ters simultaneously in our algorithm.

To sum up, a multi-agent training algorithm with actor-critic based off-policy DRL

and consensus-based distributed training is developed. The convergence of this algo-

rithm is verified in the presence of the actor training parameter and the critic training

parameter. Additionally, a multi-agent training framework is proposed to support the

implementation of our algorithm. Compared with centralized training, the proposed

multi-agent training framework has better scalability with a limited communication

bandwidth when dealing with a large number of agents and protects the privacy of

each agent. The feasibility and efficiency of the proposed algorithm are validated by

experiments using several groups of UR5 robot arms, as shown in Fig. 5.1.

5.1 Problem Formulation

We develop an algorithm that combines multi-agent DRL with consensus-based dis-

tributed training. During the process of training, each agent performs training param-

eter sharing with other agents, which guarantees privacy protection.

5.1.1 Consensus-based Distributed Training

The interaction topology of the J agents is described by an undirected graph G = (V , E)

which consists of a vertex set V = {1, 2, · · · , J} and an edge set E ⊂ V ×V . The edge

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 109

(k, j) ∈ E represents that the kth and jth agents are connected with each other.

For an undirected graph G, we suppose that τk denotes the training parameter vector

for agent k in graph and τ̃k denotes the updated training parameter of τk after a single

consensus step. Therefore, the consensus training step of each agent can be written as

τ̃k = Mτk + uk (5.1)

uk = ιT
∑J

l=1 âkl(τl − τk) (5.2)

where M ∈ Rn×n and M is Schur, uk is the input of the agent k, ι is the scalar cou-

pling gain, T stands for the feedback gain, âkl represents the elements of the graph

adjacency matrix generated by the undirected graph G.

The connectivity of the undirected graph G can be formalized in a weighted connec-

tivity matrix W = [wkl] ∈ RJ×J , where the value of the elements wkl represent the

strength of the connection between these agent k and agent l [418; 400]. So we have

wkl

> 0 if agent k and agent l are connected.

= 0 if agent k and agent l are disconnected.
(5.3)

With the aim of reaching multi-agent consensus for any undirected graph, the weighted

connectivity matrix W should meet the following requirements: 1) wkl ∈ [0, 1], ∀(k, l);

2) wkl = wlk, ∀(k, l); 3)∑J
l=1 wkl ≤ 1, ∀k.

We can use the consensus algorithm to update an agent k in the following scheme by

putting (5.2) into (5.1):

τ̃k = Mτk + ιT
∑J

l=1 âkl(τl − τk)

= Ck (τl, wkl) =
J∑
l=1

wklτl
(5.4)

where Ck denotes the consensus protocol of the kth agent.

Let the training parameter matrices τ̃ and τ represent the concatenation of training

parameter vectors of all the J agents before and after the consensus process, respec-

tively. We can show the update of training parameters of all the J agents with a single

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 110

consensus step as

τ̃ = (IJ ⊗M − ιL⊗ T)τ

= C (τ,W) = Wτ
(5.5)

where C denotes the consensus protocol for all agents, L is the Laplacian matrix

generated by the given undirected graph, and IJ is a J × J identity matrix. By

repetitively computing (5.5), this algorithm allows all agents to converge to their

average [418].

5.1.2 Actor-critic Based Off-policy Deep Reinforcement Learn-

ing

We consider single-agent training in this scenario. The state of the agent at the current

time step t is represented by st and the action of the agent at the current time step t is

denoted by at. Both the state st and the action at are continuous. The local reward of

the agent at current time step t is defined by r(st, at) and the state transition function

of agent is denoted by st+1 = T (st, at, σt), where σt represents the noise in the state

dynamics at time step t [2; 419].

The state value function V π(s) and the state action value function Qπ(s, a) can be

defined as follows [2]:

V π(s) = E[
∑∞

t=0 ρ
tr(st, at)|s0 = s, π] (5.6)

Qπ(s, a) = E[
∑∞

t=0 ρ
tr(st, at)|s0 = s, a0 = a, π] (5.7)

where π(s) : s −→ a denotes the global deterministic policy function which is followed

starting from this state and ρ ∈ (0, 1) is the discounted factor.

The relationship of the state value function V π(s) and the state action value function

Qπ(s, a) is given by

V π(s) = E[Qπ(s, a), a = π(s)] (5.8)

For all s, the goal of the actor-critic method is to find the optimal policy π̂(s) =

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 111

arg max
π

f(π, s) of each agent to maximize infinite-time discounted-reward value func-

tion f(π, s) = V π(s). As stated in [338], if the parameterization is linear, the policy

function πη(s) and the value function gξ(s, a) can be described as:

πη(s) = ηTϕ(s) (5.9)

gξ(s, a) = ξTψ(s, a) (5.10)

where η ∈ Rk denotes the actor training parameter, ξ ∈ Rk represents the critic

training parameter. ϕ(s) and ψ(s, a) denote the feature functions that respond to the

policy function and the value function, respectively.

Under (5.9), the optimization problem can be converted to the parameterized policy

optimization problem

max
η

f(πη(s), s) (5.11)

which can be solved by gradient descent methods. According to [420], ∇ηf(πη(s), s) =

E[∇ηπ(s)∇aQ
π(s, a)|a = πη(s)].

Since the function Qπ(s, a) is unknown, according to [421; 348], gξ(s, a) can be used to

represent the closest approximation of Qπ(s, a). Hence, gξ(s, a) ≈ Qπ(s, a). The ex-

pression of∇ηf(πη(s), s) can be rewritten as∇ηf(πη(s), s) = E[∇ηπ(s)∇agξ(s, a)|a=πη(s)].

As stated in [303; 422], the process of updating the critic training parameter and the

actor training parameter are given as:

κt = rt+1 + ρgξ(st+1, at+1)− gξ(st, at) (5.12)

ξt+1 = ξt + ακt∇ξg(st, at) (5.13)

ηt+1 = ηt + β∇ηπ(st)∇agξ(st, a)|a=πη(s) (5.14)

where κt stands for the temporal difference error, ξt+1 and ηt+1 represent the updated

critic training parameter and the actor training parameter, respectively. α and β de-

note the critic learning rate and the actor learning rate, respectively. From (5.10), we

have ∇ξg(st, at) = [ψ(s, a)|ξ = ξt, s = st, a = at].

As discussed in [420], we make the following assumptions:

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 112

Assumption 1. For any deterministic policy function πη(s), there always exists a

compatible function approximator of the form

gξ(s, a) = (a− πη(s))T∇ηπ(s)T ξ + V v(s) (5.15)

where gξ(s, a) can be used to represent the closest approximation of Qπ(s, a). V v(s)

can be any differentiable baseline function that is independent of the action a. For

instance, V v(s) can be v(s)T ξ̃, where v(s) represents the state feature function.

5.1.3 Actor-critic Based Off-policy Deep Reinforcement Learn-

ing with Consensus-based Distributed Training

Before we state our main result with J agents, we make the following assumptions:

Assumption 2. All agents share the same training task and scenario.

Assumption 3. Each agent is able to accomplish the training independently.

This algorithm combines multi-agent actor-critic based off-policy DRL with consensus-

based distributed training. Each agent has its own actor training parameter ηj and

critic training parameter ξj. The graph connection between different agents performs

a decentralized consensus-based distributed training.

We consider a network with J agents. In this training scenario, the state of the system

at time t is st = [s1
t , s

2
t , · · · , sJt] ∈ S, where sjt ∈ S denotes the jth agent at current time

step t. The executed joint action at time t can be rewritten as at = [a1
t , a

2
t , · · · , aJt] ∈ A,

where ajt ∈ Aj denotes the action of the jth agent at current time step t. The state

space Sj and the action space Aj are continuous. The local reward received by agent j

at current time step t is defined by r(sjt , ajt) and the state transition function of agent j

is denoted by sjt+1 = T (sjt , ajt , σjt), where σjt represents the noise in the state dynamics

at time step t for agent j [2; 419].

Assumption 4. Any applied exploration policy retains some ultimate bounded stability

for each agent, i.e. S and A are compact sets.

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 113

Similar to (5.6) and (5.7), the state value function V π(s) and the state action value

function Qπ(s, a) of J agents can be defined as follows [2]:

V π(s) = E[
∑∞

t=0 ρ
t
∑J

j=1 r(s
j
t , a

j
t)|s0 = s, π] (5.16)

Qπ(s, a) = E[
∑∞

t=0 ρ
t
∑J

j=1 r(s
j
t , a

j
t)|s0 = s, a0 = a, π] (5.17)

where π(s) : S → A denotes the global deterministic policy function and ρ ∈ (0, 1) is

the discounted factor.

The goal of this algorithm is to find the optimal policy π̂(s) = arg max
π

f(π, s),∀s ∈ S of

each agent to maximize infinite-time discounted-reward value function f(π, s) = V π(s).

The definition of the policy function πη(s) and the value function gξ(s, a) of J agents

can be also represented by (5.9) and (5.10). In this J agent training scenario, η =

[(η1)T , (η2)T , · · · , (ηJ)T]T ∈ Rnη which denotes the actor training parameter, ξ =

[(ξ1)T , (ξ2)T , · · · , (ξJ)T]T ∈ Rnξ which represents the critic training parameter.

Similar to the single-agent training scenario, the optimization problem of J agents

can be also converted to the parameterized policy optimization problem as stated in

(5.11). Correspondingly, gξ(s, a) can be also used to represent the closest approxima-

tion of Qπ(s, a) according to [421; 348]. Hence, gξ(s, a) ≈ Qπ(s, a). The expression of

∇ηf(πη(s), s) can be rewritten as ∇ηf(πη(s), s) = E[∇ηπ(s)∇agξ(s, a)|a=πη(s)].

Under Assumption 2 and Assumption 3, for J agents, the process of updating the critic

training parameter and the actor training parameter with consensus-based distributed

training can be described as:

κjt = rjt+1 + ρgξ(sjt+1, a
j
t+1)− gξ(sjt , ajt) (5.18)

ξjt+1 = ξ̃jt + ακjt∇ξg(sjt , ajt) (5.19)

ηjt+1 = η̃jt + β∇ηπ(sjt)∇agξ(sjt , aj)|aj=πη(sj) (5.20)

ξ̃jt+1 = Cj
(
ξkt+1, wkj

)
(5.21)

η̃jt+1 = Cj
(
ηkt+1, wkj

)
(5.22)

where ∇ξg(sjt , ajt) = [ψ(s, a)|ξ = ξjt , s = sjt , a = ajt] is the gradient of the jth agent, ξjt+1

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 114

represents the updated critic training parameter of the jth agent at the next time step,

ξ̃t+1 stands for the updated critic training parameter of J agents after consensus-based

distributed training at the next time step, ξ̃t is the updated critic training parameter

of J agents after consensus-based distributed training, κjt stands for temporal differ-

ence error of the jth agent, η̃jt stands for the updated actor training parameter of the

jth agent after consensus-based distributed training, η̃jt+1 stands for the updated actor

training parameter of the jth agent after consensus-based distributed training at the

next time step, ηjt+1 represents the actor training parameter of the jth agent at the

next time step.

Algorithm 5.1 summarizes the proposed actor-critic based off-policy DRL with consensus-

based distributed training. Compare with the on-policy method, the off-policy method

is more powerful due to the fact that it ensures the comprehensiveness of the data and

can cover all behaviours.

5.2 Stability Analysis

In this section, we state at first some auxiliary results: The first result considers the

stability analysis of a linear, exponentially stable system impacted by some Lipschitz-

continuous non-linearity. The second result investigates the Lipschitz continuity of the

non-linearities of the overall consensus-based learning algorithms. We use these results

to analyse the convergence properties of the actor and the critic training parameters

for the system described in (5.18)-(5.22).

5.2.1 Convergence Analysis of a Type of Nonlinear Discrete

Systems

Let us consider a system defined as

et+1 = Aet + f̂(et, t), (5.23)

where e ∈ Rn, A ∈ Rn×n, and f̂ : Rn ×R+ → Rn is a Lipschitz continuous function.

Moreover f̂(0, t) = 0 for all t ∈ R+, hence et = 0 is an equilibrium point of the system.

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 115

The matrix A is said to be Schur if the absolute value of all its eigenvalues are within

the unit disk. The notation ∥ · ∥ represents the Euclidean norm of a vector or spectral

norm of a matrix [383; 423].

Theorem 3. Let A be Schur. Then there exists Λ̂ > 0 such that the system defined

in (5.23) is exponentially stable if ∥f̂(et, t)∥ ≤ Λ̂∥et∥ for all t ∈ R+.

Proof. If A is Schur, there exists a matrix Q > 0 such that ATQA − Q < −ΓIn for

some Γ > 0. Take Λ̂ such that Γ = Λ̂∥ATQ∥+ Λ̂∥QA∥+ Λ̂2∥Q∥.

We consider a Lyapunov function

Vt = 1
2e

T
t Qet, (5.24)

then it follows

Vt+1 − Vt = 1
2e

T
t+1Qet+1 −

1
2e

T
t Qet

= 1
2(Aet + f̂(et, t))TQ(Aet + f̂(et, t))−

1
2e

T
t Qet

= 1
2e

T
t ATQAet −

1
2e

T
t Qet + 1

2e
T
t ATQf̂(et, t)+

1
2 f̂(et, t)TQAet + 1

2 f̂(et, t)TQf̂(et, t).

(5.25)

Since ∥f̂(et, t)∥ ≤ Λ̂∥et∥ for all t ∈ R+, yields

Vt+1 − Vt ≤
1
2e

T
t ATQAet + 1

2Λ̂∥ATQ∥eTt et + 1
2Λ̂

∥QA∥eTt et + 1
2Λ̂2∥Q∥eTt et −

1
2e

T
t Qet

= 1
2e

T
t (ATQA + ΓIn −Q)et.

(5.26)

Let R̂ = −(ATQA + ΓIn −Q) > 0, we have

Vt+1 − Vt = −1
2e

T
t R̂et

≤ −λmin(R̂)
2 eTt et

≤ − λmin(R̂)
2λmax(Q)e

T
t Qet

= −âVt.

(5.27)

where â = λmin(R̂)
λmax(Q) > 0. By using the Lyapunov Theorem [424], for any initial condition

e0 ∈ Rn, i.e. the system is exponentially stable.

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 116

Lemma 2. Let xj ∈ Rk. If f̄(xj) is Lipschitz continuous with Lipschitz constant

Λ, and we apply the change of variable ej = xj − x̄, where x̄ = 1
J

∑J
n=1 x

n. Define

e = [(e1)T , (e2)T , · · · , (eJ)T]T ∈ RJk and f̂(ej, x̄) = f̄(xj) − 1
J

∑J
n=1 f̄(xn), then the

function F̂ (e, x̄) = [f̂(e1, x̄)T , f̂(e2, x̄)T , · · · , f̂(eJ , x̄)T]T satisfies∥∥∥F̂ (e, x̄)
∥∥∥ ≤ Λ̂∥e∥ ∀e ∈ RJk, (5.28)

where Λ̂ = 2Λ
√
J .

Proof. Since f̄(xt) is Lipschitz continuous with a Lipschitz constant Λ, it follows∥∥∥f̂(ej, x̄)
∥∥∥ =

∥∥∥∥∥ 1
J

∑J

n=1 f̄(xj)− 1
J

∑J

n=1 f̄(xn)
∥∥∥∥∥

=
∥∥∥∥∥ 1
J

∑J

n=1(f̄(xj)− f̄(xn))
∥∥∥∥∥

≤ Λ
J

∑J

n=1 ∥x
j − xn∥

= Λ
J

∑J

n=1 ∥(x
j − x̄)− (xn − x̄)∥

= Λ
J

∑J

n=1 ∥e
j − en∥

≤ Λ
J

∑J

n=1(∥e
j∥+∥en∥)

= Λ∥ej∥+ Λ
J

∑J

n=1∥e
n∥ .

(5.29)

Then, ∥∥∥F̂ (e, x̄)
∥∥∥2

=
∑J

n=1

∥∥∥f̂(en, x̄)
∥∥∥2

≤
(∑J

n=1

∥∥∥f̂(en, x̄)
∥∥∥)2

≤ (2Λ
∑J

n=1∥e
n∥)2

≤ 4Λ2J
∑J

n=1∥e
n∥2

= 4Λ2J∥e∥2 ,

(5.30)

where we have used the generalized mean. So we complete the proof if Λ̂ = 2Λ
√
J .

5.2.2 Convergence Analysis of the Critic Training Parameter

In this section, we analyse the critic training parameter dynamics as defined in (5.19)

and (5.21).

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 117

Substituting ∇ξg(sjt , ajt) in (5.19) with (5.10), it follows

ξjt+1 = ξ̃jt + ακjtψ(sjt , ajt)

= ξ̃jt + α(rjt+1 + ρgξ(sjt+1, a
j
t+1)

− gξ(sjt , ajt))ψ(sjt , ajt)

= ξ̃jt + α(rjt+1 + ρ(ξjt)Tψ(sjt+1, a
j
t+1)

− (ξjt)Tψ(sjt , ajt))ψ(sjt , ajt).

(5.31)

We show that the nonlinear term in the equation above is Lipschitz continuous:

Lemma 3. Let Ξ(ξt, rt+1, st, st+1, at, at+1) = α(rt+1+ρ(ξt)Tψ(st+1, at+1)−ξTt ψ(st, at))ψ(st, at),

where st, st+1 ∈ S and at, at+1 ∈ A, for all t. Then, Ξ is Lipschitz continuous with

respect to the variable ξt.

Proof. With some abuse of notation, henceforth we use Ξ(ξt) = Ξ(ξt, rt+1, st, st+1, at, at+1).

For any ξt and ξt′ , we have
∥∥∥Ξ(ξt′)− Ξ(ξt)

∥∥∥ = α∥(rt+1 + (ξt′)T (ρψ(st+1, at+1)−

ψ(st, at)))ψ(st, at)− (rt+1 + (ξt)T (ρ

ψ(st+1, at+1)− ψ(st, at)))ψ(st, at)∥

= α∥(ξt′ − ξt)T (ρψ(st+1, at+1)−

ψ(st, at))ψ(st, at)∥

≤ α∥ρψ(st+1, at+1)− ψ(st, at)∥

∥ψ(st, at)∥∥ξt′ − ξt∥.

(5.32)

By Assumption 4, st and st+1 belong to a compact set S, at and at+1 belong to a com-

pact setA, ∀t, there exists Λ > 0 that satisfies α∥ρψ(st+1, at+1)−ψ(st, at)∥∥ψ(st, at)∥ <

Λ, ∀t, st ∈ S, at ∈ A as ψ is a bounded function. As a result, Ξ is Lipschitz continuous

with respect to ξt, i.e. ∥∥∥Ξ(ξt′)− Ξ(ξt)
∥∥∥ < Λ∥ξt′ − ξt∥. (5.33)

α will allow to tune the Lipschitz constant of the non-linearity which will be important

for analysis later.

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 118

Now, the critic training process of each agent is given by

ξjt+1 = ξ̃jt + Ξ(ξjt) (5.34)

ξ̃jt = Mξjt + ιT
∑J

l=1 âjl(ξ
l
t − ξ

j
t) (5.35)

where M = m̂Ik and m̂ ≤ 1, ι is the scalar coupling gain, T stands for the feedback

gain, âjl represents the elements of the graph adjacency matrix generated by the undi-

rected graph G.

For J agents, the training process can be rewritten as

ξt+1 = (IJ ⊗M)ξt − (ιL⊗ T)ξt + Ω(ξt)

= (IJ ⊗M − ιL⊗ T)ξt + Ω(ξt)

= A′ξt + Ω(ξt),

(5.36)

where A′ = IJ ⊗M − ιL⊗ T and Ω(ξt) = [Ξ(ξ1
t)T ,Ξ(ξ2

t)T , ...,Ξ(ξJt)T]T .

Proposition 1. Given an undirected graph G, under Assumptions 2, 3 and 4, if A is

Schur, the critic training parameter ξ of each agent in (5.19) and (5.21) will exponen-

tially converge to a neighbourhood of the optimal value ξ∗ for some small enough α.

The size of the neighbourhood approaches 0 as M approaches Ik.

Proof. Let ξ̄ = 1
J

∑J
n=1 ξ

n, ej = ξj − ξ̄, for J agents, the error et is given by

et = ((IJ −
1
J

11T)⊗ Ik)ξt. (5.37)

Since (IJ− 1
J
11T)⊗Ik and IJ⊗M− ιL⊗T are commute, combining (5.36) and (5.37),

yields

et+1 = ((IJ −
1
J

11T)⊗ Ik)((IJ ⊗M − ιL⊗ T)et + Ω(ξt))

= Aet + BΩ(ξt), (5.38)

where A = BA′, B = (IJ − 1
J
11T)⊗ Ik.

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 119

Algorithm 5.1 Actor-critic based off-policy DRL with consensus-based distributed

training
1: Initialize each agent actor training parameter ηj0, critic training parameter ξj0, critic

learning rate α, actor learning rate β, initial state sj0, fixed behaviour policy µ,

discounted factor ρ, maximum time limit T̂ , maximum episode limit N̂ , exploration

noise Ot.

2: for episode = 1, N̂ do

3: Reset the environment.

4: Receive initial state sj1 for each agent.

5: for t = 1, T̂ do

6: Choose action ajt = µ(sjt) + Ot for action exploration according to the fixed

behaviour policy and the exploration noise.

7: Execute ajt , calculate reward rjt+1 and get new state sjt+1.

8: Store transition (sjt , ajt , rjt , sjt+1) in the replay buffer Rp.

9: Sample a minibatch (sjt , ajt , rjt , sjt+1) from transitions in Rp.

10: Compute temporal difference error:

κjt = rjt+1 + ρgξ(sjt+1, a
j
t+1)− gξ(sjt , ajt).

11: Update the local critic value training parameter:

ξjt+1 = ξ̃jt + ακjt∇ξg(sjt , ajt).

12: Update the local actor policy training parameter:

ηjt+1 = η̃jt + β∇ηπ(sjt)∇agξ(sjt , aj)|aj=πη(sj).

13: Perform consensus-based distributed training on the critic value training pa-

rameter and the actor policy training parameter of each agent:

ξ̃jt+1 = Cj
(
ξkt+1, wkj

)
.

η̃jt+1 = Cj
(
ηkt+1, wkj

)
.

14: end for

15: end for

By Lemma 3, Ξ is Lipschitz continuous with constant Λ. Let Ξ̂(ξi) = Ξ(ξi) −
1
J

∑J
n=1 Ξ(ξn). Then, by Lemma 2, the nonlinear function

BΩ(ξ) =
[
Ξ̂(ξ1)T Ξ̂(ξ2)T · · · Ξ̂(ξJ)T

]T
satisfies ∥BΩ(ξ)∥ ≤ 2Λ

√
J∥e∥ for all ξ̄.

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 120

As A is Schur and Λ is proportional to α, by applying Theorem 3, there exists a small

enough selection of α such that limt→∞ et = 0. Let B′ = 1
J
11T ⊗ Ik, from (5.36), we

can get

ξ̄t+1 = (IJ ⊗M)ξ̄t + B′Ω(ξt). (5.39)

When m̂ = 1, M = Ik, we can obtain that the critic training parameter ξ will converge

to ξ∗ from Assumption 2.

When m̂ < 1, under Assumption 2, it can be obtained that Ω(ξ∗) = 0. Therefore,

ξ̄t+1 − ξ∗ = (IJ ⊗M)ξ̄t − ξ∗ + B′Ω(ξt)−B′Ω(ξ∗)

= (IJ ⊗M)(ξ̄t − ξ∗) + B′Ω(ξ̄t)−B′Ω(ξ∗)

+ B′Ω(ξt)−B′Ω(ξ̄t) + (IJ ⊗M)ξ∗ − ξ∗.

(5.40)

Consider a Lyapunov function Vn = Qn∥ξ̄t− ξ∗∥2, where Qn > 0, and Qn∥IJ ⊗M∥2−

Qn < 0. From the average inequality, it follows that

Vn(t+ 1)− Vn(t) = Qn∥(IJ ⊗M)(ξ̄t − ξ∗) + B′Ω(ξ̄t)−B′Ω(ξ∗)

+ B′Ω(ξt)−B′Ω(ξ̄t) + (IJ ⊗M)ξ∗ − ξ∗∥2 −Qn∥ξ̄t − ξ∗∥2

≤ ((1 + 3k̂)Qn∥IJ ⊗M∥2 −Qn + (1
k̂

+ 3)QnΛ2J)∥ξ̄t − ξ∗∥2

+ (1
k̂

+ 3)QnΛ2J∥ξt − ξ̄t∥2 + (1
k̂

+ 3)Qn∥(IJ ⊗M)ξ∗ − ξ∗∥2. (5.41)

There exists k̂ > 0 so that kn > 0, k∗
n > 0, and 0 < k̄n <

âλmin(Q)
2 , where

−kn = (1 + 3k̂)Qn∥IJ ⊗M∥2 −Qn + (1
k̂

+ 3)QnΛ2J (5.42)

and

k̄n = (1
k̂

+ 3)QnΛ2J, k∗
n = (1

k̂
+ 3)Qn. (5.43)

Hence,

Vn(t+ 1)− Vn(t) ≤ −kn∥ξ̄t − ξ∗∥2 + k̄n∥et∥2+

k∗
n∥(IJ ⊗M)ξ∗ − ξ∗∥2

≤ − kn
Qn

Vn + 2k̄n
λmin(Q)Vt + k∗

n∥(IJ ⊗M)ξ∗ − ξ∗∥2. (5.44)

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 121

Then, we can construct a new Lyapunov function

Va(t) = Vn(t) + Vt (5.45)

From (5.27) and (5.44), we have

Va(t+ 1)−Va(t) = Vn(t+ 1)− Vn(t) + Vt+1 − Vt

≤ − kn
Qn

Vn(t)− āVt + k∗
n∥(IJ ⊗M)ξ∗ − ξ∗∥2

≤ −gaVa(t) + k∗
n∥(IJ ⊗M)ξ∗ − ξ∗∥2.

(5.46)

where ga = min{ kn

Qn
, ā, g∗}, ā = â− 2k̄n

λmin(Q) > 0, and g∗ ∈ (0, 1) is a constant. Hence,

0 < ga < 1, we can get

Va(t+ 1) ≤ (1− ga)Va(t) + k∗
n∥(IJ ⊗M)ξ∗ − ξ∗∥2 (5.47)

When t→ +∞,

Va(t) ≤
k∗
n

ga
∥(1− m̂)ξ∗∥2 (5.48)

As a result, the critic training parameter ξ will exponentially converge to a neighbour-

hood of the optimal value ξ∗ for some small enough α. The size of the neighbourhood

approaches 0 as M approaches Ik. This completes the proof.

5.2.3 Convergence Analysis of the Actor Training Parameter

In this section, we analyse the actor training parameter dynamics as defined in (5.20)

and (5.22).

Under Assumption 1 and (5.9), (5.20) can be rewritten as

ηjt+1 = η̃jt + β∇ηπ(sjt)(∇ηπ(sjt))T ξjt

= η̃jt + βϕ(sjt)ϕ(sjt)T ξjt .
(5.49)

Following [425; 426], ξj = χ(ηj) where χ is a Lipschitz continuous function. Therefore,

(5.49) can be rewritten as

ηjt+1 = η̃jt + βϕ(sjt)ϕ(sjt)Tχ(ηjt). (5.50)

We show that the nonlinear term in the equation above is Lipschitz continuous:

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 122

Lemma 4. Let H(ηjt , st) = βϕ(sjt)ϕ(sjt)Tχ(ηjt), if st ∈ S, ∀t. Then H is Lipschitz

continuous in ηjt .

Proof. With some abuse of notation, henceforth we use H(ηjt , st) = H(ηjt). Since χ(η)

is Lipschitz continuous, for any ηt and ηt′ , we have

∥χ(ηt′)− χ(ηt)∥ < λ∗∥ηt′ − ηt∥, (5.51)

where λ∗ > 0 is a Lipschitz constant. From (5.51), it follows

∥H(ηt′)−H(ηt)∥ = ∥βϕ(sjt)ϕ(sjt)Tχ(ηj
t′

)− βϕ(sjt)

ϕ(sjt)Tχ(ηjt)∥

≤ β∥ϕ(sjt)ϕ(sjt)T∥∥χ(ηjt)− χ(ηjt)∥

< β∥ϕ(sjt)ϕ(sjt)T∥λ∗∥ηt′ − ηt∥.

(5.52)

By Assumption 4, st belongs to a compact set S, ∀t, there exists a λ that satisfies

β∥ϕ(sjt)ϕ(sjt)T∥λ∗ < λ, ∀t, st ∈ S as ϕ is a bounded function. Therefore, H is Lipschitz

continuous in ηt, i.e.

∥H(ηt′)−H(ηt)∥ < λ∥ηt′ − ηt∥ (5.53)

for all ηt′ and ηt.

β will allow tuning the Lipschitz constant of the non-linearity which will be important

for analysis later.

Now, the actor training process of each agent is obtained by

ηjt+1 = η̃jt +H(ηjt) (5.54)

η̃jt = M̂ηjt + ϵK
∑J

l=1 âjl(η
l
t − η

j
t) (5.55)

where M̂ = m̂Ik and m̂ ≤ 1, ϵ is the scalar coupling gain, K stands for the feedback

gain, âjl represents the elements of the graph adjacency matrix generated by the undi-

rected graph G.

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 123

For J agents, the training process can be rewritten as

ηt+1 = (IJ ⊗ M̂)ηt − (ϵL⊗K)ηt +G(ηt)

= (IJ ⊗ M̂ − ϵL⊗K)ηt +G(ηt)

= A′ηt +G(ηt),

(5.56)

where A′ = IJ ⊗ M̂ − ϵL⊗K and G(ηt) = [H(η1
t)T , H(η2

t)T , ..., H(ηJt)T]T .

Proposition 2. Given an undirected graph G, under Assumptions 1, 2, 3 and 4, if

A is Schur, the actor training parameter η of each agent in (5.20) and (5.22) will

exponentially converge to a neighbourhood of the optimal value η∗ for small enough β.

The size of the neighbourhood approaches 0 as M̂ approaches Ik.

Proof. Let η̄ = 1
J

∑J
n=1 η

n, ej = ηj − η̄, for J agents, the error et is given by

et = ((IJ −
1
J

11T)⊗ Ik)ηt. (5.57)

Since (IJ − 1
J
11T) ⊗ Ik and IJ ⊗ M̂ − ϵL ⊗ K are commute, combining (5.56) and

(5.57), yields

et+1 = ((IJ −
1
J

11T)⊗ Ik)((IJ ⊗ M̂ − ϵL⊗K)et +G(ηt))

= Aet + BG(ηt), (5.58)

where A = BA′, B = (IJ − 1
J
11T)⊗ Ik.

By Lemma 4, H is Lipschitz continuous with constant λ. Let Ĥ(ηi) = H(ηi) −
1
J

∑J
n=1 H(ηn). Then, by Lemma 2, the nonlinear function

BG(η) =
[
Ĥ(η1)T Ĥ(η2)T · · · Ĥ(ηJ)T

]T
satisfies ∥BG(η)∥ ≤ 2λ

√
J∥e∥ for all η̄.

As A is Schur and λ is proportional to β, by applying Theorem 3, there exists a small

enough selection of β such that limt→∞ et = 0.

Similarly, we can choose the Lyapunov function as

Vb(t) = Qn∥η̄t − η∗∥2 + Vt (5.59)

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 124

By using the same analysis in Proposition 1, it follows that the actor training parameter

η will exponentially converge to a neighbourhood of the optimal value η∗ for small

enough β. The size of the neighbourhood approaches 0 as M̂ approaches Ik. This

completes the proof.

5.3 Experiments and Results

The feasibility of the proposed multi-agent training framework and algorithm is vali-

dated in this section. Section 5.3.1 compares the proposed method with the existing

consensus-based RL method and Section 5.3.2 introduces the setup of our proposed

algorithm. The training details are depicted in Section 5.3.3 and Section 5.3.4 demon-

strates the simulation results. A comparison with an existing multi-agent algorithm

is conducted in Section 5.3.5. Section 5.3.6 details the discussion on bandwidth and

privacy protection.

5.3.1 Comparison with Existing Consensus-based RL Method

Perhaps the most relevant work to our proposed algorithm is shown in [2]. The key

idea in [2] is to perform consensus-based distributed training with RL in a two-time

scale technique, which means each local policy training parameter is fixed during the

critic update and every local critic training parameter has already reached the correct

value during the actor update. Additionally, consensus-based distributed training is

only applied to each local policy training parameter. Compared with [2], our algorithm

is able to update both actor and critic training parameters simultaneously. As a result,

the system is no longer a single excitation system and the consensus error of the actor

network with our proposed method (as shown in Fig. 5.2 (b)) converges 50 times faster

than the algorithm proposed in [2] (as shown in Fig. 5.2 (a)). Furthermore, even if the

consensus-based distributed training on the critic value training parameter is removed

from our proposed algorithm, the consensus error of the actor network (as shown in

Fig. 5.2 (c)) is still 25 times faster than the algorithm proposed in [2].

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 125

(a)

(b)

(c)

Figure 5.2: Consensus error of the actor network with 6 agents. The setup for both
methods are described in [2]. (a) With the algorithm proposed in [2] (b) With our
algorithm (c) With our algorithm except consensus-based distributed training on the
critic value training parameter

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 126

5.3.2 Deep Reinforcement Learning Setup

As mentioned in the Section above, the aim of the experiment is to train each UR5

robot arm to reach the random target position in a smooth trajectory without jerk.

Reward Space

Each UR5 robot arm is designed to reach its target position. The reward function for

each robot arm is defined as

rj = rdj + raj + rkj (5.60)

where rj stands for accumulated reward of the jth UR5 robot arm, rdj represents the

distance reward of the jth UR5 robot arm, raj describes the arrive reward of the jth

UR5 robot arm, rkj is the smoothness reward of the jth UR5 robot arm.

The distance reward rdj can be computed by

rdj = rpj − rcj (5.61)

where rpj denotes the distance between the end effector position and the target point

with previous action of the jth UR5 robot arm, rcj stands for the distance between the

end effector position and the target point with current action of the jth UR5 robot

arm. If rpj is greater than rcj the robot will receive a positive distance reward since it

gets closer to the target.

The arrive reward raj is given by

raj =

rap if |rcj| < rdh

0 otherwise
(5.62)

where rap equals to a positive peak reward, rdh represents the distance threshold.

The smoothness reward rkj is computed by

rkj =

−rkp if |rdj| > rkh

0 otherwise
(5.63)

where rkp denotes a positive smoothness peak reward, rkh represents the smoothness

threshold, and | · | represents the Euclidean norm of a vector. As a result, rkj will

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 127

receive punishment if |rdj| is above the smoothness threshold. By introducing rkj in the

accumulated reward, the smooth trajectory of the UR5 robot arm can be guaranteed.

Figure 5.3: The joint positions of a UR5 robot arm.

Action Space and State Space

The base joint of each UR5 robot arm is actuated in this scenario, together with the

second joint and the third joint from the base. Consequently, for each UR5 robot arm,

the action space is a vector of dimension 3 that consists of three different joint values,

which are the shoulder pan joint, the shoulder lift joint and the elbow joint, as shown

in Fig. 5.3.

The state space is a vector of dimension 16 which includes the action space, the location

of the elbow joint and the wrist 2 joint, the distance between the elbow joint and the

goal, the distance between the wrist 2 joint and the goal, the distance between the

end effector and the goal.

Neural Network Structure

The input of the actor network passes the data through three dense layers whose

activation functions are ReLu [403] with either 500 or 1000 nodes, as shown in Fig. 5.4.

It contains 16 elements, which are the joint angle of the shoulder pan joint, the shoulder

lift joint, the elbow joint, the location of the elbow joint and the wrist 2 joint, the

distance between the elbow joint and the goal, the distance between the wrist 2 joint

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 128

Figure 5.4: The structure of the actor network. The fixed layers are marked with
yellow boxes.

Figure 5.5: The structure of the critic network. The fixed layers are marked with
yellow boxes.

and the goal, the distance between the end effector and the goal. The output of the

actor network consists of 3 elements, which are the joint angle of the shoulder pan

joint, the shoulder lift joint and the elbow joint. This is also used in the input of the

critic network, as illustrated in Fig. 5.5. The other input of the critic network shares

the same elements as the input of the actor network. The output of the critic network

depicts how good the actor performance is, which is a Q value generated by a linear

activation function.

During each iteration, each UR5 robot arm tries to explore the environment with ran-

dom noise. The accumulated reward can be computed by rj. For each training, the

state space, the action space, the next state space and the accumulated reward are

stored in the replay buffer, and the training model can learn from the replay buffer

randomly when it is full.

In order to satisfy the condition listed in (5.9) and (5.10), the first two layers of the

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 129

actor network and the first three layers of the critic network are fixed with the optimal

weight. The fixed layers are marked with yellow boxes.

5.3.3 Training Details

(a)

(b)

(c)

Figure 5.6: Actor-critic based off-policy DRL and consensus-based distributed training
with different numbers of UR5 robot arms. (a) With 4 UR5 robot arms. (b) With 6
UR5 robot arms. (c) With 12 UR5 robot arms.

Our system was trained in ROS [405] and Gazebo [427] for efficiency. Experiments were

carried out with different numbers of UR5 robot arms, as demonstrated in Fig. 5.6.

Single UR5 robot arm training with actor-critic based DRL is applied in Fig. 5.8 as a

baseline to compare with our consensus-based distributed DRL algorithm. Other three

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 130

Figure 5.7: Interaction topology of 4, 6, 9 and 12 agents.

experiments are implementing our consensus-based distributed training with four UR5

robot arms, as shown in Fig. 5.8. Fig. 5.8 (a) and Fig. 5.8 (b) compare the perfor-

mance of four UR5 robot arms with different feedback gains. Fig. 5.8 (a) and Fig. 5.8

(c) contrast the performance of four UR5 robot arms with higher connectivity. The

experiments in Fig. 5.9 are implementing our algorithm with six, nine and twelve UR5

robot arms.

The interaction topology of different numbers of UR5 robot arms is shown in Fig. 5.7.

The scalar coupling gain τ for the critic training parameter ξ and the scalar coupling

gain ϵ for the actor training parameter η are both set to 0.3. The feedback gain T

for the critic training parameter ξ is set to 0.9, so does the feedback gain K for the

actor training parameter η. It can be verified that A is Schur for both actor and critic

training scenarios.

For each UR5 robot arm, the actor learning rate β in (5.19) and the critic learning

rate α in (5.20) are set to 0.001. The discounted factor ρ [303] listed in (5.18) has a

fixed value of 0.9. The action exploration mentioned in Algorithm 5.1 satisfies ϵ-greedy

exploration strategy [303] with ϵ initialized at 0.9 and a decay rate ρ̂ = 0.99995. The

maximum time limit T̂ is set to 200 and the maximum episode limit N̂ is initialized

at 255.

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 131

5.3.4 Simulation Results

In this section, we evaluate the performance of the proposed method in various ways.

Evaluation of Decentralized Consensus Training

The average reward graph of implementing our algorithm with four UR5 robot arms is

elucidated in Fig. 5.8 (a), which confirms the validity of the theoretical analysis. The

interaction topology used in Fig. 5.8 (a) is shown in Fig. 5.7. The average reward of

single UR5 robot arm training is taken as the base of the comparison. The average

reward is computed by averaging the reward within a fixed batch size. Compared with

single UR5 robot arm DRL, the training speed of our algorithm is faster. Besides, the

average reward curve of each UR5 robot arm is more stable. All UR5 robot arms

training with our algorithm have reached consensus at about 10000 steps while the

training reward of a single UR5 robot arm did not increase until reaching around 29000

steps. The proposed algorithm guarantees a better performance compared with single

UR5 robot arm DRL.

Fig. 5.8 (b) depicts the average reward graph of implementing our algorithm with four

UR5 robot arms with the feedback gain set to 0.1. Compared with Fig. 5.8 (a), all UR5

robot arms reach consensus at around 12000 steps. This shows that a smaller feed-

back gain can slow down the training. If the interaction topology of four UR5 robot

arms is set to fully connected, the required convergence steps decrease to around 5000

steps, as shown in Fig. 5.8 (c). In addition, the reward curve of each UR5 robot arm

looks tighter because the communication between each UR5 robot arm is strength-

ened. Therefore, larger feedback gain and fully connected interaction topology result

in faster convergence to the optimal result.

Fig. 5.9 describes the average reward performance of three groups of different numbers

of UR5 robot arms. The interaction topology used in Fig. 5.9 is shown in Fig. 5.7.

The average reward is computed by averaging the reward within a fixed batch size. As

stated in Fig. 5.9 (a), all six UR5 robot arms converge to the optimal value at around

8000 steps, which is smaller than the consensus steps with four UR5 robot arms shown

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 132

(a)

(b)

(c)

Figure 5.8: Average reward graph of the algorithm with 4 UR5 robot arms compared
with single-agent DRL. (a) The feedback gain is set to 0.9. (b) The feedback gain is
set to 0.1. (c) The interaction topology is completely connected with feedback gain
set to 0.9.

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 133

(a)

(b)

(c)

Figure 5.9: Average reward graph of the algorithm with three groups of different
numbers of UR5 robot arms. (a) Performing consensus-based distributed training
with 6 UR5 robot arms at every 1 step. (b) Performing consensus-based distributed
training with 9 UR5 robot arms at every 1 step. (c) Performing consensus-based
distributed training with 12 UR5 robot arms at every 1 step.

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 134

in Fig. 5.8 (a). In the case of nine UR5 robot arms with the same algorithm, the re-

quired convergence steps descend to around 6900 steps, as shown in Fig. 5.9 (b). In

Fig. 5.9 (c), only around 6300 steps are required to converge to the optimal value if

twelve UR5 robot arms participate in training. As a result, a larger number of UR5

robot arms participating in this algorithm leads to faster convergence to the optimal

result.

Fig. 5.11 and Fig. 5.12 reveal the variation of the consensus error of the actor and critic

networks correspond to the interaction topology as shown in Fig. 5.10. We can see

that the consensus errors of both actor and critic converge to zero and the convergence

speed will increase if the communication between the agents is strengthened, as shown

in Fig. 5.13.

Figure 5.10: Interaction topology of 6 agents, with the Fiedler eigenvalues equal to 1,
1.7, 4, and 6.

Evaluation of Performance Tests

In order to compare and contrast the performance of the proposed algorithm, 50 trials

were tested, varying the number of UR5 robot arms with models at different training

steps. Fig. 5.14 depicts the number of times that each UR5 robot arm reaches the

target point subjected to different scenarios. It can be seen that a larger number of

UR5 robot arms participating in the training process results in a larger number of

times that each UR5 robot arm reaches the target point in all cases, which can be

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 135

(a)

(b)

Figure 5.11: Consensus error of the actor network with 6 UR5 robot arms. (a) With
the Fiedler value equal to 1 (b) With the Fiedler value equal to 6

viewed as a significant factor that controls the consensus speed of the proposed al-

gorithm. Fig. 5.15 illustrates how a group of four UR5 robot arms reach the target

point. The random target point is represented by the location of the wooden box

in Gazebo. Each UR5 robot arm has the same default initial position. If any UR5

robot arm reaches the target point, its position will be reset to the default initial posi-

tion for the next training and the target point will be reset to another random position.

It can be inferred from the experiments that this proposed algorithm makes all UR5

robot arms converge to the optimal model. In addition, the performance of all UR5

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 136

(a)

(b)

Figure 5.12: Consensus error of the critic network with 6 UR5 robot arms. (a) With
the Fiedler value equal to 1 (b) With the Fiedler value equal to 6

robot arms with this proposed algorithm is better than the performance of single

UR5 robot arm training. The consensus speed of all UR5 robot arms depends on the

connectivity of interaction topology and the number of training agents. The consensus

speed of this proposed algorithm can be refined by either increasing the connectivity

of interaction topology in consensus-based distributed training or letting more agents

participate in training.

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 137

Figure 5.13: Iteration steps versus Fiedler eigenvalues of the actor network and the
critic network with 6 UR5 robot arms. The Fiedler eigenvalues are calculated by the
interaction topology shown in Fig. 5.10.

Figure 5.14: Box plot of the number of times that each UR5 robot arm reaches the
target point in 100 s with models at different training steps. The results in each case
are collected from 50 trials with random target positions.

Evaluation of Trajectory Learning

As mentioned in (5.60), the reward space consists of a distance reward, an arrive re-

ward and a smoothness reward. By introducing a smoothness reward in the reward

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 138

Figure 5.15: Performance tests of consensus-based distributed training with 4 UR5
robot arms.

space, each UR5 robot arm is able to reach the random target position in a smooth tra-

jectory without jerk. Different from standard path planning methods, this algorithm

can not only ensure that all angles of the UR5 robot arm are within the allowable

range when the end effector of the UR5 robot arm reaches the target point, but also

guarantee that all angles of the UR5 robot arm are within the allowable range during

the entire process of reaching the random target point.

The performance of smooth path planning learning of each UR5 robot arm is validated

in Fig. 5.16. Fig. 5.16 (a) and Fig. 5.16 (b) demonstrate the trajectories of the end

effector of different numbers of UR5 robot arms with different training models at one

step. The dotted line stands for the trajectories of the end effector of each UR5 robot

arm, which is called the actual line. Fig. 5.16 (a) represents the trajectories of the end

effector of four UR5 robot arms with the training models at 6000 steps. Fig. 5.16 (b)

depicts the trajectories of the end effector of twelve UR5 robot arms with the training

models at 8000 steps. The red straight line that connects the start and the end point in

both Fig. 5.16 (a) and Fig. 5.16 (b) represents the shortest distance of each UR5 robot

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 139

(a)

(b)

(c)

Figure 5.16: (a) Trajectories of the end effector of 4 UR5 robot arms with the training
models at 6000 steps. (b) Trajectories of the end effector of 12 UR5 robot arms with
the training models at 8000 steps. (c) Error rate of the trajectories of the end effector
of different numbers of UR5 robot arms with different training models at one step.
The result in each case is collected from 50 trials with random target positions.

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 140

arm, which is called the reference line. Compared with Fig. 5.16 (a), the trajectories

of the end effector of UR5 robot arms in Fig. 5.16 (b) are closer to the reference line.

The error rate of each UR5 robot arm in Fig. 5.16 (c) is computed as follows:

er =
∣∣∣∣∣ la − lrlr

∣∣∣∣∣ (5.64)

where er represents the error rate of each UR5 robot arm, la is the length of the actual

line of each UR5 robot arm and lr stands for the length of the reference line of each

UR5 robot arm.

The error rate of the end effector trajectories of different numbers of UR5 robot arms

with different training models is shown in Fig. 5.16 (c). As can be seen from the

graph, the error rate of each UR5 robot arm descends as the number of training steps

ascends. Moreover, more agents involved in the proposed algorithm leads to less error

rate and more stable performance.

It can be inferred from the experiment that after doing consensus to the actor training

parameter and the critic training parameter, for each UR5 robot arm, the critic is

more likely to give bigger reward to the action that makes the UR5 robot arm closer

to the target position. Because of the off-policy algorithm, the actor is more likely to

repeat the joint angles that give high rewards, which are closer to the target position.

Therefore, the UR5 robot arm is able to learn a smooth path planning trajectory to

the random target point and learn how to reach the random target point with the

shortest allowable trajectory as the number of training steps increases.

The first two layers of the actor network and the first three layers of the critic network

are fixed with the optimal weight in order to satisfy the condition listed in (5.9) and

(5.10). If all the previously fixed layers are randomly initialized and subjected to

the consensus algorithm, our algorithm is still applicable. This will be a non-convex

optimization problem that we could expand on in future work.

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 141

5.3.5 Comparison with Existing Multi-agent Algorithm

We confirm the validity of our multi-agent DRL framework using the algorithm pro-

posed in [3]. The key idea in [3] is to update both actor and critic training parameters

during each training iteration and only apply consensus-like training to each local

policy training parameter. Different from [3], our algorithm is able to update both

actor and critic training parameters simultaneously with consensus-based distributed

training. Consequently, our proposed method is completely implemented under a dis-

tributed training protocol with DRL. The average reward graph of four UR5 robot

arms shows that our proposed method (as shown in Fig. 5.8 (a)) converges faster than

the algorithm proposed in [3] (as shown in Fig. 5.17), which validates the efficiency of

our proposed algorithm.

Figure 5.17: Average reward graph of 4 UR5 robot arms compared to single-agent
DRL with the algorithm proposed in [3].

5.3.6 Discussion on Bandwidth and Privacy Protection

Discussion on Bandwidth

Existing methods [175; 176] are mostly designed for a centralized graph, in which there

is a central agent connected with multiple agents to share information and parame-

ters, as demonstrated in Fig. 5.18 (a). Our method focuses on a decentralized topology

which has better scalability without increasing the communication bandwidth when

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 142

dealing with a large number of agents, as shown in Fig. 5.18 (b). The potential bottle-

neck of using a centralized topology is the communication traffic jam since the central

agent needs to receive information from all other agents and send information back

to them during each training iteration. If a communication traffic jam occurs on the

central agent, it will cause severe data loss. With a limited communication band-

width, the number of agents that the central agent can support each time is limited.

Nevertheless, by implementing a decentralized topology, the number of agents that

can be supported each time is much larger under the same communication bandwidth.

Compared to the centralized topology, the decentralized topology avoids the commu-

nication traffic jam on the central agent, which makes it possible to tackle more agents

training without increasing the internet bandwidth.

(a) (b)

Figure 5.18: Examples of graph topologies. The star denotes the central agent. (a)
Centralized (b) Decentralized

Discussion on Privacy Protection

In practical applications, we cannot directly collect users’ data to train a RL model due

to the fact that these data contain users’ privacy. For instance, if the heads of multiple

hospitals want to jointly train a RL model for disease diagnosis, due to patient privacy

issues, the hospital heads cannot directly share the patients’ medical data with each

other. To avoid the issue of user privacy leakage, training weights are shared between

different agents with our proposed method instead of users’ data since training weights

are processed numbers. Compared with sharing users’ data directly, sharing training

weights between different agents are more secure and reliable.

CHAPTER 5. DISTRIBUTED NNS WITH CONSENSUS 143

5.4 Summary

A novel multi-agent training framework is proposed to support the training of multiple

UR5 robot arms. In order to handle more agents training without increasing internet

bandwidth and protect the privacy of each UR5 robot arm, a novel multi-agent train-

ing algorithm with actor-critic based off-policy DRL and consensus-based distributed

training is proposed. The convergence analyses of the actor training parameter and

the critic training parameter with Lyapunov method are provided to confirm the va-

lidity of the proposed training algorithm. By setting up appropriate reward space,

action space and observation space, the experiments are provided to train each UR5

robot arm to reach the random target position smoothly. Compared with single UR5

robot arm DRL, the performance of all UR5 robot arms is better when this proposed

algorithm is used. The consensus speed of this algorithm can be tuned by switching to

a larger feedback gain, changing to an interaction topology with higher connectivity

and adding more agents in the training process. The UR5 robot arm can learn how to

reach the random target point with the shortest allowable trajectory as the number of

training steps increases. In the future, an optimization strategy of our algorithm will

be exploited to improve the training efficiency of all agents.

Chapter 6

Sim-and-Real Reinforcement

Learning for Manipulation: A

Consensus-based Approach

In the previous chapter, we focus on the theoretical development of multi-agent DRL

with consensus-based training. As an essential component in robotic control, DRL

has been widely used in various applications [428; 429; 430]. The training process of

DRL [115] builds the bridge between the environment state and the action, thereby

maximizing the cumulative reward. Learning from the simulation is safer, cheaper

and faster while learning from the real world is more dangerous, expensive and slower.

If the simulation shows high fidelity, the training model in the simulation can be

transferred directly to the real world. However, in many circumstances, the simula-

tion cannot mimic the real world very well, which limits robot performance in the

real world. To overcome this difficulty, we develop a sim-and-real training method to

balance the relationship between the simulation and the real world. We use concepts

from control engineering, i.e. consensus [431; 233], to accomplish sim-and-real training.

In this chapter, we propose a CSAR algorithm that combines consensus-based training

with DRL in a sim-and-real environment, as shown in Fig. 6.1. We apply CSAR to

a group of simulated agents together with a real agent each learning to carry out a

pick-and-place task with a suction robot device. Compared to conventional sim-to-real

training method, the challenges of CSAR DRL are 1) information exchange between

144

CHAPTER 6. SIM-AND-REAL RL FOR MANIPULATION 145

Figure 6.1: Pick-and-place objects with the CSAR approach

simulated and real robots, for instance, generating communication in a mixed envi-

ronment, 2) data-efficient collection for training in a sim-and-real environment such as

handling data from multiple robots simultaneously, 3) data pre-labelling for suctioning

in a sim-and-real environment, for example, using aruco makers to locate suctioned

objects.

To overcome these difficulties, a complete CSAR method is proposed for manipulators

to learn pick-and-place tasks. By applying consensus-based training, the proposed

method saves training time and reduces the number of required real robot training

steps while maintaining a comparable suction success rate, which is cost-effective.

Moreover, an end-to-end and lightweight NN is proposed to train the suction pol-

icy, which uses raw 3D visual data directly without pre-labelling. The effectiveness

and feasibility of the CSAR method are validated through simulation and real-world

experiments. We extend the consensus approach [224] from theory and simulations

to a real-world pick-and-place problem and show the effectiveness of the proposed

approach.

6.1 Methodology

We extend the consensus-based approach in [224], which only focuses on simulations,

to sim-and-real scenarios. The proposed effective and efficient CSAR method can

increase sim-and-real training speed as well as save real-world training costs with

consensus-based training.

CHAPTER 6. SIM-AND-REAL RL FOR MANIPULATION 146

6.1.1 System Overview

Fig. 6.2 describes the overview of our proposed framework. The predefined workspace

in the simulation is captured by a fixed simulated camera, which provides an ideal

RGB-D image each time. Then the ideal RGB-D image is orthographically projected in

the direction of gravity to construct the colour heightmap c̄t and the depth heightmap

d̄t, which are the inputs of our framework. Both heightmaps are fed into the Q-function

NN to anticipate pixel-wise best suction position [x̄t, ȳt]. Given the specific use of these

NNs modelling the Q-function for pick and place success through suction gripping, we

may call these “suction networks”. The suction height z̄t can be found from d̄t.

When it comes to the real world, the predefined workspace is captured by a fixed azure

kinect camera. Compared with the ideal RGB-D image which is obtained from the

simulated camera, the real-world RGB-D image contains more camera distortion [432].

Similarly, the real-world RGB-D image is orthographically projected in the direction

of gravity to construct the colour heightmap c̃t and the depth heightmap d̃t which are

also fed into the suction network to predict real-world pixel-wise best suction position

[x̃t, ỹt]. The suction height z̃t can be also acquired from d̃t.

After performing predictions in both environments, consensus-based training is applied

to the training parameters of each simulated or real agent. The suction process of each

agent is carried out in parallel, which saves training time.

6.1.2 Deep Reinforcement Learning Setup

In this section, we illustrate action space, state space, reward space, NN structure and

loss function of the CSAR method.

Action Space

The action space at is a Cartesian motion command that consists of pixel-wise best

suction position. In the simulated environment, āt = [x̄t, ȳt, z̄t]. Correspondingly,

ãt = [x̃t, ỹt, z̃t] in the real world. The suction height z̄t and z̃t can be acquired from d̄t

and d̃t.

CHAPTER 6. SIM-AND-REAL RL FOR MANIPULATION 147

Figure 6.2: Overview of the proposed DRL framework with consensus-based training in
the sim-and-real environment (substantiation of Figure. 6.1). During each iteration,
consensus-based training is applied to the training parameters of every suction net
(multi-layer NN modelling the Q-function for pick-and-place success through suction
gripping). The suction executions occur simultaneously in both simulated and real
environments. BN represents Batch Normalization. Conv stands for Convolution. Up
represents Upsampling. More details can be found in Algorithm 6.1.

CHAPTER 6. SIM-AND-REAL RL FOR MANIPULATION 148

State Space

As shown in Fig. 6.2, the state space st denotes the colour heightmap and depth

heightmap of the captured RGB-D image. In the simulated environment, c̄t and d̄t

are acquired by the fixed simulated camera. In the real environment, c̃t and d̃t can be

obtained from the fixed azure kinect camera.

Reward Space

The distance µm in the simulated environment can be computed by

µm =
√

(x̄m − τm)2 + (ȳm − σm)2 (6.1)

where τm and σm denote x, y positions of the centre of the expected suctioned object

of the mth agent, respectively.

We assign suction reward rs = 1 if the target is successfully suctioned, otherwise

rs = 0. Thus, the DRL reward r̄m for each agent in the simulation can be defined as

r̄m =

rsr0 if µm ≤ µth

rsr1 if µth < µm ≤ 2µth

rsr2 if 2µth < µm ≤ 3µth

rsr3 if µm > 3µth

(6.2)

where r̄m stands for the reward of the mth agent in the simulated environment, µth
represents distance threshold of the mth agent, r0, r1, r2 and r3 are the positive reward

when µm is within the corresponding range.

The DRL reward r̃m for each agent in the real environment is given by

r̃m = rsr0 (6.3)

CHAPTER 6. SIM-AND-REAL RL FOR MANIPULATION 149

Algorithm 6.1 CSAR: Consensus-based Sim-and-Real DRL
1: Initialize the mth agent training parameter ψmt , learning rate α, RGB-D image

ḡmt from the simulation, initial RGB-D image g̃mt from the real world, discounted

factor γ, total training steps parameter T .

2: while t < T do

3: Generate c̄mt and d̄mt from ḡmt .

4: Generate c̃mt and d̃mt from g̃mt .

5: if object count Om
t < empty threshold then

6: Feed c̄mt and d̄mt into the mth suction network to generate action-value function

Q(ψmt , s̄mt , āmt).

7: Feed c̃mt and d̃mt into the mth suction network to generate action-value function

Q(ψmt , s̃mt , ãmt).

8: if t > 2 then

9: Generate rmt with Q(ψmt−1, s̄
m
t−1, ā

m
t−1) and Q(ψmt−1, s̃

m
t−1, ã

m
t−1).

10: Compute ξmt−1:

Y m
t−1 = rmt + γmax

a
(Q(ψ−

t−1, s
m
t , a

m)).

ξmt−1 = Q(ψmt−1, s
m
t−1, a

m
t−1)− Y m

t−1.

11: For M agents, update the training parameters ψt with consensus-based

training:

ψt = C (ψt−1,L)− αΓt−1.

12: Sample a batch from the replay buffer Rp to implement experience replay.

13: end if

14: Perform suction execution in both simulated and real environments in parallel.

15: Store (c̄mt , d̄mt , āmt) and (c̃mt , d̃mt , ãmt) in Rp.

16: else

17: Reposition objects.

18: end if

19: end while

CHAPTER 6. SIM-AND-REAL RL FOR MANIPULATION 150

Neural Network Structure

As stated in Fig. 6.2, the input of the suction net passes data through ResNet-18 [412]

to extract concatenated features from the colour heightmap and the depth heightmap.

The aforementioned features are fed into a Batch Normalization layer [413] with 1024

input features, a ReLu layer [413], a Convolution layer [413] with 1024 input channels,

and 1 output channel, then are processed by a bilinear upsample layer [413] with a scale

factor of 16. The output of the suction net has the same image size as the heightmap

input, which is a dense pixel-wise map of different Q values. The pixel which has the

maximum Q value represents the best suction position.

Remark 1. It should be noted that the suction net can be substituted by any state-

of-the-art NN. Since we use a standard laptop for training, we purposely design a

lightweight version of the suction net inspired by [126].

During each training iteration t, the training objective is to minimize the temporal

difference error ξt [347]:

ξt = Q(ψt, st, at)− Yt (6.4)

where Yt = rt+1 +γmax
a

(Q(ψ−
t , st+1, a)) and a represents all available actions, γ stands

for the discount factor, Q represents the action-value function, r is the reward, ψt
stands for the training parameters of the suction network at time t, ψ−

t denotes the

target training parameters.

Loss function

Inspired by [126], we use the Huber loss function [433] to train our proposed suction

network in both simulated and real environments. The loss function Ω at the tth

iteration can be computed as follows:

Ωt =

1
2(ξt)2 if |ξt| < 1

|ξt| − 1
2 otherwise

(6.5)

Gradients are only passed through the single pixel on which the action is executed

during each iteration t. All other pixels propagate with 0 loss [126].

CHAPTER 6. SIM-AND-REAL RL FOR MANIPULATION 151

6.1.3 Consensus-based Training

The Q-function of each simulated or real agent is trained through a consensus-based

algorithm. Hence, we wish to introduce first the consensus network structure which

facilitates that training process. The interaction topology of M agents can be depicted

by an undirected graph G = (V , E), where V represents a vertex set V = {1, 2, · · · ,M}

and E stands for an edge set E ⊂ V ×V . The edge (j,m) ∈ E if the jth and mth agents

are connected with one another [409]. The adjacency matrixA of G can be described as

A = [ajm] ∈ RM×M , where ajm > 0 if (j,m) ∈ E , otherwise ajm = 0. Hence, the Lapla-

cian matrix L of G is defined as L = D−A, where D = diag{d11, · · · , dMM} ∈ RM×M

and djj = ∑
j ̸=m ajm [434]. For an undirected topology, L is positive semi-definite.

L1M = 0, where 1M = [1, · · · , 1]⊤. If the graph G has a spanning tree, the rank of L

should be M − 1 [434].

For an undirected graph G, if χ̂m ∈ Rn represents the updated training parameter of

χm ∈ Rn after a single consensus step and χm stands for the row vector of the training

parameter for agent m in the graph, the consensus training step of each agent m can

be described as

χ̂m = χm + um (6.6)

um =
∑M

k=1 amk(χk − χm) (6.7)

where amk, the element of the graph adjacency matrix, is engendered by the undirected

graph G and um stands for the input of the agent m.

By integrating (6.7) and (6.6), the consensus algorithm can be used to update an agent

m in the following scheme:

χ̂m = χm +
∑M

k=1 amk(χk − χm)

= χm −
∑M

k=1 lmkχk

= Cm (χk, lmk)

(6.8)

where lmk is the element of the Laplacian matrix L and Cm represents the consensus

protocol of the mth agent. The training parameter update of all the M agents with a

CHAPTER 6. SIM-AND-REAL RL FOR MANIPULATION 152

single consensus step can be summarised as

χ̂ = ((IM − L)⊗ In)χ

= C (χ,L)
(6.9)

where C stands for the consensus protocol for all agents, IM and In denote the M ×

M and n × n identity matrix, L represents the Laplacian matrix. By repetitively

computing (6.9), this consensus algorithm makes all agents converge to their weighted

average [418].

6.1.4 Consensus-based Training with Deep Reinforcement Learn-

ing

Given the consensus network structure in the previous sub-section, the training algo-

rithm for the training parameters ψt in (6.4) in the DRL is now introduced. As stated

in [435], the process of updating ψt for the mth agent is given as:

ψmt+1 = ψmt − αξmt
dQ(ψmt , smt , amt)

dψmt
(6.10)

where α represents the learning rate.

By applying (6.8), the training process of the CSAR algorithm can be summarised as:

ψ̂mt = ψmt +
∑M

k=1 ãmk(ψ
k
t − ψmt) (6.11)

ψmt+1 = ψ̂mt − αξmt dmt (6.12)

where dmt = dQ(ψm
t ,s

m
t ,a

m
t)

dψm
t

.

Substituting (6.11) into (6.12), we can get

ψmt+1 = ψmt +
∑M

k=1 ãmk(ψ
k
t − ψmt)− αξmt dmt (6.13)

Let Γt = [ξ1
t d

1
t , ξ

2
t d

2
t , · · · , ξMt dMt]T , for M agents, the update of the training parameters

in our suction network in the tth iteration can be illustrated as

ψt+1 = ((IM − L)⊗ In)ψt − αΓt

= C (ψt,L)− αΓt
(6.14)

Algorithm 6.1 summarizes our CSAR algorithm.

CHAPTER 6. SIM-AND-REAL RL FOR MANIPULATION 153

6.2 Experiments and Results

The feasibility of the CSAR algorithm is validated in this section. The system is

implemented on a standard laptop with Nvidia GTX 2070 super and Intel Core i7

CPU (2.6 GHz) with 16 GB RAM. The experimental video is available at: https:

//youtu.be/mcHJtNIsTEQ.

6.2.1 Experiment Setup

Simulation

Our system in the simulated environment is trained in Coppeliasim [404] with Bullet

Physics 2.78 for dynamics, as demonstrated in Fig. 6.1. The simulation setup for

each agent consists of a UR5 robot arm with a suction gripper [415]. The suctioned

objects in the simulated environment are cubes with a side length of 5 cm. The

motion planning task for each UR5 robot arm is accomplished by Coppeliasim [404]

internal IK. Simulated cameras are used to capture RGB-D images of each agent in

a 0.448 × 0.448 m2 workspace. The resolution of the simulated RGB-D images is

640× 480.

Real World

The setup for each agent in the real environment is composed of a UR5 robot arm

with a Robotiq EPick vacuum gripper. The suctioned objects are cubes with a side

length of 6.5 cm. To pick and place objects successfully with the suction gripper in

the sim-and-real environment, the objects should have a flat surface and no overlap

between objects placed in the workspace. We use a fixed Azure Kinect camera to

acquire real-world RGB-D images with a resolution of 1280× 720. The location of the

Azure Kinect camera is shown in Fig. 6.1, which can generate a top-down view in a

0.448× 0.448 m2 workspace.

Reward

Depending on the intrinsic and distortion of the Azure Kinect camera and the size of

our suction gripper, we assign r0 = 2000, r1 = 1000, r2 = 100, r3 = 1 and µth = 0.005

m in (6.2). These values can also be reconfigured for other robotic platforms.

https://youtu.be/mcHJtNIsTEQ
https://youtu.be/mcHJtNIsTEQ

CHAPTER 6. SIM-AND-REAL RL FOR MANIPULATION 154

Neural Network

The proposed framework is fully trained under self-supervision through the interactions

between the UR5 robot arms and the sim-and-real environment. The learning rate α

in (6.10) has a fixed value of 0.0001. The discounted factor γ listed in (6.4) is set to

0.5. The future reward discount is fixed at 0.5. The total training steps parameter

T is initialized at 270. Algorithm 6.1 satisfies ϵ-greedy exploration strategy with ϵ

initialized at 0.5 and annealed to 0.1 over training. The simulated camera and the

Azure Kinect camera capture RGB-D images to generate colour and depth heightmaps,

which are fed into the suction nets to predict pixel-wise best suction positions.

Evaluation Metric

The suction performance of the mth agent can be evaluated using the suction success

rate Smr , which is defined as follows:

Smr = Nm
s

Nm
i

× 100% (6.15)

where Nm
s represents the number of successful target suctions of the mth agent, Nm

i

represents the number of iterations of the mth agent.

We explore various training strategies to discover the most suitable training conditions

for robots:

Sim-and-Real: Only simulation samples are used to train and optimise the model

initially. When the suction success rate in the simulation reaches 0.5, we switch to the

CSAR method with 3 simulated robots and 1 real robot.

Sim-to-Real: Only simulation samples are used to train and optimise the model at

the beginning. When the suction success rate in the simulation reaches 0.5, we switch

to real-world training with 1 real robot.

6.2.2 Sim-and-Real is Better Than Sim-to-Real

Fig. 6.3 demonstrates the suction success rate of the real robot using two different

training strategies. The interaction topology of Sim-and-Real is shown in Fig. 6.4

(c). When applying the Sim-and-Real strategy, the suction success rate of the real

CHAPTER 6. SIM-AND-REAL RL FOR MANIPULATION 155

0 50 100 150 200 250
Number of real training steps

0.0

0.2

0.4

0.6

0.8

1.0

S
u
c
ti

o
n
 s

u
c
c
e
s
s
 r

a
te

Sim-to-Real

Sim-and-Real

Figure 6.3: Suction success rates of the real robot between “Sim-to-Real” and “Sim-
and-Real” strategies

(a) (b) (c)

Figure 6.4: Topology of the interaction of simulation and the real world: (a) 1
simulated robot and 1 real robot; (b) 2 simulated robots and 1 real robot; (c) 3
simulated robots and 1 real robot

robot reaches 80% at around 140 training steps, which outperforms the Sim-to-Real

strategy. Since our policy for each robot is greedy deterministic, a robot may execute

the same action repetitively if there is no environment change when using the Sim-to-

Real training strategy. However, by applying consensus-based training, the simulated

agent can be used to introduce noise indirectly into the sim-and-real environment,

which prevents robots from getting stuck in the same action. In summary, applying

the Sim-and-Real strategy leads to a faster training speed, which saves real-world

training costs.

CHAPTER 6. SIM-AND-REAL RL FOR MANIPULATION 156

6.2.3 Best Policy in Simulation is Not the Best for Sim-and-

Real Training

A striking observation from our experiment is that the best-obtained policy trained in

simulation is not the best pre-trained model to start the co-training between simulated

and real robots, as shown Fig. 6.5. When the suction success rate of the pre-trained

simulation model is 0.5, the Sim-and-Real strategy achieves the best performance.

When the suction success rate drops to 0.3, it takes longer for the real robot to solve

the task. Surprisingly, when the suction success rate of the pre-trained simulation

model is too high (0.7, 0.9), the performance deteriorates.

This is counterintuitive, as shown in the Sim-to-Real experiment, that the best policy

obtained in the simulation is typically the one to be deployed. This observation sug-

gests that the “mediocre” policy is the best for co-training. When the success rate of

the pre-trained simulation model is too high, the sim-and-real framework will be ini-

tialised at a value that is close to the optimal simulation value. This will take longer to

converge to the mixed optimality in a sim-and-real environment. As a result, applying

the “mediocre” policy can reduce real robot training costs and save the pre-training

time in the simulation.

0 50 100 150 200 250
Number of real training steps

0.0

0.2

0.4

0.6

0.8

1.0

S
u
c
ti

o
n
 s

u
c
c
e
s
s
 r

a
te

Sim-and-Real (0.3)

Sim-and-Real (0.7)

Sim-and-Real (0.9)

Sim-and-Real (0.5)

Sim-and-Real (0)

Figure 6.5: Suction success rates of the real robot with different initial weights when
applying the Sim-and-Real strategy. The number in brackets denotes the suction
success rate from the pre-trained simulation model.

CHAPTER 6. SIM-AND-REAL RL FOR MANIPULATION 157

0 50 100 150 200 250
Number of real training steps

0.0

0.2

0.4

0.6

0.8

1.0

S
u
c
ti

o
n
 s

u
c
c
e
s
s
 r

a
te

1 sim 1 real

2 sims 1 real

3 sims 1 real

Figure 6.6: Suction success rates of the real robot with different number of simulated
robots using Sim-and-Real strategy

6.2.4 The More Agents in Simulation, the Better for Sim-

and-Real Training

Readers may wonder why we use 3 simulated robots and 1 real robot during training.

Therefore, we vary the number of simulated robots when using the Sim-and-Real

strategy. Fig. 6.6 describes the suction success rate when using the Sim-and-Real

strategy with different numbers of simulated robots. The interaction topology used in

Fig. 6.6 is shown in Fig. 6.4. It takes around 260 steps to make the real robot arrive

at 80% suction success rate when using 1 simulated robot and 1 real robot strategy.

In the case of 2 simulated robots 1 real robot, the required training steps descend

to around 240. Only around 140 steps are required to maintain the same suction

success rate when using the 3 simulated robots 1 real robot strategy. More simulated

robots participating in the proposed framework can accelerate the training speed and

exhibit good robustness in the sim-and-real environment, thus decreasing the number

of required real robot training steps while maintaining a comparable suction success

rate.

6.2.5 Generalisation of Real-world Unseen Objects

The Sim-and-Real strategy is capable of generalising to novel objects (Fig. 6.7) with

a suction success rate of 80%. After training on cubes in both simulated and real

environments, the CSAR training model can also be applied to pick and place novel

CHAPTER 6. SIM-AND-REAL RL FOR MANIPULATION 158

objects such as cylinders and irregularly shaped objects with different heights, as shown

in Fig. 6.8.

(a) (b) (c)

Figure 6.7: Novel objects for validation: (a) Environment 1; (b) Environment 2; (c)
Environment 3

Figure 6.8: The demonstration of picking novel objects. More details can be seen in
the video.

6.3 Summary

In this chapter, we propose a CSAR approach which is able to improve sim-and-real

training speed and reduce real-world training costs. By implementing the Sim-and-

Real strategy, the suction success rate of the real robot attains 80% at around 140

training steps, which outperforms the Sim-to-Real strategy. Applying the “mediocre”

policy can not only reduce the number of required real robot training steps but also

save the pre-training time in the simulation. More simulated robots participating in

the CSAR method increase the training speed, thereby reducing real-world training

expenses. The Sim-and-Real strategy is also capable of generalising to novel objects.

The CSAR method is a straightforward generalization and practical verification of

CHAPTER 6. SIM-AND-REAL RL FOR MANIPULATION 159

the team’s recently developed theory of a consensus-based RL approach [224]. In

the future, an optimisation of the CSAR approach will be exploited to tackle more

complicated scenarios.

Chapter 7

Conclusion and Future Work

7.1 Conclusion

Manipulators have been widely used in various applications such as building blocks as-

sembling [436], picking and placing [246; 126], goal reaching [428], path planning [437],

human-robot interaction [410], etc. One ultimate goal of research about manipulators

is to explore algorithms that allow manipulators to interact with the environment

autonomously, thereby reducing the burden on human operations. In this thesis, we

develop four algorithms that enable manipulators to learn autonomously and cooper-

atively in both simulations and real environments.

First of all, we illustrate a new off-policy DRL method to deal with the problem of

path planning of the UR5 robot arm. Different from standard path planning methods,

this method is able to guarantee a smooth movement of the UR5 robot arm, and all

joint angles of the UR5 robot arm lie within the allowable range during each move-

ment. Moreover, a standard path planning method has been implemented on the real

UR5 robot arm as a baseline to compare and contrast the benefits and drawbacks of

both methods.

Furthermore, we pay attention to real-world experiments. A complete self-supervised

vision-based DRL method is developed for manipulators to learn to pick and place

objects. By encouraging the UR5 robot arm to suction the area close to the centre

of target objects, the training model with the proposed method is able to accomplish

160

CHAPTER 7. CONCLUSION AND FUTURE WORK 161

pick-and-place tasks in the real world with a suction success rate of 90% without any

real-world fine-tuning. Specially, a height-sensitive action policy is developed for the

proposed self-supervised vision-based DRL method to suction in a challenging envi-

ronment, i.e., crowded and stacked objects. The performance of the proposed method

is validated in both simulated and real environments. The presented approach can also

be applied to novel objects with a suction success rate of 90% without any fine-tuning

from the real world.

Additionally, we are also interested in extending research from single-agent DRL to

multi-agent DRL. A multi-agent training algorithm with actor-critic based off-policy

DRL and consensus-based distributed training is developed. The convergence of this

algorithm is verified in the presence of the actor training parameter and the critic

training parameter. A multi-agent training framework is proposed to support the

implementation of the algorithm. Compared with centralized training, the proposed

multi-agent training framework has better scalability with a limited communication

bandwidth when dealing with a large number of agents and protects the privacy of

each agent. The feasibility and efficiency of the proposed algorithm are validated by

experiments using several groups of UR5 robot arms.

Last but not least, we focus our attention on multi-agent real-world applications. A

complete CSAR method is proposed for manipulators to learn pick-and-place tasks.

By applying consensus-based training, the proposed method saves training time and

reduces the number of required real robot training steps while maintaining a compa-

rable suction success rate, which is cost-effective. An end-to-end and lightweight NN

is proposed to train the suction policy, which uses raw 3D visual data directly with-

out pre-labelling. The effectiveness and feasibility of the CSAR method are validated

through simulation and real-world experiments.

In summary, this thesis provides an extensive exploration of the research on DRL with

consensus for manipulators. Some potential future work directions which are worth

being considered are provided in the next section.

CHAPTER 7. CONCLUSION AND FUTURE WORK 162

7.2 Future Work

Some potential future work directions are listed as follows:

1. Designing more complex vision algorithms for moving objects. In Chapter 6,

RGB-D images are used for DRL vision inputs and all the target objects are

static. How to use visual information to deal with dynamic objects should be

further investigated.

2. Using different types of grippers to handle various tasks. In this thesis, suction

grippers are applied for pick-and-place cubes in the real world. However, two-

finger grippers are more suitable for grasping arbitrarily shaped objects such as

cups, scissors, etc. Thus, using two-finger grippers to pick and place arbitrarily

shaped objects will be conducted in the future.

3. Combining adaptive control with DRL. With the complexity and diversification

of industrial field tasks, a single robotic arm can no longer meet the needs of

actual working conditions. If adaptive control and DRL are combined to handle

nonlinear tasks in MASs, the complexity and cost of the system can be greatly

reduced. Due to the huge application prospects of the manipulator system in

practice, the study of combining adaptive control and DRL with robotic arms

has great potential value for theoretical research and practical application.

4. Making an automatic sorting system with manipulators using DRL. In the tra-

ditional industrial production progress, the controller directs the robotic arm to

complete production tasks. Since every action of the robotic arm is planned, the

robot arm lacks flexibility if the tasks change suddenly. Therefore, an interesting

direction will be designing an automatic sorting system with manipulators us-

ing DRL, which will improve the intelligence and adaptability of the traditional

industrial production progress significantly.

CHAPTER 7. CONCLUSION AND FUTURE WORK 163

5. Developing an algorithm that allows heterogeneous training. An important as-

sumption in Chapter 5 is that all agents share the same training task and sce-

nario, which may be regarded as a limitation. A potential future working direc-

tion could be exploring algorithms which enable heterogeneous training.

Bibliography

[1] R. Munoz-Salinas, “Aruco: a minimal library for augmented reality applications

based on opencv,” Universidad de Córdoba, vol. 386, 2012.

[2] Y. Zhang and M. M. Zavlanos, “Distributed off-policy actor-critic reinforcement

learning with policy consensus,” in 2019 IEEE 58th Conference on Decision and

Control (CDC), pp. 4674–4679, IEEE, 2019.

[3] P. Pennesi and I. C. Paschalidis, “A distributed actor-critic algorithm and ap-

plications to mobile sensor network coordination problems,” IEEE Transactions

on Automatic Control, vol. 55, no. 2, pp. 492–497, 2010.

[4] J. Bruce and M. M. Veloso, “Real-time randomized path planning for robot

navigation,” in Robot soccer world cup, pp. 288–295, Springer, 2002.

[5] J. Barraquand, B. Langlois, and J.-C. Latombe, “Numerical potential field tech-

niques for robot path planning,” IEEE transactions on systems, man, and cy-

bernetics, vol. 22, no. 2, pp. 224–241, 1992.

[6] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast mobile

robots,” IEEE Transactions on systems, Man, and Cybernetics, vol. 19, no. 5,

pp. 1179–1187, 1989.

[7] J. Borenstein, Y. Koren, et al., “Histogramic in-motion mapping for mobile robot

obstacle avoidance,” IEEE Transactions on robotics and automation, vol. 7,

no. 4, pp. 535–539, 1991.

[8] J. Mo, Z.-F. Shao, L. Guan, F. Xie, and X. Tang, “Dynamic performance analysis

of the x4 high-speed pick-and-place parallel robot,” Robotics and Computer-

Integrated Manufacturing, vol. 46, pp. 48–57, 2017.

164

BIBLIOGRAPHY 165

[9] F. Nagata, K. Miki, A. Otsuka, K. Yoshida, K. Watanabe, and M. K. Habib,

“Pick and place robot using visual feedback control and transfer learning-based

cnn,” in 2020 IEEE International Conference on Mechatronics and Automation

(ICMA), pp. 850–855, IEEE, 2020.

[10] F. Belkhouche, B. Belkhouche, and P. Rastgoufard, “Parallel navigation for

reaching a moving goal by a mobile robot,” Robotica, vol. 25, no. 1, pp. 63–

74, 2007.

[11] L. Jamone, L. Natale, F. Nori, G. Metta, and G. Sandini, “Autonomous online

learning of reaching behavior in a humanoid robot,” International Journal of

Humanoid Robotics, vol. 9, no. 03, p. 1250017, 2012.

[12] C.-H. Chen, T.-K. Liu, and J.-H. Chou, “A novel crowding genetic algorithm

and its applications to manufacturing robots,” IEEE Transactions on Industrial

Informatics, vol. 10, no. 3, pp. 1705–1716, 2014.

[13] H. Robinson, B. MacDonald, and E. Broadbent, “The role of healthcare robots

for older people at home: A review,” International Journal of Social Robotics,

vol. 6, pp. 575–591, 2014.

[14] F. Amigoni, “Experimental evaluation of some exploration strategies for mobile

robots,” in 2008 IEEE International Conference on Robotics and Automation,

pp. 2818–2823, IEEE, 2008.

[15] K. M. Wurm, C. Stachniss, and W. Burgard, “Coordinated multi-robot explo-

ration using a segmentation of the environment,” in 2008 IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems, pp. 1160–1165, IEEE, 2008.

[16] H. Geering, L. Guzzella, S. Hepner, and C. Onder, “Time-optimal motions of

robots in assembly tasks,” IEEE transactions on automatic control, vol. 31, no. 6,

pp. 512–518, 1986.

[17] L. Sciavicco and B. Siciliano, Modelling and control of robot manipulators.

Springer Science & Business Media, 2001.

[18] M. W. Spong, “On the robust control of robot manipulators,” IEEE Transactions

on automatic control, vol. 37, no. 11, pp. 1782–1786, 1992.

BIBLIOGRAPHY 166

[19] J.-J. E. Slotine and W. Li, “On the adaptive control of robot manipulators,”

The international journal of robotics research, vol. 6, no. 3, pp. 49–59, 1987.

[20] P. J. Alhama Blanco, F. J. Abu-Dakka, and M. Abderrahim, “Practical use

of robot manipulators as intelligent manufacturing systems,” Sensors, vol. 18,

no. 9, p. 2877, 2018.

[21] B. Hamner, S. Koterba, J. Shi, R. Simmons, and S. Singh, “An autonomous

mobile manipulator for assembly tasks,” Autonomous Robots, vol. 28, pp. 131–

149, 2010.

[22] W. Khalil, M. Gautier, and P. Lemoine, “Identification of the payload inertial

parameters of industrial manipulators,” in Proceedings 2007 IEEE International

Conference on Robotics and Automation, pp. 4943–4948, IEEE, 2007.

[23] S. S. Perumaal and N. Jawahar, “Automated trajectory planner of industrial

robot for pick-and-place task,” International Journal of Advanced Robotic Sys-

tems, vol. 10, no. 2, p. 100, 2013.

[24] K. Ghadge, S. More, P. Gaikwad, and S. Chillal, “Robotic arm for pick and place

application,” International Journal of Mechanical Engineering and Technology,

vol. 9, no. 1, pp. 125–133, 2018.

[25] A. W. Schell, G. Kewes, T. Schröder, J. Wolters, T. Aichele, and O. Benson,

“A scanning probe-based pick-and-place procedure for assembly of integrated

quantum optical hybrid devices,” Review of Scientific Instruments, vol. 82, no. 7,

p. 073709, 2011.

[26] P. Dzitac and A. M. Mazid, “A depth sensor to control pick-and-place robots for

fruit packaging,” in 2012 12th International Conference on Control Automation

Robotics & Vision (ICARCV), pp. 949–954, IEEE, 2012.

[27] A. Björnsson, M. Jonsson, and K. Johansen, “Automated material handling in

composite manufacturing using pick-and-place systems–a review,” Robotics and

Computer-Integrated Manufacturing, vol. 51, pp. 222–229, 2018.

BIBLIOGRAPHY 167

[28] R. Mattone, M. Divona, and A. Wolf, “Sorting of items on a moving conveyor

belt. part 2: performance evaluation and optimization of pick-and-place op-

erations,” Robotics and Computer-Integrated Manufacturing, vol. 16, no. 2-3,

pp. 81–90, 2000.

[29] A. Smirnov, A. Kashevnik, N. Teslya, S. Mikhailov, and A. Shabaev, “Smart-

m3-based robots self-organization in pick-and-place system,” in 2015 17th Con-

ference of Open Innovations Association (FRUCT), pp. 210–215, IEEE, 2015.

[30] D. W. Pearson, N. C. Steele, R. F. Albrecht, E. Cervera, and A. P. del Pobil,

“Self-organizing maps for supervision in robot pick-and-place operations,” in

Artificial Neural Nets and Genetic Algorithms: Proceedings of the International

Conference in Alès, France, 1995, pp. 372–375, Springer, 1995.

[31] R. Kumar, S. Lal, S. Kumar, and P. Chand, “Object detection and recognition

for a pick and place robot,” in Asia-Pacific world congress on computer science

and engineering, pp. 1–7, IEEE, 2014.

[32] A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. R. Hogan, M. Bauza, D. Ma, O. Taylor,

M. Liu, E. Romo, et al., “Robotic pick-and-place of novel objects in clutter with

multi-affordance grasping and cross-domain image matching,” The International

Journal of Robotics Research, vol. 41, no. 7, pp. 690–705, 2022.

[33] G. Garimella and M. Kobilarov, “Towards model-predictive control for aerial

pick-and-place,” in 2015 IEEE international conference on robotics and automa-

tion (ICRA), pp. 4692–4697, IEEE, 2015.

[34] J.-P. Saut, M. Gharbi, J. Cortés, D. Sidobre, and T. Siméon, “Planning pick-

and-place tasks with two-hand regrasping,” in 2010 IEEE/RSJ International

Conference on Intelligent Robots and Systems, pp. 4528–4533, IEEE, 2010.

[35] P. Bellandi, F. Docchio, and G. Sansoni, “Roboscan: a combined 2d and 3d vi-

sion system for improved speed and flexibility in pick-and-place operation,” The

International Journal of Advanced Manufacturing Technology, vol. 69, pp. 1873–

1886, 2013.

BIBLIOGRAPHY 168

[36] A. A. Maciejewski and C. A. Klein, “Obstacle avoidance for kinematically re-

dundant manipulators in dynamically varying environments,” The international

journal of robotics research, vol. 4, no. 3, pp. 109–117, 1985.

[37] T. Greville, “The pseudoinverse of a rectangular or singular matrix and its ap-

plication to the solution of systems of linear equations,” SIAM review, vol. 1,

no. 1, pp. 38–43, 1959.

[38] B. Dasgupta and T. Mruthyunjaya, “Singularity-free path planning for the stew-

art platform manipulator,” Mechanism and Machine Theory, vol. 33, no. 6,

pp. 711–725, 1998.

[39] S. R. Buss, “Introduction to inverse kinematics with jacobian transpose, pseu-

doinverse and damped least squares methods,” IEEE Journal of Robotics and

Automation, vol. 17, no. 1-19, p. 16, 2004.

[40] H. Kaneko, T. Arai, K. Inoue, and Y. Mae, “Real-time obstacle avoidance

for robot arm using collision jacobian,” in Proceedings 1999 IEEE/RSJ Inter-

national Conference on Intelligent Robots and Systems. Human and Environ-

ment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.

99CH36289), vol. 2, pp. 617–622, IEEE, 1999.

[41] A. Ata and T. Myo, “Collision-free trajectory planning for manipulators using

generalized pattern search,” International journal of simulation modelling, vol. 5,

no. 4, pp. 145–154, 2006.

[42] K.-K. Lee, Y. Komoguchi, and M. Buss, “Multiple obstacles avoidance for kine-

matically redundant manipulators using jacobian transpose method,” in SICE

Annual Conference 2007, pp. 1070–1076, IEEE, 2007.

[43] H.-I. Lin, Y.-Y. Chen, and Y.-Y. Chen, “Robot vision to recognize both object

and rotation for robot pick-and-place operation,” in 2015 international confer-

ence on advanced robotics and intelligent systems (aris), pp. 1–6, IEEE, 2015.

[44] T. Kotthauser and G. F. Mauer, “Vision-based autonomous robot control for

pick and place operations,” in 2009 IEEE/ASME International Conference on

Advanced Intelligent Mechatronics, pp. 1851–1855, IEEE, 2009.

BIBLIOGRAPHY 169

[45] P.-C. Huang and A. K. Mok, “A case study of cyber-physical system design: Au-

tonomous pick-and-place robot,” in 2018 IEEE 24th international conference on

embedded and real-time computing systems and applications (RTCSA), pp. 22–

31, IEEE, 2018.

[46] T. Gecks and D. Henrich, “Human-robot cooperation: Safe pick-and-place oper-

ations,” in ROMAN 2005. IEEE International Workshop on Robot and Human

Interactive Communication, 2005., pp. 549–554, IEEE, 2005.

[47] H. M. Qul’am, T. Dewi, P. Risma, Y. Oktarina, and D. Permatasari, “Edge

detection for online image processing of a vision guide pick and place robot,” in

2019 International Conference on Electrical Engineering and Computer Science

(ICECOS), pp. 102–106, IEEE, 2019.

[48] A. Abdulkareem, O. Ladenegan, A. Agbetuyi, and C. Awosope, “Design and

implementation of a prototype remote-controlled pick and place robot,” Inter-

national Journal of Mechanical Engineering and Technology, vol. 10, no. 2, 2019.

[49] R. V. Sharan and G. C. Onwubolu, “Client-server control architecture for a

vision-based pick-and-place robot,” Proceedings of the Institution of Mechan-

ical Engineers, Part B: Journal of Engineering Manufacture, vol. 226, no. 8,

pp. 1369–1378, 2012.

[50] K. Harish, D. Megha, M. Shuklambari, K. Amit, and K. J. Chaitanya, “Pick and

place robotic arm using arduino,” International Journal of Science, Engineering

and Technology Research (IJSETR) Volume, vol. 6, pp. 1568–73, 2017.

[51] S. Smys and G. Ranganathan, “Robot assisted sensing control and manufacture

in automobile industry,” Journal of ISMAC, vol. 1, no. 03, pp. 180–187, 2019.

[52] K. Mølhave, T. Wich, A. Kortschack, and P. Bøggild, “Pick-and-place nanoma-

nipulation using microfabricated grippers,” Nanotechnology, vol. 17, no. 10,

p. 2434, 2006.

[53] A. Cowley, B. Cohen, W. Marshall, C. J. Taylor, and M. Likhachev, “Perception

and motion planning for pick-and-place of dynamic objects,” in 2013 IEEE/RSJ

BIBLIOGRAPHY 170

International Conference on Intelligent Robots and Systems, pp. 816–823, IEEE,

2013.

[54] A. Iriondo, E. Lazkano, L. Susperregi, J. Urain, A. Fernandez, and J. Molina,

“Pick and place operations in logistics using a mobile manipulator controlled

with deep reinforcement learning,” Applied Sciences, vol. 9, no. 2, p. 348, 2019.

[55] S. D. Han, S. W. Feng, and J. Yu, “Toward fast and optimal robotic pick-and-

place on a moving conveyor,” IEEE Robotics and Automation Letters, vol. 5,

no. 2, pp. 446–453, 2019.

[56] Z. Zhang, J. Liu, X. Wang, Q. Zhao, C. Zhou, M. Tan, H. Pu, S. Xie, and

Y. Sun, “Robotic pick-and-place of multiple embryos for vitrification,” IEEE

Robotics and Automation Letters, vol. 2, no. 2, pp. 570–576, 2016.

[57] H. Mnyusiwalla, P. Triantafyllou, P. Sotiropoulos, M. A. Roa, W. Friedl, A. M.

Sundaram, D. Russell, and G. Deacon, “A bin-picking benchmark for systematic

evaluation of robotic pick-and-place systems,” IEEE Robotics and Automation

Letters, vol. 5, no. 2, pp. 1389–1396, 2020.

[58] C.-Y. Tsai, C.-C. Wong, C.-J. Yu, C.-C. Liu, and T.-Y. Liu, “A hybrid switched

reactive-based visual servo control of 5-dof robot manipulators for pick-and-place

tasks,” IEEE Systems Journal, vol. 9, no. 1, pp. 119–130, 2014.

[59] M. Ghadiri Nejad, S. M. Shavarani, H. Güden, and R. V. Barenji, “Process

sequencing for a pick-and-place robot in a real-life flexible robotic cell,” The In-

ternational Journal of Advanced Manufacturing Technology, vol. 103, pp. 3613–

3627, 2019.

[60] J. T. Schwartz and M. Sharir, “A survey of motion planning and related geo-

metric algorithms,” Artificial Intelligence, vol. 37, no. 1-3, pp. 157–169, 1988.

[61] A. Bhatia, M. R. Maly, L. E. Kavraki, and M. Y. Vardi, “Motion planning

with complex goals,” IEEE Robotics & Automation Magazine, vol. 18, no. 3,

pp. 55–64, 2011.

BIBLIOGRAPHY 171

[62] M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal, “Stomp:

Stochastic trajectory optimization for motion planning,” in 2011 IEEE interna-

tional conference on robotics and automation, pp. 4569–4574, IEEE, 2011.

[63] C. R. Garrett, T. Lozano-Pérez, and L. P. Kaelbling, “Ffrob: An efficient heuris-

tic for task and motion planning,” in Algorithmic Foundations of Robotics XI:

Selected Contributions of the Eleventh International Workshop on the Algorith-

mic Foundations of Robotics, pp. 179–195, Springer, 2015.

[64] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion

planning,” The international journal of robotics research, vol. 30, no. 7, pp. 846–

894, 2011.

[65] J.-P. Laumond et al., Robot motion planning and control, vol. 229. Springer,

1998.

[66] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil,

K. Goldberg, and P. Abbeel, “Motion planning with sequential convex opti-

mization and convex collision checking,” The International Journal of Robotics

Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[67] A. Israr, Z. A. Ali, E. H. Alkhammash, and J. J. Jussila, “Optimization methods

applied to motion planning of unmanned aerial vehicles: A review,” Drones,

vol. 6, no. 5, p. 126, 2022.

[68] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed rrt*: Optimal

sampling-based path planning focused via direct sampling of an admissible el-

lipsoidal heuristic,” in 2014 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 2997–3004, IEEE, 2014.

[69] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp: Gradient opti-

mization techniques for efficient motion planning,” in 2009 IEEE international

conference on robotics and automation, pp. 489–494, IEEE, 2009.

BIBLIOGRAPHY 172

[70] R. Bonalli, A. Cauligi, A. Bylard, and M. Pavone, “Gusto: Guaranteed sequen-

tial trajectory optimization via sequential convex programming,” in 2019 Inter-

national conference on robotics and automation (ICRA), pp. 6741–6747, IEEE,

2019.

[71] S. Banerjee, T. Lew, R. Bonalli, A. Alfaadhel, I. A. Alomar, H. M. Shageer,

and M. Pavone, “Learning-based warm-starting for fast sequential convex pro-

gramming and trajectory optimization,” in 2020 IEEE Aerospace Conference,

pp. 1–8, IEEE, 2020.

[72] T. Lew, R. Bonalli, and M. Pavone, “Chance-constrained sequential convex pro-

gramming for robust trajectory optimization,” in 2020 European Control Con-

ference (ECC), pp. 1871–1878, IEEE, 2020.

[73] C. Yuan, W. Zhang, G. Liu, X. Pan, and X. Liu, “A heuristic rapidly-exploring

random trees method for manipulator motion planning,” IEEE Access, vol. 8,

pp. 900–910, 2019.

[74] K. P. Ferentinos, K. G. Arvanitis, and N. Sigrimis, “Heuristic optimization meth-

ods for motion planning of autonomous agricultural vehicles,” Journal of Global

Optimization, vol. 23, no. 2, p. 155, 2002.

[75] J. Wen, X. Zhang, H. Gao, J. Yuan, and Y. Fang, “E 3 mop: Efficient mo-

tion planning based on heuristic-guided motion primitives pruning and path

optimization with sparse-banded structure,” IEEE Transactions on Automation

Science and Engineering, vol. 19, no. 4, pp. 2762–2775, 2021.

[76] F. Duchoň, A. Babinec, M. Kajan, P. Beňo, M. Florek, T. Fico, and L. Jurišica,

“Path planning with modified a star algorithm for a mobile robot,” Procedia

engineering, vol. 96, pp. 59–69, 2014.

[77] A. Stentz et al., “The focussed dˆ* algorithm for real-time replanning,” in IJCAI,

vol. 95, pp. 1652–1659, 1995.

[78] J. Lander and G. CONTENT, “Making kine more flexible,” Game Developer

Magazine, vol. 1, no. 15-22, p. 2, 1998.

BIBLIOGRAPHY 173

[79] R. Mukundan, “A robust inverse kinematics algorithm for animating a joint

chain,” International Journal of Computer Applications in Technology, vol. 34,

no. 4, pp. 303–308, 2009.

[80] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning: A re-

view,” Ieee access, vol. 2, pp. 56–77, 2014.

[81] S. R. Lindemann and S. M. LaValle, “Current issues in sampling-based motion

planning,” in Robotics Research. The Eleventh International Symposium: With

303 Figures, pp. 36–54, Springer, 2005.

[82] Z. Kingston, M. Moll, and L. E. Kavraki, “Sampling-based methods for motion

planning with constraints,” Annual review of control, robotics, and autonomous

systems, vol. 1, pp. 159–185, 2018.

[83] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic

roadmaps for path planning in high-dimensional configuration spaces,” IEEE

transactions on Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[84] A. Bhatia, L. E. Kavraki, and M. Y. Vardi, “Sampling-based motion planning

with temporal goals,” in 2010 IEEE International Conference on Robotics and

Automation, pp. 2689–2696, IEEE, 2010.

[85] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. Kavraki, “Sampling-

based roadmap of trees for parallel motion planning,” IEEE Transactions on

Robotics, vol. 21, no. 4, pp. 597–608, 2005.

[86] R. S. Sutton, A. G. Barto, et al., “Reinforcement learning,” Journal of Cognitive

Neuroscience, vol. 11, no. 1, pp. 126–134, 1999.

[87] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A

survey,” Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996.

[88] O. Arslan and P. Tsiotras, “Use of relaxation methods in sampling-based algo-

rithms for optimal motion planning,” in 2013 IEEE International Conference on

Robotics and Automation, pp. 2421–2428, IEEE, 2013.

BIBLIOGRAPHY 174

[89] A.-A. Agha-Mohammadi, S. Chakravorty, and N. M. Amato, “Firm: Sampling-

based feedback motion-planning under motion uncertainty and imperfect mea-

surements,” The International Journal of Robotics Research, vol. 33, no. 2,

pp. 268–304, 2014.

[90] V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, J. Pineau, et al.,

“An introduction to deep reinforcement learning,” Foundations and Trends® in

Machine Learning, vol. 11, no. 3-4, pp. 219–354, 2018.

[91] P. Dayan and Y. Niv, “Reinforcement learning: the good, the bad and the ugly,”

Current opinion in neurobiology, vol. 18, no. 2, pp. 185–196, 2008.

[92] A. L. Samuel, “Some studies in machine learning using the game of checkers,”

IBM Journal of research and development, vol. 3, no. 3, pp. 210–229, 1959.

[93] R. S. Sutton, “Learning to predict by the methods of temporal differences,”

Machine learning, vol. 3, no. 1, pp. 9–44, 1988.

[94] P. Kormushev, S. Calinon, and D. G. Caldwell, “Reinforcement learning in

robotics: Applications and real-world challenges,” Robotics, vol. 2, no. 3,

pp. 122–148, 2013.

[95] J. Peters, S. Vijayakumar, and S. Schaal, “Reinforcement learning for humanoid

robotics,” in Proceedings of the third IEEE-RAS international conference on

humanoid robots, pp. 1–20, 2003.

[96] A. Jeerige, D. Bein, and A. Verma, “Comparison of deep reinforcement learning

approaches for intelligent game playing,” in 2019 IEEE 9th Annual Computing

and Communication Workshop and Conference (CCWC), pp. 0366–0371, IEEE,

2019.

[97] A. R. Sharma and P. Kaushik, “Literature survey of statistical, deep and rein-

forcement learning in natural language processing,” in 2017 International Con-

ference on Computing, Communication and Automation (ICCCA), pp. 350–354,

IEEE, 2017.

BIBLIOGRAPHY 175

[98] S. L. Marie-Sainte, N. Alalyani, S. Alotaibi, S. Ghouzali, and I. Abunadi, “Arabic

natural language processing and machine learning-based systems,” IEEE Access,

vol. 7, pp. 7011–7020, 2018.

[99] P. N. Kolm and G. Ritter, “Modern perspectives on reinforcement learning in

finance,” Modern Perspectives on Reinforcement Learning in Finance (September

6, 2019). The Journal of Machine Learning in Finance, vol. 1, no. 1, 2020.

[100] A. Charpentier, R. Elie, and C. Remlinger, “Reinforcement learning in economics

and finance,” Computational Economics, pp. 1–38, 2021.

[101] Y. Wang, C. Tang, S. Wang, L. Cheng, R. Wang, M. Tan, and Z. Hou, “Target

tracking control of a biomimetic underwater vehicle through deep reinforcement

learning,” IEEE Transactions on Neural Networks and Learning Systems, 2021.

[102] J. Hu, H. Niu, J. Carrasco, B. Lennox, and F. Arvin, “Voronoi-based multi-robot

autonomous exploration in unknown environments via deep reinforcement learn-

ing,” IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp. 14413–

14423, 2020.

[103] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics:

A survey,” The International Journal of Robotics Research, vol. 32, no. 11,

pp. 1238–1274, 2013.

[104] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep re-

inforcement learning: A brief survey,” IEEE Signal Processing Magazine, vol. 34,

no. 6, pp. 26–38, 2017.

[105] S. Lange, M. Riedmiller, and A. Voigtländer, “Autonomous reinforcement learn-

ing on raw visual input data in a real world application,” in The 2012 interna-

tional joint conference on neural networks (IJCNN), pp. 1–8, IEEE, 2012.

[106] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Master-

ing the game of go with deep neural networks and tree search,” nature, vol. 529,

no. 7587, p. 484, 2016.

BIBLIOGRAPHY 176

[107] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,

T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go

without human knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[108] P. Tynecki, A. Guziński, J. Kazimierczak, M. Jadczuk, J. Dastych, and

A. Onisko, “Phageai-bacteriophage life cycle recognition with machine learning

and natural language processing,” BioRxiv, pp. 2020–07, 2020.

[109] R. Chai, A. Tsourdos, A. Savvaris, S. Chai, Y. Xia, and C. P. Chen, “Six-

dof spacecraft optimal trajectory planning and real-time attitude control: a

deep neural network-based approach,” IEEE transactions on neural networks

and learning systems, vol. 31, no. 11, pp. 5005–5013, 2019.

[110] X. Yang, Z. Ji, J. Wu, Y.-K. Lai, C. Wei, G. Liu, and R. Setchi, “Hierarchical re-

inforcement learning with universal policies for multistep robotic manipulation,”

IEEE Transactions on Neural Networks and Learning Systems, 2021.

[111] Z. Rao, Y. Wu, Z. Yang, W. Zhang, S. Lu, W. Lu, and Z. Zha, “Visual navigation

with multiple goals based on deep reinforcement learning,” IEEE Transactions

on Neural Networks and Learning Systems, 2021.

[112] M. Everett, B. Lütjens, and J. P. How, “Certifiable robustness to adversarial

state uncertainty in deep reinforcement learning,” IEEE Transactions on Neural

Networks and Learning Systems, 2021.

[113] W. Meng, Q. Zheng, Y. Shi, and G. Pan, “An off-policy trust region policy opti-

mization method with monotonic improvement guarantee for deep reinforcement

learning,” IEEE Transactions on Neural Networks and Learning Systems, 2021.

[114] R. Mao, R. Cui, and C. P. Chen, “Broad learning with reinforcement learn-

ing signal feedback: Theory and applications,” IEEE Transactions on Neural

Networks and Learning Systems, 2021.

[115] R. S. Sutton, “Introduction: The challenge of reinforcement learning,” in Rein-

forcement Learning, pp. 1–3, Springer, 1992.

BIBLIOGRAPHY 177

[116] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooperative

agents,” in Proceedings of the tenth international conference on machine learn-

ing, pp. 330–337, 1993.

[117] W. Wang, X. Chen, H. Fu, and M. Wu, “Model-free distributed consensus control

based on actor-critic framework for discrete-time nonlinear multiagent systems,”

IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018.

[118] A. Alhogail and A. Alsabih, “Applying machine learning and natural language

processing to detect phishing email,” Computers & Security, vol. 110, p. 102414,

2021.

[119] S. S. Mousavi, M. Schukat, and E. Howley, “Deep reinforcement learning: an

overview,” in Proceedings of SAI Intelligent Systems Conference, pp. 426–440,

Springer, 2016.

[120] N. C. Luong, D. T. Hoang, S. Gong, D. Niyato, P. Wang, Y.-C. Liang, and

D. I. Kim, “Applications of deep reinforcement learning in communications and

networking: A survey,” IEEE Communications Surveys & Tutorials, vol. 21,

no. 4, pp. 3133–3174, 2019.

[121] W. Y. Wang, J. Li, and X. He, “Deep reinforcement learning for nlp,” in Pro-

ceedings of the 56th Annual Meeting of the Association for Computational Lin-

guistics: Tutorial Abstracts, pp. 19–21, 2018.

[122] E.-A. Costea et al., “Machine learning-based natural language processing algo-

rithms and electronic health records data,” Linguistic and Philosophical Inves-

tigations, no. 19, pp. 93–99, 2020.

[123] P. F. Christiano, J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei, “Deep

reinforcement learning from human preferences,” Advances in neural information

processing systems, vol. 30, 2017.

[124] G. Lample and D. S. Chaplot, “Playing fps games with deep reinforcement learn-

ing,” in Thirty-First AAAI Conference on Artificial Intelligence, 2017.

BIBLIOGRAPHY 178

[125] S. Song, A. Zeng, J. Lee, and T. Funkhouser, “Grasping in the wild: Learning

6dof closed-loop grasping from low-cost demonstrations,” IEEE Robotics and

Automation Letters, vol. 5, no. 3, pp. 4978–4985, 2020.

[126] A. Zeng, S. Song, S. Welker, J. Lee, A. Rodriguez, and T. Funkhouser, “Learning

synergies between pushing and grasping with self-supervised deep reinforcement

learning,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pp. 4238–4245, IEEE, 2018.

[127] A. Zeng, S. Song, J. Lee, A. Rodriguez, and T. Funkhouser, “Tossingbot: Learn-

ing to throw arbitrary objects with residual physics,” IEEE Transactions on

Robotics, vol. 36, no. 4, pp. 1307–1319, 2020.

[128] J. Kober, E. Oztop, and J. Peters, “Reinforcement learning to adjust robot

movements to new situations,” in Twenty-Second International Joint Conference

on Artificial Intelligence, 2011.

[129] K. Zakka, A. Zeng, J. Lee, and S. Song, “Form2fit: Learning shape priors for

generalizable assembly from disassembly,” in 2020 IEEE International Confer-

ence on Robotics and Automation (ICRA), pp. 9404–9410, IEEE, 2020.

[130] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. Mc-

Grew, J. Tobin, O. P. Abbeel, and W. Zaremba, “Hindsight experience replay,”

in Advances in neural information processing systems, pp. 5048–5058, 2017.

[131] J. Matas, S. James, and A. J. Davison, “Sim-to-real reinforcement learning for

deformable object manipulation,” in Conference on Robot Learning, pp. 734–743,

PMLR, 2018.

[132] E. Salvato, G. Fenu, E. Medvet, and F. A. Pellegrino, “Crossing the reality

gap: A survey on sim-to-real transferability of robot controllers in reinforcement

learning,” IEEE Access, vol. 9, pp. 153171–153187, 2021.

[133] S. James and E. Johns, “3d simulation for robot arm control with deep q-

learning,” arXiv preprint arXiv:1609.03759, 2016.

BIBLIOGRAPHY 179

[134] J. Varley, J. Weisz, J. Weiss, and P. Allen, “Generating multi-fingered robotic

grasps via deep learning,” in 2015 IEEE/RSJ international conference on intel-

ligent robots and systems (IROS), pp. 4415–4420, IEEE, 2015.

[135] M. Veres, M. Moussa, and G. W. Taylor, “Modeling grasp motor imagery through

deep conditional generative models,” IEEE Robotics and Automation Letters,

vol. 2, no. 2, pp. 757–764, 2017.

[136] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi,

“Target-driven visual navigation in indoor scenes using deep reinforcement learn-

ing,” in 2017 IEEE international conference on robotics and automation (ICRA),

pp. 3357–3364, IEEE, 2017.

[137] N. Liu, Y. Cai, T. Lu, R. Wang, and S. Wang, “Real–sim–real transfer for real-

world robot control policy learning with deep reinforcement learning,” Applied

Sciences, vol. 10, no. 5, p. 1555, 2020.

[138] B. Planche, Z. Wu, K. Ma, S. Sun, S. Kluckner, O. Lehmann, T. Chen, A. Hut-

ter, S. Zakharov, H. Kosch, et al., “Depthsynth: Real-time realistic synthetic

data generation from cad models for 2.5 d recognition,” in 2017 International

Conference on 3D Vision (3DV), pp. 1–10, IEEE, 2017.

[139] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for data: Ground

truth from computer games,” in European conference on computer vision,

pp. 102–118, Springer, 2016.

[140] Y. Chebotar, A. Handa, V. Makoviychuk, M. Macklin, J. Issac, N. Ratliff, and

D. Fox, “Closing the sim-to-real loop: Adapting simulation randomization with

real world experience,” in 2019 International Conference on Robotics and Au-

tomation (ICRA), pp. 8973–8979, IEEE, 2019.

[141] M. Witman, D. Gidon, D. B. Graves, B. Smit, and A. Mesbah, “Sim-to-real

transfer reinforcement learning for control of thermal effects of an atmospheric

pressure plasma jet,” Plasma Sources Science and Technology, vol. 28, no. 9,

p. 095019, 2019.

BIBLIOGRAPHY 180

[142] M. Breyer, F. Furrer, T. Novkovic, R. Siegwart, and J. Nieto, “Flexible robotic

grasping with sim-to-real transfer based reinforcement learning,” arXiv preprint

arXiv:1803.04996, 2018.

[143] J. Tan, Z. Xie, B. Boots, and C. K. Liu, “Simulation-based design of dynamic

controllers for humanoid balancing,” in 2016 IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), pp. 2729–2736, IEEE, 2016.

[144] S. Zhu, A. Kimmel, K. E. Bekris, and A. Boularias, “Fast model identi-

fication via physics engines for data-efficient policy search,” arXiv preprint

arXiv:1710.08893, 2017.

[145] J. P. Hanna and P. Stone, “Grounded action transformation for robot learning

in simulation,” in Thirty-first AAAI conference on artificial intelligence, 2017.

[146] A. Farchy, S. Barrett, P. MacAlpine, and P. Stone, “Humanoid robots learning

to walk faster: From the real world to simulation and back,” in Proceedings of the

2013 international conference on Autonomous agents and multi-agent systems,

pp. 39–46, 2013.

[147] P. M. Scheikl, E. Tagliabue, B. Gyenes, M. Wagner, D. Dall’Alba, P. Fiorini,

and F. Mathis-Ullrich, “Sim-to-real transfer for visual reinforcement learning of

deformable object manipulation for robot-assisted surgery,” IEEE Robotics and

Automation Letters, vol. 8, no. 2, pp. 560–567, 2022.

[148] Q. Vuong, S. Vikram, H. Su, S. Gao, and H. I. Christensen, “How to pick

the domain randomization parameters for sim-to-real transfer of reinforcement

learning policies?,” arXiv preprint arXiv:1903.11774, 2019.

[149] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real transfer

of robotic control with dynamics randomization,” in 2018 IEEE international

conference on robotics and automation (ICRA), pp. 3803–3810, IEEE, 2018.

[150] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain

randomization for transferring deep neural networks from simulation to the real

world,” in 2017 IEEE/RSJ international conference on intelligent robots and

systems (IROS), pp. 23–30, IEEE, 2017.

BIBLIOGRAPHY 181

[151] S. James, A. J. Davison, and E. Johns, “Transferring end-to-end visuomotor

control from simulation to real world for a multi-stage task,” in Conference on

Robot Learning, pp. 334–343, PMLR, 2017.

[152] O. M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pa-

chocki, A. Petron, M. Plappert, G. Powell, A. Ray, et al., “Learning dexterous

in-hand manipulation,” The International Journal of Robotics Research, vol. 39,

no. 1, pp. 3–20, 2020.

[153] F. Sadeghi and S. Levine, “Cad2rl: Real single-image flight without a single real

image,” arXiv preprint arXiv:1611.04201, 2016.

[154] S. W. Abeyruwan, L. Graesser, D. B. D’Ambrosio, A. Singh, A. Shankar, A. Be-

wley, D. Jain, K. M. Choromanski, and P. R. Sanketi, “i-sim2real: Reinforcement

learning of robotic policies in tight human-robot interaction loops,” in Confer-

ence on Robot Learning, pp. 212–224, PMLR, 2023.

[155] R. Kaushik, K. Arndt, and V. Kyrki, “Safeapt: Safe simulation-to-real robot

learning using diverse policies learned in simulation,” IEEE Robotics and Au-

tomation Letters, 2022.

[156] W. Chen, Y. Xu, Z. Chen, P. Zeng, R. Dang, R. Chen, and J. Xu, “Bidirectional

sim-to-real transfer for gelsight tactile sensors with cyclegan,” IEEE Robotics

and Automation Letters, vol. 7, no. 3, pp. 6187–6194, 2022.

[157] T. Bi, C. Sferrazza, and R. D’Andrea, “Zero-shot sim-to-real transfer of tac-

tile control policies for aggressive swing-up manipulation,” IEEE Robotics and

Automation Letters, vol. 6, no. 3, pp. 5761–5768, 2021.

[158] A. Carlson, K. A. Skinner, R. Vasudevan, and M. Johnson-Roberson, “Sen-

sor transfer: Learning optimal sensor effect image augmentation for sim-to-

real domain adaptation,” IEEE Robotics and Automation Letters, vol. 4, no. 3,

pp. 2431–2438, 2019.

[159] U. Viereck, A. Pas, K. Saenko, and R. Platt, “Learning a visuomotor controller

for real world robotic grasping using simulated depth images,” in Conference on

robot learning, pp. 291–300, PMLR, 2017.

BIBLIOGRAPHY 182

[160] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A. Ojea, and

K. Goldberg, “Dex-net 2.0: Deep learning to plan robust grasps with synthetic

point clouds and analytic grasp metrics,” arXiv preprint arXiv:1703.09312, 2017.

[161] S. James, P. Wohlhart, M. Kalakrishnan, D. Kalashnikov, A. Irpan, J. Ibarz,

S. Levine, R. Hadsell, and K. Bousmalis, “Sim-to-real via sim-to-sim: Data-

efficient robotic grasping via randomized-to-canonical adaptation networks,” in

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 12627–12637, 2019.

[162] K. Kang, S. Belkhale, G. Kahn, P. Abbeel, and S. Levine, “Generalization

through simulation: Integrating simulated and real data into deep reinforcement

learning for vision-based autonomous flight,” in 2019 international conference

on robotics and automation (ICRA), pp. 6008–6014, IEEE, 2019.

[163] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim, “Learning to discover cross-

domain relations with generative adversarial networks,” in International confer-

ence on machine learning, pp. 1857–1865, PMLR, 2017.

[164] E. Tzeng, C. Devin, J. Hoffman, C. Finn, X. Peng, S. Levine, K. Saenko, and

T. Darrell, “Towards adapting deep visuomotor representations from simulated

to real environments,” CoRR, vol. abs/1511.07111, 2015.

[165] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kelcey, M. Kalakrishnan,

L. Downs, J. Ibarz, P. Pastor, K. Konolige, et al., “Using simulation and domain

adaptation to improve efficiency of deep robotic grasping,” in 2018 IEEE inter-

national conference on robotics and automation (ICRA), pp. 4243–4250, IEEE,

2018.

[166] S. Di-Castro Shashua, D. Di Castro, and S. Mannor, “Sim and real: Better

together,” Advances in Neural Information Processing Systems, vol. 34, 2021.

[167] B. Sellner, F. W. Heger, L. M. Hiatt, R. Simmons, and S. Singh, “Coordinated

multiagent teams and sliding autonomy for large-scale assembly,” Proceedings of

the IEEE, vol. 94, no. 7, pp. 1425–1444, 2006.

BIBLIOGRAPHY 183

[168] J. Barata, L. Camarinha-Matos, and M. Onori, “A multiagent based control

approach for evolvable assembly systems,” in INDIN’05. 2005 3rd IEEE Inter-

national Conference on Industrial Informatics, 2005., pp. 478–483, IEEE, 2005.

[169] J. Foerster, I. A. Assael, N. De Freitas, and S. Whiteson, “Learning to com-

municate with deep multi-agent reinforcement learning,” in Advances in neural

information processing systems, pp. 2137–2145, 2016.

[170] A. Dorri, S. S. Kanhere, and R. Jurdak, “Multi-agent systems: A survey,” Ieee

Access, vol. 6, pp. 28573–28593, 2018.

[171] P. J. Gmytrasiewicz and P. Doshi, “A framework for sequential planning in multi-

agent settings,” Journal of Artificial Intelligence Research, vol. 24, pp. 49–79,

2005.

[172] L. Matignon, G. J. Laurent, and N. Le Fort-Piat, “Independent reinforcement

learners in cooperative markov games: a survey regarding coordination prob-

lems,” The Knowledge Engineering Review, vol. 27, no. 1, pp. 1–31, 2012.

[173] F. A. Oliehoek, M. T. Spaan, and N. Vlassis, “Optimal and approximate q-value

functions for decentralized pomdps,” Journal of Artificial Intelligence Research,

vol. 32, pp. 289–353, 2008.

[174] D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein, “The complexity of

decentralized control of markov decision processes,” Mathematics of operations

research, vol. 27, no. 4, pp. 819–840, 2002.

[175] P. Peng, Y. Wen, Y. Yang, Q. Yuan, Z. Tang, H. Long, and J. Wang, “Multi-

agent bidirectionally-coordinated nets: Emergence of human-level coordination

in learning to play starcraft combat games,” arXiv preprint arXiv:1703.10069,

2017.

[176] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, “Counter-

factual multi-agent policy gradients,” in Proceedings of the AAAI conference on

artificial intelligence, vol. 32, 2018.

BIBLIOGRAPHY 184

[177] R. Lowe, Y. I. Wu, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch,

“Multi-agent actor-critic for mixed cooperative-competitive environments,” Ad-

vances in neural information processing systems, vol. 30, 2017.

[178] W. Liu, W. Gu, W. Sheng, X. Meng, Z. Wu, and W. Chen, “Decentralized multi-

agent system-based cooperative frequency control for autonomous microgrids

with communication constraints,” IEEE Transactions on Sustainable Energy,

vol. 5, no. 2, pp. 446–456, 2014.

[179] Y.-P. Tian and C.-L. Liu, “Consensus of multi-agent systems with diverse input

and communication delays,” IEEE Transactions on Automatic Control, vol. 53,

no. 9, pp. 2122–2128, 2008.

[180] K. You and L. Xie, “Network topology and communication data rate for con-

sensusability of discrete-time multi-agent systems,” IEEE Transactions on Au-

tomatic Control, vol. 56, no. 10, pp. 2262–2275, 2011.

[181] Z. Li and J. Chen, “Robust consensus for multi-agent systems communicating

over stochastic uncertain networks,” SIAM Journal on Control and Optimiza-

tion, vol. 57, no. 5, pp. 3553–3570, 2019.

[182] A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru, and

R. Vicente, “Multiagent cooperation and competition with deep reinforcement

learning,” PloS one, vol. 12, no. 4, p. e0172395, 2017.

[183] S. Sukhbaatar, R. Fergus, et al., “Learning multiagent communication with back-

propagation,” Advances in neural information processing systems, vol. 29, 2016.

[184] D. Golovin, D. Sculley, B. McMahan, and M. Young, “Large-scale learning with

less ram via randomization,” in International Conference on Machine Learning,

pp. 325–333, 2013.

[185] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel,

D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation for privacy-

preserving machine learning,” in Proceedings of the 2017 ACM SIGSAC Confer-

ence on Computer and Communications Security, pp. 1175–1191, 2017.

BIBLIOGRAPHY 185

[186] W. Zhu, P. Kairouz, B. McMahan, H. Sun, and W. Li, “Federated heavy hitters

discovery with differential privacy,” in International Conference on Artificial

Intelligence and Statistics, pp. 3837–3847, 2020.

[187] J. Ferber, O. Gutknecht, and F. Michel, “From agents to organizations: an

organizational view of multi-agent systems,” in International workshop on agent-

oriented software engineering, pp. 214–230, Springer, 2003.

[188] Y. Zou, K. Xia, Z. Zuo, and Z. Ding, “Distributed interval consensus of multi-

agent systems with pulse width modulation protocol,” IEEE Transactions on

Automatic Control, 2022.

[189] J. Larson, K.-Y. Liang, and K. H. Johansson, “A distributed framework for

coordinated heavy-duty vehicle platooning,” IEEE Transactions on Intelligent

Transportation Systems, vol. 16, no. 1, pp. 419–429, 2014.

[190] P. Liu, A. Kurt, and U. Ozguner, “Distributed model predictive control for coop-

erative and flexible vehicle platooning,” IEEE Transactions on Control Systems

Technology, vol. 27, no. 3, pp. 1115–1128, 2018.

[191] G. T. Papadopoulos, M. Antona, and C. Stephanidis, “Towards open and ex-

pandable cognitive ai architectures for large-scale multi-agent human-robot col-

laborative learning,” IEEE Access, vol. 9, pp. 73890–73909, 2021.

[192] K. Bakliwal, M. H. Dhada, A. S. Palau, A. K. Parlikad, and B. K. Lad, “A

multi agent system architecture to implement collaborative learning for social

industrial assets,” IFAC-PapersOnLine, vol. 51, no. 11, pp. 1237–1242, 2018.

[193] L. Ma, Z. Wang, Q.-L. Han, and Y. Liu, “Consensus control of stochastic multi-

agent systems: a survey,” Science China Information Sciences, vol. 60, no. 12,

pp. 1–15, 2017.

[194] J. Liu, Y. Yu, Q. Wang, and C. Sun, “Fixed-time event-triggered consensus

control for multi-agent systems with nonlinear uncertainties,” Neurocomputing,

vol. 260, pp. 497–504, 2017.

BIBLIOGRAPHY 186

[195] C. Ma, T. Li, and J. Zhang, “Consensus control for leader-following multi-agent

systems with measurement noises,” Journal of Systems Science and Complexity,

vol. 23, no. 1, pp. 35–49, 2010.

[196] J. Khazaei and Z. Miao, “Consensus control for energy storage systems,” IEEE

Transactions on Smart Grid, vol. 9, no. 4, pp. 3009–3017, 2016.

[197] W. Qiao and R. Sipahi, “Consensus control under communication delay in a

three-robot system: Design and experiments,” IEEE transactions on control

systems technology, vol. 24, no. 2, pp. 687–694, 2015.

[198] S. Motsch and E. Tadmor, “Heterophilious dynamics enhances consensus,” SIAM

review, vol. 56, no. 4, pp. 577–621, 2014.

[199] L. Conradt and T. J. Roper, “Consensus decision making in animals,” Trends

in ecology & evolution, vol. 20, no. 8, pp. 449–456, 2005.

[200] H. Peng, J. Wang, S. Wang, W. Shen, D. Shi, and D. Liu, “Coordinated mo-

tion control for a wheel-leg robot with speed consensus strategy,” IEEE/ASME

Transactions on Mechatronics, vol. 25, no. 3, pp. 1366–1376, 2020.

[201] X.-Y. Yao, J. H. Park, H.-F. Ding, and M.-F. Ge, “Event-triggered consensus

control for networked underactuated robotic systems,” IEEE Transactions on

Cybernetics, vol. 52, no. 5, pp. 2896–2906, 2020.

[202] M. A. Joordens and M. Jamshidi, “Consensus control for a system of underwater

swarm robots,” IEEE Systems Journal, vol. 4, no. 1, pp. 65–73, 2010.

[203] J. Xi, N. Cai, and Y. Zhong, “Consensus problems for high-order linear time-

invariant swarm systems,” Physica A: Statistical Mechanics and its Applications,

vol. 389, no. 24, pp. 5619–5627, 2010.

[204] A. V. Proskurnikov, A. S. Matveev, and M. Cao, “Opinion dynamics in social

networks with hostile camps: Consensus vs. polarization,” IEEE Transactions

on Automatic Control, vol. 61, no. 6, pp. 1524–1536, 2015.

BIBLIOGRAPHY 187

[205] L. Li, A. Scaglione, A. Swami, and Q. Zhao, “Consensus, polarization and clus-

tering of opinions in social networks,” IEEE Journal on Selected Areas in Com-

munications, vol. 31, no. 6, pp. 1072–1083, 2013.

[206] K. Utkarsh, A. Trivedi, D. Srinivasan, and T. Reindl, “A consensus-based dis-

tributed computational intelligence technique for real-time optimal control in

smart distribution grids,” IEEE Transactions on Emerging Topics in Computa-

tional Intelligence, vol. 1, no. 1, pp. 51–60, 2016.

[207] H. A. Pham, T. Soriano, V. H. Ngo, and V. Gies, “Distributed adaptive neural

network control applied to a formation tracking of a group of low-cost underwater

drones in hazardous environments,” Applied Sciences, vol. 10, no. 5, p. 1732,

2020.

[208] N. A. K. Zghair and A. S. Al-Araji, “A one decade survey of autonomous mobile

robot systems,” International Journal of Electrical and Computer Engineering,

vol. 11, no. 6, p. 4891, 2021.

[209] J. Hu and A. Lanzon, “An innovative tri-rotor drone and associated distributed

aerial drone swarm control,” Robotics and Autonomous Systems, vol. 103,

pp. 162–174, 2018.

[210] F. Ji, J. Wu, F. Chiclana, S. Wang, H. Fujita, and E. Herrera-Viedma, “The over-

lapping community driven feedback mechanism to support consensus in social

network group decision making,” IEEE Transactions on Fuzzy Systems, 2023.

[211] Z. Chen and E. G. Larsson, “Consensus-based distributed computation of link-

based network metrics,” IEEE Signal Processing Letters, vol. 28, pp. 249–253,

2021.

[212] Z. Li, Z. Duan, and F. L. Lewis, “Distributed robust consensus control of multi-

agent systems with heterogeneous matching uncertainties,” Automatica, vol. 50,

no. 3, pp. 883–889, 2014.

[213] G. Xie and L. Wang, “Consensus control for a class of networks of dynamic

agents,” International Journal of Robust and Nonlinear Control: IFAC-Affiliated

Journal, vol. 17, no. 10-11, pp. 941–959, 2007.

BIBLIOGRAPHY 188

[214] A.-Y. Lu and G.-H. Yang, “Distributed consensus control for multi-agent systems

under denial-of-service,” Information Sciences, vol. 439, pp. 95–107, 2018.

[215] J. Qin and C. Yu, “Cluster consensus control of generic linear multi-agent sys-

tems under directed topology with acyclic partition,” Automatica, vol. 49, no. 9,

pp. 2898–2905, 2013.

[216] X.-M. Li, Q. Zhou, P. Li, H. Li, and R. Lu, “Event-triggered consensus control

for multi-agent systems against false data-injection attacks,” IEEE transactions

on cybernetics, vol. 50, no. 5, pp. 1856–1866, 2019.

[217] J. Huang, C. Wen, W. Wang, and Y.-D. Song, “Adaptive finite-time consen-

sus control of a group of uncertain nonlinear mechanical systems,” Automatica,

vol. 51, pp. 292–301, 2015.

[218] Q. Hui and W. M. Haddad, “Distributed nonlinear control algorithms for net-

work consensus,” Automatica, vol. 44, no. 9, pp. 2375–2381, 2008.

[219] J. Liu, Y. Yu, H. He, and C. Sun, “Team-triggered practical fixed-time consensus

of double-integrator agents with uncertain disturbance,” IEEE Transactions on

Cybernetics, vol. 51, no. 6, pp. 3263–3272, 2020.

[220] H. Du, S. Li, and P. Shi, “Robust consensus algorithm for second-order multi-

agent systems with external disturbances,” International Journal of Control,

vol. 85, no. 12, pp. 1913–1928, 2012.

[221] D. Zhang, J. Jiang, W. Zhang, et al., “Robust and scalable management of power

networks in dual-source trolleybus systems: A consensus control framework,”

IEEE transactions on intelligent transportation systems, vol. 17, no. 4, pp. 1029–

1038, 2015.

[222] J. Seo, D. Ko, S. Kim, and S. Park, “A coordination technique for improving scal-

ability of byzantine fault-tolerant consensus,” Applied Sciences, vol. 10, no. 21,

p. 7609, 2020.

[223] T. R. Krogstad and J. T. Gravdahl, “6-dof mutual synchronization of formation

flying spacecraft,” in Proceedings of the 45th IEEE Conference on Decision and

Control, pp. 5706–5711, IEEE, 2006.

BIBLIOGRAPHY 189

[224] W. Liu, H. Niu, I. Jang, G. Herrmann, and J. Carrasco, “Distributed neural

networks training for robotic manipulation with consensus algorithm,” IEEE

Transactions on Neural Networks and Learning Systems, pp. 1–15, 2022.

[225] E. Nuno, A. Loria, T. Hernández, M. Maghenem, and E. Panteley, “Distributed

consensus-formation of force-controlled nonholonomic robots with time-varying

delays,” Automatica, vol. 120, p. 109114, 2020.

[226] W. Wang, J. Huang, C. Wen, and H. Fan, “Distributed adaptive control for

consensus tracking with application to formation control of nonholonomic mobile

robots,” Automatica, vol. 50, no. 4, pp. 1254–1263, 2014.

[227] C. P. Chen, G.-X. Wen, Y.-J. Liu, and F.-Y. Wang, “Adaptive consensus control

for a class of nonlinear multiagent time-delay systems using neural networks,”

IEEE Transactions on Neural Networks and Learning Systems, vol. 25, no. 6,

pp. 1217–1226, 2014.

[228] D. Zhao, W. Ni, and Q. Zhu, “A framework of neural networks based consensus

control for multiple robotic manipulators,” Neurocomputing, vol. 140, pp. 8–18,

2014.

[229] Y.-J. Liu, W. Zhao, L. Liu, D. Li, S. Tong, and C. P. Chen, “Adaptive neural

network control for a class of nonlinear systems with function constraints on

states,” IEEE Transactions on Neural Networks and Learning Systems, 2021.

[230] L. Liu, Y.-J. Liu, A. Chen, S. Tong, and C. Chen, “Integral barrier lyapunov

function-based adaptive control for switched nonlinear systems,” Science China

Information Sciences, vol. 63, no. 3, pp. 1–14, 2020.

[231] K. Wu, J. Hu, B. Lennox, and F. Arvin, “Sdp-based robust formation-

containment coordination of swarm robotic systems with input saturation,”

Journal of Intelligent & Robotic Systems, vol. 102, no. 1, pp. 1–16, 2021.

[232] A. Zhang, D. Zhou, P. Yang, and M. Yang, “Event-triggered finite-time con-

sensus with fully continuous communication free for second-order multi-agent

systems,” International Journal of Control, Automation and Systems, vol. 17,

no. 4, pp. 836–846, 2019.

BIBLIOGRAPHY 190

[233] K. Wu, J. Hu, B. Lennox, and F. Arvin, “Finite-time bearing-only formation

tracking of heterogeneous mobile robots with collision avoidance,” IEEE Trans-

actions on Circuits and Systems II: Express Briefs, 2021.

[234] W. Ren, “Multi-vehicle consensus with a time-varying reference state,” Systems

& Control Letters, vol. 56, no. 7-8, pp. 474–483, 2007.

[235] F. Yu, H. Shang, Q. Zhu, H. Zhang, and Y. Chen, “An efficient rrt-based mo-

tion planning algorithm for autonomous underwater vehicles under cylindrical

sampling constraints,” Autonomous Robots, vol. 47, no. 3, pp. 281–297, 2023.

[236] Y. Li, X. Hao, Y. She, S. Li, and M. Yu, “Constrained motion planning of free-

float dual-arm space manipulator via deep reinforcement learning,” Aerospace

Science and Technology, vol. 109, p. 106446, 2021.

[237] M. Schwarzer, N. Rajkumar, M. Noukhovitch, A. Anand, L. Charlin, R. D.

Hjelm, P. Bachman, and A. C. Courville, “Pretraining representations for data-

efficient reinforcement learning,” Advances in Neural Information Processing

Systems, vol. 34, pp. 12686–12699, 2021.

[238] Z. Xu and J. H. Saleh, “Machine learning for reliability engineering and safety

applications: Review of current status and future opportunities,” Reliability En-

gineering & System Safety, vol. 211, p. 107530, 2021.

[239] S. Bussmann, N. Jennings, M. J. Wooldridge, and M. J. Wooldridge, Multiagent

systems for manufacturing control: a design methodology. Springer, 2004.

[240] Y. Zhang, H. Zhu, D. Tang, T. Zhou, and Y. Gui, “Dynamic job shop scheduling

based on deep reinforcement learning for multi-agent manufacturing systems,”

Robotics and Computer-Integrated Manufacturing, vol. 78, p. 102412, 2022.

[241] J. Axelsson, “Safety in vehicle platooning: A systematic literature review,” IEEE

Transactions on Intelligent Transportation Systems, vol. 18, no. 5, pp. 1033–

1045, 2016.

[242] M. Kamali, L. A. Dennis, O. McAree, M. Fisher, and S. M. Veres, “Formal ver-

ification of autonomous vehicle platooning,” Science of computer programming,

vol. 148, pp. 88–106, 2017.

BIBLIOGRAPHY 191

[243] W. Liu, H. Niu, M. N. Mahyuddin, G. Herrmann, and J. Carrasco, “A model-free

deep reinforcement learning approach for robotic manipulators path planning,”

in 2021 21st International Conference on Control, Automation and Systems (IC-

CAS), pp. 512–517, IEEE, 2021.

[244] K. Wei and B. Ren, “A method on dynamic path planning for robotic manip-

ulator autonomous obstacle avoidance based on an improved rrt algorithm,”

Sensors, vol. 18, no. 2, p. 571, 2018.

[245] H. Niu, Z. Ji, F. Arvin, B. Lennox, H. Yin, and J. Carrasco, “Accelerated sim-

to-real deep reinforcement learning: Learning collision avoidance from human

player,” in 2021 IEEE/SICE International Symposium on System Integration

(SII), pp. 144–149, IEEE, 2021.

[246] H. Niu, Z. Ji, Z. Zhu, H. Yin, and J. Carrasco, “3d vision-guided pick-and-place

using kuka lbr iiwa robot,” in 2021 IEEE/SICE International Symposium on

System Integration (SII), pp. 592–593, IEEE, 2021.

[247] N. T. Dantam, “Robust and efficient forward, differential, and inverse kinematics

using dual quaternions,” The International Journal of Robotics Research, vol. 40,

no. 10-11, pp. 1087–1105, 2021.

[248] H. Ye, D. Wang, J. Wu, Y. Yue, and Y. Zhou, “Forward and inverse kinematics of

a 5-dof hybrid robot for composite material machining,” Robotics and Computer-

Integrated Manufacturing, vol. 65, p. 101961, 2020.

[249] M. Alebooyeh and R. J. Urbanic, “Neural network model for identifying

workspace, forward and inverse kinematics of the 7-dof yumi 14000 abb col-

laborative robot,” IFAC-PapersOnLine, vol. 52, no. 10, pp. 176–181, 2019.

[250] F. Xiao, G. Li, D. Jiang, Y. Xie, J. Yun, Y. Liu, L. Huang, and Z. Fang, “An

effective and unified method to derive the inverse kinematics formulas of general

six-dof manipulator with simple geometry,” Mechanism and Machine Theory,

vol. 159, p. 104265, 2021.

[251] L. Sciavicco and B. Siciliano, Modelling and control of robot manipulators.

Springer Science & Business Media, 2012.

BIBLIOGRAPHY 192

[252] R. Singh, V. Kukshal, and V. S. Yadav, “A review on forward and inverse

kinematics of classical serial manipulators,” Advances in Engineering Design:

Select Proceedings of ICOIED 2020, pp. 417–428, 2021.

[253] P. James, A. Prakash, V. Kalburgi, and P. Sreedharan, “Design, analysis, man-

ufacturing of four-legged walking robot with insect type leg,” Materials Today:

Proceedings, vol. 46, pp. 4647–4652, 2021.

[254] F. rui Zhang, J.-f. Han, and P. Ruan, “Beam pointing analysis and a novel

coarse pointing assembly design in space laser communication,” Optik, vol. 189,

pp. 130–147, 2019.

[255] C. Klug, D. Schmalstieg, T. Gloor, and C. Arth, “A complete workflow for

automatic forward kinematics model extraction of robotic total stations using

the denavit-hartenberg convention,” Journal of Intelligent & Robotic Systems,

vol. 95, pp. 311–329, 2019.

[256] G. Li, F. Zhang, Y. Fu, and S. Wang, “Kinematic calibration of serial robot

using dual quaternions,” Industrial Robot: the international journal of robotics

research and application, vol. 46, no. 2, pp. 247–258, 2019.

[257] J. Gallardo-Alvarado, M. A. Garcia-Murillo, L. A. Alcaraz-Caracheo, F. J. Tor-

res, and X. Y. Sandoval-Castro, “Forward kinematics and singularity analyses

of an uncoupled parallel manipulator by algebraic screw theory,” IEEE Access,

vol. 10, pp. 4513–4522, 2021.

[258] M. Cardona and C. G. Cena, “Direct kinematics and jacobian analysis of ex-

oskeleton robots using screw theory and simscape multibody™,” in 2019 IEEE

39th Central America and Panama Convention (CONCAPAN XXXIX), pp. 1–6,

IEEE, 2019.

[259] D. E. Whitney, “Resolved motion rate control of manipulators and human pros-

theses,” IEEE Transactions on man-machine systems, vol. 10, no. 2, pp. 47–53,

1969.

BIBLIOGRAPHY 193

[260] C. W. Wampler, “Manipulator inverse kinematic solutions based on vector for-

mulations and damped least-squares methods,” IEEE Transactions on Systems,

Man, and Cybernetics, vol. 16, no. 1, pp. 93–101, 1986.

[261] Y. Nakamura and H. Hanafusa, “Inverse kinematic solutions with singularity

robustness for robot manipulator control,” 1986.

[262] A. A. Maciejewski, “Dealing with the ill-conditioned equations of motion for

articulated figures,” IEEE Computer Graphics and Applications, vol. 10, no. 3,

pp. 63–71, 1990.

[263] A. R. Almusawi, L. C. Dülger, and S. Kapucu, “A new artificial neural net-

work approach in solving inverse kinematics of robotic arm (denso vp6242),”

Computational intelligence and neuroscience, vol. 2016, 2016.

[264] R. KöKer, “A genetic algorithm approach to a neural-network-based inverse

kinematics solution of robotic manipulators based on error minimization,” In-

formation Sciences, vol. 222, pp. 528–543, 2013.

[265] C. Hasberg, S. Hensel, and C. Stiller, “Simultaneous localization and mapping

for path-constrained motion,” IEEE Transactions on Intelligent Transportation

Systems, vol. 13, no. 2, pp. 541–552, 2011.

[266] A. T. Hasan, N. Ismail, A. M. S. Hamouda, I. Aris, M. H. Marhaban, and H. Al-

Assadi, “Artificial neural network-based kinematics jacobian solution for serial

manipulator passing through singular configurations,” Advances in Engineering

Software, vol. 41, no. 2, pp. 359–367, 2010.

[267] Y. Yang, G. Peng, Y. Wang, and H. Zhang, “A new solution for inverse kinemat-

ics of 7-dof manipulator based on genetic algorithm,” in 2007 IEEE international

conference on automation and logistics, pp. 1947–1951, IEEE, 2007.

[268] M. Klingensmith, S. S. Sirinivasa, and M. Kaess, “Articulated robot motion for

simultaneous localization and mapping (arm-slam),” IEEE robotics and automa-

tion letters, vol. 1, no. 2, pp. 1156–1163, 2016.

BIBLIOGRAPHY 194

[269] C. Liu, C.-Y. Lin, and M. Tomizuka, “The convex feasible set algorithm for real

time optimization in motion planning,” SIAM Journal on Control and optimiza-

tion, vol. 56, no. 4, pp. 2712–2733, 2018.

[270] J. L. Vázquez, M. Brühlmeier, A. Liniger, A. Rupenyan, and J. Lygeros,

“Optimization-based hierarchical motion planning for autonomous racing,” in

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 2397–2403, IEEE, 2020.

[271] J. Ichnowski, Y. Avigal, V. Satish, and K. Goldberg, “Deep learning can ac-

celerate grasp-optimized motion planning,” Science Robotics, vol. 5, no. 48,

p. eabd7710, 2020.

[272] M. N. Ab Wahab, S. Nefti-Meziani, and A. Atyabi, “A comparative review on

mobile robot path planning: Classical or meta-heuristic methods?,” Annual Re-

views in Control, vol. 50, pp. 233–252, 2020.

[273] H. Wu, J. Yu, J. Pan, and X. Pei, “A novel obstacle avoidance heuristic algo-

rithm of continuum robot based on fabrik,” Science China Technological Sci-

ences, pp. 1–15, 2022.

[274] Z. Kingston, M. Moll, and L. E. Kavraki, “Exploring implicit spaces for con-

strained sampling-based planning,” The International Journal of Robotics Re-

search, vol. 38, no. 10-11, pp. 1151–1178, 2019.

[275] A. M. Wells, N. T. Dantam, A. Shrivastava, and L. E. Kavraki, “Learning fea-

sibility for task and motion planning in tabletop environments,” IEEE robotics

and automation letters, vol. 4, no. 2, pp. 1255–1262, 2019.

[276] P. Beeson and B. Ames, “Trac-ik: An open-source library for improved solving

of generic inverse kinematics,” in 2015 IEEE-RAS 15th International Conference

on Humanoid Robots (Humanoids), pp. 928–935, IEEE, 2015.

[277] Y. Wu, “A survey on population-based meta-heuristic algorithms for motion

planning of aircraft,” Swarm and Evolutionary Computation, vol. 62, p. 100844,

2021.

BIBLIOGRAPHY 195

[278] B. Ichter and M. Pavone, “Robot motion planning in learned latent spaces,”

IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2407–2414, 2019.

[279] J. Pan and D. Manocha, “Efficient configuration space construction and opti-

mization for motion planning,” Engineering, vol. 1, no. 1, pp. 046–057, 2015.

[280] S. Liu and P. Liu, “Benchmarking and optimization of robot motion planning

with motion planning pipeline,” The International Journal of Advanced Manu-

facturing Technology, pp. 1–13, 2021.

[281] D. Rakita, B. Mutlu, and M. Gleicher, “Relaxedik: Real-time synthesis of accu-

rate and feasible robot arm motion.,” in Robotics: Science and Systems, pp. 26–

30, Pittsburgh, PA, 2018.

[282] J. Mainprice, N. Ratliff, M. Toussaint, and S. Schaal, “An interior point method

solving motion planning problems with narrow passages,” in 2020 29th IEEE

International Conference on Robot and Human Interactive Communication (RO-

MAN), pp. 547–552, IEEE, 2020.

[283] H. J. Kim, Q. Wang, S. Rahmatalla, C. C. Swan, J. S. Arora, K. Abdel-Malek,

and J. G. Assouline, “Dynamic motion planning of 3d human locomotion using

gradient-based optimization,” Journal of biomechanical engineering, vol. 130,

no. 3, 2008.

[284] A. Akbari, F. Lagriffoul, and J. Rosell, “Combined heuristic task and motion

planning for bi-manual robots,” Autonomous robots, vol. 43, no. 6, pp. 1575–

1590, 2019.

[285] R. Terasawa, Y. Ariki, T. Narihira, T. Tsuboi, and K. Nagasaka, “3d-cnn based

heuristic guided task-space planner for faster motion planning,” in 2020 IEEE

International Conference on Robotics and Automation (ICRA), pp. 9548–9554,

IEEE, 2020.

[286] A. Aristidou and J. Lasenby, “Fabrik: A fast, iterative solver for the inverse

kinematics problem,” Graphical Models, vol. 73, no. 5, pp. 243–260, 2011.

BIBLIOGRAPHY 196

[287] K. Jang, J. Baek, S. Park, and J. Park, “Motion planning for closed-

chain constraints based on probabilistic roadmap with improved connectivity,”

IEEE/ASME Transactions on Mechatronics, vol. 27, no. 4, pp. 2035–2043, 2022.

[288] R. Kumar, A. Mandalika, S. Choudhury, and S. Srinivasa, “Lego: Leverag-

ing experience in roadmap generation for sampling-based planning,” in 2019

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pp. 1488–1495, IEEE, 2019.

[289] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to single-

query path planning,” in Proceedings 2000 ICRA. Millennium Conference. IEEE

International Conference on Robotics and Automation. Symposia Proceedings

(Cat. No. 00CH37065), vol. 2, pp. 995–1001, IEEE, 2000.

[290] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S. Teller, “Anytime motion

planning using the rrt,” in 2011 IEEE International Conference on Robotics and

Automation, pp. 1478–1483, IEEE, 2011.

[291] H.-T. L. Chiang, J. Hsu, M. Fiser, L. Tapia, and A. Faust, “Rl-rrt: Kinodynamic

motion planning via learning reachability estimators from rl policies,” IEEE

Robotics and Automation Letters, vol. 4, no. 4, pp. 4298–4305, 2019.

[292] T. Rybus, “Point-to-point motion planning of a free-floating space manipulator

using the rapidly-exploring random trees (rrt) method,” Robotica, vol. 38, no. 6,

pp. 957–982, 2020.

[293] Y. Kuwata, G. A. Fiore, J. Teo, E. Frazzoli, and J. P. How, “Motion planning

for urban driving using rrt,” in 2008 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pp. 1681–1686, IEEE, 2008.

[294] O. Salzman and D. Halperin, “Asymptotically near-optimal rrt for fast, high-

quality motion planning,” IEEE Transactions on Robotics, vol. 32, no. 3,

pp. 473–483, 2016.

[295] I. Noreen, A. Khan, and Z. Habib, “Optimal path planning using rrt* based

approaches: a survey and future directions,” International Journal of Advanced

Computer Science and Applications, vol. 7, no. 11, 2016.

BIBLIOGRAPHY 197

[296] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning: From

theory to algorithms. Cambridge university press, 2014.

[297] P. Cunningham, M. Cord, and S. J. Delany, “Supervised learning,” Machine

learning techniques for multimedia: case studies on organization and retrieval,

pp. 21–49, 2008.

[298] H. B. Barlow, “Unsupervised learning,” Neural computation, vol. 1, no. 3,

pp. 295–311, 1989.

[299] W. Qiang and Z. Zhongli, “Reinforcement learning model, algorithms and its

application,” in 2011 International Conference on Mechatronic Science, Electric

Engineering and Computer (MEC), pp. 1143–1146, IEEE, 2011.

[300] Z. Zhang, D. Zhang, and R. C. Qiu, “Deep reinforcement learning for power sys-

tem applications: An overview,” CSEE Journal of Power and Energy Systems,

vol. 6, no. 1, pp. 213–225, 2019.

[301] J. Garcıa and F. Fernández, “A comprehensive survey on safe reinforcement

learning,” Journal of Machine Learning Research, vol. 16, no. 1, pp. 1437–1480,

2015.

[302] L. Buşoniu, R. Babuška, and B. D. Schutter, “Multi-agent reinforcement learn-

ing: An overview,” Innovations in multi-agent systems and applications-1,

pp. 183–221, 2010.

[303] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT

press, 2018.

[304] H. Zhang, H. Jiang, Y. Luo, and G. Xiao, “Data-driven optimal consensus control

for discrete-time multi-agent systems with unknown dynamics using reinforce-

ment learning method,” IEEE Transactions on Industrial Electronics, vol. 64,

no. 5, pp. 4091–4100, 2016.

[305] H. Kandath, J. Senthilnath, and S. Sundaram, “Mutli-agent consensus under

communication failure using actor-critic reinforcement learning,” in 2018 IEEE

Symposium Series on Computational Intelligence (SSCI), pp. 1461–1465, IEEE,

2018.

BIBLIOGRAPHY 198

[306] X. Wang, S. Wang, X. Liang, D. Zhao, J. Huang, X. Xu, B. Dai, and Q. Miao,

“Deep reinforcement learning: a survey,” IEEE Transactions on Neural Networks

and Learning Systems, 2022.

[307] J. Morimoto and K. Doya, “Robust reinforcement learning,” Neural computation,

vol. 17, no. 2, pp. 335–359, 2005.

[308] S. Sinha, A. Mandlekar, and A. Garg, “S4rl: Surprisingly simple self-supervision

for offline reinforcement learning in robotics,” in Conference on Robot Learning,

pp. 907–917, PMLR, 2022.

[309] A. A. Apolinarska, M. Pacher, H. Li, N. Cote, R. Pastrana, F. Gramazio, and

M. Kohler, “Robotic assembly of timber joints using reinforcement learning,”

Automation in Construction, vol. 125, p. 103569, 2021.

[310] B. Singh, R. Kumar, and V. P. Singh, “Reinforcement learning in robotic appli-

cations: a comprehensive survey,” Artificial Intelligence Review, pp. 1–46, 2022.

[311] H. Bae, G. Kim, J. Kim, D. Qian, and S. Lee, “Multi-robot path planning

method using reinforcement learning,” Applied sciences, vol. 9, no. 15, p. 3057,

2019.

[312] H. Oliff, Y. Liu, M. Kumar, M. Williams, and M. Ryan, “Reinforcement learning

for facilitating human-robot-interaction in manufacturing,” Journal of Manufac-

turing Systems, vol. 56, pp. 326–340, 2020.

[313] P. Chen and W. Lu, “Deep reinforcement learning based moving object grasp-

ing,” Information Sciences, vol. 565, pp. 62–76, 2021.

[314] T. Boroushaki, J. Leng, I. Clester, A. Rodriguez, and F. Adib, “Robotic grasp-

ing of fully-occluded objects using rf perception,” in 2021 IEEE International

Conference on Robotics and Automation (ICRA), pp. 923–929, IEEE, 2021.

[315] H. Hu, K. Zhang, A. H. Tan, M. Ruan, C. Agia, and G. Nejat, “A sim-to-

real pipeline for deep reinforcement learning for autonomous robot navigation in

cluttered rough terrain,” IEEE Robotics and Automation Letters, vol. 6, no. 4,

pp. 6569–6576, 2021.

BIBLIOGRAPHY 199

[316] A. Malik, Y. Lischuk, T. Henderson, and R. Prazenica, “A deep reinforcement-

learning approach for inverse kinematics solution of a high degree of freedom

robotic manipulator,” Robotics, vol. 11, no. 2, p. 44, 2022.

[317] B. Beyret, A. Shafti, and A. A. Faisal, “Dot-to-dot: Explainable hierarchical re-

inforcement learning for robotic manipulation,” in 2019 IEEE/RSJ International

Conference on intelligent robots and systems (IROS), pp. 5014–5019, IEEE,

2019.

[318] B. Recht, “A tour of reinforcement learning: The view from continuous control,”

Annual Review of Control, Robotics, and Autonomous Systems, vol. 2, pp. 253–

279, 2019.

[319] G. Ning, X. Zhang, and H. Liao, “Autonomic robotic ultrasound imaging system

based on reinforcement learning,” IEEE Transactions on Biomedical Engineer-

ing, vol. 68, no. 9, pp. 2787–2797, 2021.

[320] B. R. Kiran, I. Sobh, V. Talpaert, P. Mannion, A. A. Al Sallab, S. Yogamani,

and P. Pérez, “Deep reinforcement learning for autonomous driving: A survey,”

IEEE Transactions on Intelligent Transportation Systems, 2021.

[321] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press, 2016.

[322] S. Dong, P. Wang, and K. Abbas, “A survey on deep learning and its applica-

tions,” Computer Science Review, vol. 40, p. 100379, 2021.

[323] M. A. Nielsen, Neural networks and deep learning, vol. 25. Determination press

San Francisco, CA, USA, 2015.

[324] A. Voulodimos, N. Doulamis, A. Doulamis, and E. Protopapadakis, “Deep learn-

ing for computer vision: A brief review,” Computational intelligence and neuro-

science, vol. 2018, 2018.

[325] J. Chai, H. Zeng, A. Li, and E. W. Ngai, “Deep learning in computer vision:

A critical review of emerging techniques and application scenarios,” Machine

Learning with Applications, vol. 6, p. 100134, 2021.

BIBLIOGRAPHY 200

[326] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learn-

ing based natural language processing,” ieee Computational intelligenCe maga-

zine, vol. 13, no. 3, pp. 55–75, 2018.

[327] D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages of deep

learning for natural language processing,” IEEE transactions on neural networks

and learning systems, vol. 32, no. 2, pp. 604–624, 2020.

[328] K. Cobbe, O. Klimov, C. Hesse, T. Kim, and J. Schulman, “Quantifying gen-

eralization in reinforcement learning,” in International Conference on Machine

Learning, pp. 1282–1289, PMLR, 2019.

[329] A. Haydari and Y. Yilmaz, “Deep reinforcement learning for intelligent trans-

portation systems: A survey,” IEEE Transactions on Intelligent Transportation

Systems, 2020.

[330] C. Janiesch, P. Zschech, and K. Heinrich, “Machine learning and deep learning,”

Electronic Markets, vol. 31, no. 3, pp. 685–695, 2021.

[331] M. Hüttenrauch, S. Adrian, G. Neumann, et al., “Deep reinforcement learning

for swarm systems,” Journal of Machine Learning Research, vol. 20, no. 54,

pp. 1–31, 2019.

[332] T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi, “Model-based reinforce-

ment learning for closed-loop dynamic control of soft robotic manipulators,”

IEEE Transactions on Robotics, vol. 35, no. 1, pp. 124–134, 2018.

[333] J.-J. Park, J.-H. Kim, and J.-B. Song, “Path planning for a robot manipula-

tor based on probabilistic roadmap and reinforcement learning,” International

Journal of Control, Automation, and Systems, vol. 5, no. 6, pp. 674–680, 2007.

[334] Y. Yang, H. Liang, and C. Choi, “A deep learning approach to grasping the

invisible,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2232–2239,

2020.

[335] T. Inoue, G. De Magistris, A. Munawar, T. Yokoya, and R. Tachibana, “Deep

reinforcement learning for high precision assembly tasks,” in 2017 IEEE/RSJ

BIBLIOGRAPHY 201

International Conference on Intelligent Robots and Systems (IROS), pp. 819–

825, IEEE, 2017.

[336] S. K. Pradhan and B. Subudhi, “Real-time adaptive control of a flexible manip-

ulator using reinforcement learning,” IEEE Transactions on Automation Science

and Engineering, vol. 9, no. 2, pp. 237–249, 2012.

[337] D. Zhao, H. Wang, K. Shao, and Y. Zhu, “Deep reinforcement learning with

experience replay based on sarsa,” in 2016 IEEE symposium series on computa-

tional intelligence (SSCI), pp. 1–6, IEEE, 2016.

[338] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive elements

that can solve difficult learning control problems,” IEEE transactions on sys-

tems, man, and cybernetics, no. 5, pp. 834–846, 1983.

[339] T. Szandała, “Review and comparison of commonly used activation functions

for deep neural networks,” Bio-inspired neurocomputing, pp. 203–224, 2021.

[340] A. Apicella, F. Donnarumma, F. Isgrò, and R. Prevete, “A survey on modern

trainable activation functions,” Neural Networks, vol. 138, pp. 14–32, 2021.

[341] O. I. Abiodun, A. Jantan, A. E. Omolara, K. V. Dada, N. A. Mohamed, and

H. Arshad, “State-of-the-art in artificial neural network applications: A survey,”

Heliyon, vol. 4, no. 11, p. e00938, 2018.

[342] Y. Ito, “Representation of functions by superpositions of a step or sigmoid func-

tion and their applications to neural network theory,” Neural Networks, vol. 4,

no. 3, pp. 385–394, 1991.

[343] A. Jacot, F. Gabriel, and C. Hongler, “Neural tangent kernel: Convergence and

generalization in neural networks,” Advances in neural information processing

systems, vol. 31, 2018.

[344] Y. Li and Y. Yuan, “Convergence analysis of two-layer neural networks with relu

activation,” Advances in neural information processing systems, vol. 30, 2017.

BIBLIOGRAPHY 202

[345] S. Fujimoto, D. Meger, and D. Precup, “Off-policy deep reinforcement learning

without exploration,” in International conference on machine learning, pp. 2052–

2062, PMLR, 2019.

[346] J. Clifton and E. Laber, “Q-learning: Theory and applications,” Annual Review

of Statistics and Its Application, vol. 7, pp. 279–301, 2020.

[347] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint

arXiv:1312.5602, 2013.

[348] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy gradient

methods for reinforcement learning with function approximation,” in Advances

in neural information processing systems, pp. 1057–1063, 2000.

[349] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,

and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv

preprint arXiv:1509.02971, 2015.

[350] W. Zhao, J. P. Queralta, and T. Westerlund, “Sim-to-real transfer in deep rein-

forcement learning for robotics: a survey,” in 2020 IEEE symposium series on

computational intelligence (SSCI), pp. 737–744, IEEE, 2020.

[351] V. Uc-Cetina, N. Navarro-Guerrero, A. Martin-Gonzalez, C. Weber, and

S. Wermter, “Survey on reinforcement learning for language processing,” Ar-

tificial Intelligence Review, vol. 56, no. 2, pp. 1543–1575, 2023.

[352] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy

maximum entropy deep reinforcement learning with a stochastic actor,” in In-

ternational conference on machine learning, pp. 1861–1870, PMLR, 2018.

[353] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal

policy optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[354] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region

policy optimization,” in International conference on machine learning, pp. 1889–

1897, PMLR, 2015.

BIBLIOGRAPHY 203

[355] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,

and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,”

in International conference on machine learning, pp. 1928–1937, PMLR, 2016.

[356] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation er-

ror in actor-critic methods,” in International conference on machine learning,

pp. 1587–1596, PMLR, 2018.

[357] J. Wang, Y. Yan, Z. Liu, C. P. Chen, C. Zhang, and K. Chen, “Finite-time

consensus control for multi-agent systems with full-state constraints and actuator

failures,” Neural Networks, vol. 157, pp. 350–363, 2023.

[358] Y. Yang, R. Li, J. Huang, and X. Su, “Distributed optimal output feedback

consensus control for nonlinear euler-lagrange systems under input saturation,”

Journal of the Franklin Institute, vol. 360, no. 8, pp. 5857–5877, 2023.

[359] R. Zuo, Y. Li, M. Lv, and Z. Liu, “Distributed asynchronous consensus control of

nonlinear multi-agent systems under directed switching topologies,” Automatica,

vol. 152, p. 110952, 2023.

[360] H. Jian, S. Zheng, P. Shi, Y. Xie, and H. Li, “Consensus for multiple random

mechanical systems with applications on robot manipulator,” IEEE Transactions

on Industrial Electronics, 2023.

[361] X. Li, M. Gao, Z. Kang, X. Chen, X. Zeng, S. Chen, H. Sun, and A. Zhang,

“Cooperative path tracking for swarm of masss based on consensus theory,”

Journal of Marine Science and Engineering, vol. 11, no. 2, p. 312, 2023.

[362] T. Gai, M. Cao, F. Chiclana, Z. Zhang, Y. Dong, E. Herrera-Viedma, and J. Wu,

“Consensus-trust driven bidirectional feedback mechanism for improving consen-

sus in social network large-group decision making,” Group decision and negoti-

ation, vol. 32, no. 1, pp. 45–74, 2023.

[363] K. Li, C. K. Ahn, and C. Hua, “Delays-based distributed bipartite consensus

control of nonlinear multiagent systems with switching signed topologies,” IEEE

Transactions on Network Science and Engineering, 2023.

BIBLIOGRAPHY 204

[364] C. Liu, J. Zhao, B. Jiang, and R. J. Patton, “Fault-tolerant consensus control

of multi-agent systems under actuator/sensor faults and channel noises: A dis-

tributed anti-attack strategy,” Information Sciences, vol. 623, pp. 1–19, 2023.

[365] M. H. DeGroot, “Reaching a consensus,” Journal of the American Statistical

Association, vol. 69, no. 345, pp. 118–121, 1974.

[366] V. Borkar and P. Varaiya, “Asymptotic agreement in distributed estimation,”

IEEE transactions on automatic control, vol. 27, no. 3, pp. 650–655, 1982.

[367] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” in

Proceedings of the 14th annual conference on Computer graphics and interactive

techniques, pp. 25–34, 1987.

[368] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel type

of phase transition in a system of self-driven particles,” Physical review letters,

vol. 75, no. 6, p. 1226, 1995.

[369] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile au-

tonomous agents using nearest neighbor rules,” IEEE Transactions on automatic

control, vol. 48, no. 6, pp. 988–1001, 2003.

[370] J. Liu and X. Wang, “Secure consensus control for multi-agent systems sub-

ject to consecutive asynchronous dos attacks,” International Journal of Control,

Automation and Systems, vol. 21, no. 1, pp. 61–70, 2023.

[371] A. Giuseppi, S. Manfredi, and A. Pietrabissa, “A weighted average consensus

approach for decentralized federated learning,” Machine Intelligence Research,

vol. 19, no. 4, pp. 319–330, 2022.

[372] I. Ravanshadi, E. A. Boroujeni, and M. Pourgholi, “Centralized and distributed

model predictive control for consensus of non-linear multi-agent systems with

time-varying obstacle avoidance,” ISA transactions, vol. 133, pp. 75–90, 2023.

[373] G. Subathra, A. Antonidoss, and B. K. Singh, “Decentralized consensus

blockchain and ipfs-based data aggregation for efficient data storage scheme,”

Security and Communication Networks, vol. 2022, 2022.

BIBLIOGRAPHY 205

[374] H. Ma, D. Liu, D. Wang, F. Tan, and C. Li, “Centralized and decentralized

event-triggered control for group consensus with fixed topology in continuous

time,” Neurocomputing, vol. 161, pp. 267–276, 2015.

[375] P. Yu, K.-Z. Liu, X. Liu, X. Li, M. Wu, and J. She, “Robust consensus track-

ing control of uncertain multi-agent systems with local disturbance rejection,”

IEEE/CAA Journal of Automatica Sinica, vol. 10, no. 2, pp. 427–438, 2023.

[376] Y. Tian, H. Li, and Q. Han, “Finite-time average consensus of directed second-

order multi-agent systems with markovian switching topology and impulsive

disturbance,” Neural Computing and Applications, pp. 1–14, 2023.

[377] H. Li, G. Chen, T. Huang, Z. Dong, W. Zhu, and L. Gao, “Event-triggered dis-

tributed average consensus over directed digital networks with limited communi-

cation bandwidth,” IEEE transactions on cybernetics, vol. 46, no. 12, pp. 3098–

3110, 2016.

[378] T. Li, M. Fu, L. Xie, and J.-F. Zhang, “Distributed consensus with limited

communication data rate,” IEEE Transactions on Automatic Control, vol. 56,

no. 2, pp. 279–292, 2010.

[379] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in multivehicle

cooperative control,” IEEE Control systems magazine, vol. 27, no. 2, pp. 71–82,

2007.

[380] W. Ren, R. W. Beard, and E. M. Atkins, “A survey of consensus problems in

multi-agent coordination,” in Proceedings of the 2005, American Control Con-

ference, 2005., pp. 1859–1864, IEEE, 2005.

[381] L. Moreau, “Stability of multiagent systems with time-dependent communication

links,” IEEE Transactions on automatic control, vol. 50, no. 2, pp. 169–182, 2005.

[382] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems under

dynamically changing interaction topologies,” IEEE Transactions on automatic

control, vol. 50, no. 5, pp. 655–661, 2005.

[383] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press,

2012.

BIBLIOGRAPHY 206

[384] P. M. Weichsel, “The kronecker product of graphs,” Proceedings of the American

mathematical society, vol. 13, no. 1, pp. 47–52, 1962.

[385] R. Gould, Graph theory. Courier Corporation, 2012.

[386] O. Sporns, “Graph theory methods: applications in brain networks,” Dialogues

in clinical neuroscience, 2022.

[387] Z. Li, X. Liu, W. Ren, and L. Xie, “Distributed tracking control for linear mul-

tiagent systems with a leader of bounded unknown input,” IEEE Transactions

on Automatic Control, vol. 58, no. 2, pp. 518–523, 2012.

[388] N. Biggs, E. K. Lloyd, and R. J. Wilson, Graph Theory, 1736-1936. Oxford

University Press, 1986.

[389] W. Yu, G. Chen, W. Ren, J. Kurths, and W. X. Zheng, “Distributed higher order

consensus protocols in multiagent dynamical systems,” IEEE Transactions on

Circuits and Systems I: Regular Papers, vol. 58, no. 8, pp. 1924–1932, 2011.

[390] Z. Zhou and X. Wang, “Constrained consensus in continuous-time multiagent

systems under weighted graph,” IEEE Transactions on Automatic Control,

vol. 63, no. 6, pp. 1776–1783, 2017.

[391] D. B. West et al., Introduction to graph theory, vol. 2. Prentice hall Upper Saddle

River, 2001.

[392] J. L. Gross, J. Yellen, and M. Anderson, Graph theory and its applications.

Chapman and Hall/CRC, 2018.

[393] M. Porfiri and D. J. Stilwell, “Consensus seeking over random weighted directed

graphs,” IEEE Transactions on Automatic Control, vol. 52, no. 9, pp. 1767–1773,

2007.

[394] A. H. Dekker and B. D. Colbert, “Network robustness and graph topology,” in

Proceedings of the 27th Australasian conference on Computer science-Volume 26,

pp. 359–368, 2004.

[395] J. A. Bondy, U. S. R. Murty, et al., Graph theory with applications, vol. 290.

Macmillan London, 1976.

BIBLIOGRAPHY 207

[396] L. R. Foulds, Graph theory applications. Springer Science & Business Media,

2012.

[397] R. Merris, “Laplacian matrices of graphs: a survey,” Linear algebra and its

applications, vol. 197, pp. 143–176, 1994.

[398] R. Agaev and P. Chebotarev, “On the spectra of nonsymmetric laplacian matri-

ces,” Linear Algebra and its Applications, vol. 399, pp. 157–168, 2005.

[399] R. B. Bapat, “The laplacian matrix of a graph,” Mathematics Student-India,

vol. 65, no. 1, pp. 214–223, 1996.

[400] F. L. Lewis, H. Zhang, K. Hengster-Movric, and A. Das, Cooperative control of

multi-agent systems: optimal and adaptive design approaches. Springer Science

& Business Media, 2013.

[401] Z. Li, G. Wen, Z. Duan, and W. Ren, “Designing fully distributed consensus pro-

tocols for linear multi-agent systems with directed graphs,” IEEE Transactions

on Automatic Control, vol. 60, no. 4, pp. 1152–1157, 2014.

[402] Z. Li and Z. Duan, Cooperative control of multi-agent systems: a consensus

region approach. CRC press, 2017.

[403] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann

machines,” in ICML, 2010.

[404] E. Rohmer, S. P. Singh, and M. Freese, “V-rep: A versatile and scalable robot

simulation framework,” in 2013 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems, pp. 1321–1326, IEEE, 2013.

[405] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and

A. Y. Ng, “Ros: an open-source robot operating system,” in ICRA workshop on

open source software, vol. 3, p. 5, Kobe, Japan, 2009.

[406] I. A. Sucan, M. Moll, and L. E. Kavraki, “The open motion planning library,”

IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp. 72–82, 2012.

BIBLIOGRAPHY 208

[407] H. R. Kam, S.-H. Lee, T. Park, and C.-H. Kim, “Rviz: a toolkit for real domain

data visualization,” Telecommunication Systems, vol. 60, no. 2, pp. 337–345,

2015.

[408] F. Wang, J. R. G. Olvera, and G. Cheng, “Optimal order pick-and-place of

objects in cluttered scene by a mobile manipulator,” IEEE Robotics and Au-

tomation Letters, vol. 6, no. 4, pp. 6402–6409, 2021.

[409] K. Wu, J. Hu, B. Lennox, and F. Arvin, “Mixed controller design for multi-

vehicle formation based on edge and bearing measurements,” in 2022 European

Control Conference (ECC), pp. 1666–1671, IEEE, 2022.

[410] M. Thabet, M. Patacchiola, and A. Cangelosi, “Sample-efficient deep reinforce-

ment learning with imaginary rollouts for human-robot interaction,” in 2019

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

pp. 5079–5085, 2019.

[411] H. Niu, Y. Lu, A. Savvaris, and A. Tsourdos, “An energy-efficient path planning

algorithm for unmanned surface vehicles,” Ocean Engineering, vol. 161, pp. 308–

321, 2018.

[412] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4, inception-

resnet and the impact of residual connections on learning,” in Thirty-first AAAI

conference on artificial intelligence, 2017.

[413] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, et al., “Pytorch: An imperative style, high-

performance deep learning library,” Advances in neural information processing

systems, vol. 32, 2019.

[414] M. Lutz, Programming python. " O’Reilly Media, Inc.", 2001.

[415] J. Ge, H. Saeidi, M. Kam, J. Opfermann, and A. Krieger, “Supervised au-

tonomous electrosurgery for soft tissue resection,” in 2021 IEEE 21st Interna-

tional Conference on Bioinformatics and Bioengineering (BIBE), pp. 1–7, IEEE,

2021.

BIBLIOGRAPHY 209

[416] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour, “Policy gradient methods

for reinforcement learning with function approximation,” Advances in neural

information processing systems, vol. 12, 1999.

[417] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3,

pp. 279–292, 1992.

[418] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents

with switching topology and time-delays,” IEEE Transactions on automatic con-

trol, vol. 49, no. 9, pp. 1520–1533, 2004.

[419] K. Zhang, Z. Yang, and T. Basar, “Networked multi-agent reinforcement learning

in continuous spaces,” in 2018 IEEE Conference on Decision and Control (CDC),

pp. 2771–2776, IEEE, 2018.

[420] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller, “De-

terministic policy gradient algorithms,” 2014.

[421] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances in neural

information processing systems, pp. 1008–1014, 2000.

[422] I. Grondman, L. Busoniu, G. A. Lopes, and R. Babuska, “A survey of actor-critic

reinforcement learning: Standard and natural policy gradients,” IEEE Transac-

tions on Systems, Man, and Cybernetics, Part C (Applications and Reviews),

vol. 42, no. 6, pp. 1291–1307, 2012.

[423] G. H. Golub and C. F. Van Loan, Matrix computations, vol. 3. JHU press, 2013.

[424] V. Chellaboina and W. M. Haddad, Nonlinear dynamical systems and control:

A Lyapunov-based approach. Princeton University Press, 2008.

[425] H. R. Maei, C. Szepesvári, S. Bhatnagar, and R. S. Sutton, “Toward off-policy

learning control with function approximation,” in ICML, 2010.

[426] T. Degris, M. White, and R. S. Sutton, “Off-policy actor-critic,” arXiv preprint

arXiv:1205.4839, 2012.

BIBLIOGRAPHY 210

[427] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an open-source

multi-robot simulator,” in 2004 IEEE/RSJ International Conference on Intelli-

gent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566), vol. 3, pp. 2149–

2154, IEEE, 2004.

[428] B. Beyret, A. Shafti, and A. A. Faisal, “Dot-to-dot: Explainable hierarchical re-

inforcement learning for robotic manipulation,” in 2019 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), pp. 5014–5019, 2019.

[429] Y. Han, I. H. Zhan, W. Zhao, J. Pan, Z. Zhang, Y. Wang, and Y.-J. Liu, “Deep

reinforcement learning for robot collision avoidance with self-state-attention and

sensor fusion,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 6886–

6893, 2022.

[430] R. Han, S. Chen, S. Wang, Z. Zhang, R. Gao, Q. Hao, and J. Pan, “Rein-

forcement learned distributed multi-robot navigation with reciprocal velocity

obstacle shaped rewards,” IEEE Robotics and Automation Letters, vol. 7, no. 3,

pp. 5896–5903, 2022.

[431] Y. Xu, J. Sun, Z.-G. Wu, and G. Wang, “Fully distributed adaptive event-

triggered control of networked systems with actuator bias faults,” IEEE Trans-

actions on Cybernetics, 2021.

[432] J. Cai, H. Cheng, Z. Zhang, and J. Su, “Metagrasp: Data efficient grasping by

affordance interpreter network,” in 2019 International Conference on Robotics

and Automation (ICRA), pp. 4960–4966, IEEE, 2019.

[433] S. Lambert-Lacroix and L. Zwald, “Robust regression through the huber’s cri-

terion and adaptive lasso penalty,” Electronic Journal of Statistics, vol. 5,

pp. 1015–1053, 2011.

[434] C. Godsil and G. F. Royle, Algebraic graph theory, vol. 207. Springer Science &

Business Media, 2013.

[435] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level

BIBLIOGRAPHY 211

control through deep reinforcement learning,” nature, vol. 518, no. 7540, pp. 529–

533, 2015.

[436] T. Haarnoja, V. Pong, A. Zhou, M. Dalal, P. Abbeel, and S. Levine, “Com-

posable deep reinforcement learning for robotic manipulation,” in 2018 IEEE

International Conference on Robotics and Automation (ICRA), pp. 6244–6251,

IEEE, 2018.

[437] Y. Zhao, Y. Ma, and S. Hu, “Usv formation and path-following control via deep

reinforcement learning with random braking,” IEEE Transactions on Neural

Networks and Learning Systems, 2021.

	Abstract
	Declaration
	Copyright Statement
	Abbreviations
	Symbols
	Publications
	Acknowledgements
	Introduction
	Background
	Pick and Place
	Motion Planning
	Reinforcement Learning
	Consensus Control

	Motivation
	Contributions and Thesis Organisation
	Contributions
	Thesis Organisation

	Preliminaries and Literature Review
	Robot Kinematics
	Forward Kinematics
	Inverse Kinematics

	Motion Planning
	Optimization-based Method
	Heuristic-based Method
	Sampling-based Method

	Reinforcement Learning
	Mathematical Formulation
	On-policy and Off-policy Algorithms
	Deep Q Learning
	Policy Gradient Method
	Actor-critic Method
	Deep Deterministic Policy Gradient Method
	State-of-Art Algorithms

	Consensus Control
	Kronecker Product
	Graph Theory
	Consensus for a Single Integrator System
	Consensus for a Linear Time-Invariant System

	Summary

	A Deep Reinforcement Learning Approach for Robotic Manipulators
	The Proposed Method
	Reward Design
	Action Space and Observation Space
	Neural Network Structure
	Training Details

	Standard Path Planning Method
	Result and Analysis
	Evaluation on Training of the Proposed Method
	Comparison with Standard Path Planning Method

	Summary

	Deep Reinforcement Learning with Manipulators for Pick-and-place
	The Proposed Method
	System Overview
	Reward Space
	Neural Network Structure
	State Space
	Height-sensitive Action Policy

	Experiments and Results
	Training Details
	Evaluation Metrics
	Baseline Method
	Simulation Evaluation
	Real-world Evaluation

	Suction in Challenging Environments
	Real-world Unseen Objects Challenge
	Summary

	Distributed Neural Networks Training for Robotic Manipulation with Consensus Algorithm
	Problem Formulation
	Consensus-based Distributed Training
	Actor-critic Based Off-policy Deep Reinforcement Learning
	Actor-critic Based Off-policy Deep Reinforcement Learning with Consensus-based Distributed Training

	Stability Analysis
	Convergence Analysis of a Type of Nonlinear Discrete Systems
	Convergence Analysis of the Critic Training Parameter
	Convergence Analysis of the Actor Training Parameter

	Experiments and Results
	Comparison with Existing Consensus-based RL Method
	Deep Reinforcement Learning Setup
	Training Details
	Simulation Results
	Comparison with Existing Multi-agent Algorithm
	Discussion on Bandwidth and Privacy Protection

	Summary

	Sim-and-Real Reinforcement Learning for Manipulation: A Consensus-based Approach
	Methodology
	System Overview
	Deep Reinforcement Learning Setup
	Consensus-based Training
	Consensus-based Training with Deep Reinforcement Learning

	Experiments and Results
	Experiment Setup
	Sim-and-Real is Better Than Sim-to-Real
	Best Policy in Simulation is Not the Best for Sim-and-Real Training
	The More Agents in Simulation, the Better for Sim-and-Real Training
	Generalisation of Real-world Unseen Objects

	Summary

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

