1,941 research outputs found

    Symmetry Signatures for Image-Based Applications in Robotics

    Get PDF

    Doctor of Philosophy

    Get PDF
    dissertationWe propose to examine a representation which features combined action and perception signals, i.e., instead of having a purely geometric representation of the perceptual data, we include the motor actions, e.g., aiming a camera at an object, which are al

    Indoor Positioning based on Active Radar Sensing and Passive Reflectors: Concepts & Initial Results

    Full text link
    To navigate reliably in indoor environments, an industrial autonomous vehicle must know its position. However, current indoor vehicle positioning technologies either lack accuracy, usability or are too expensive. Thus, we propose a novel concept called local reference point assisted active radar positioning, which is able to overcome these drawbacks. It is based on distributing passive retroreflectors in the indoor environment such that each position of the vehicle can be identified by a unique reflection characteristic regarding the reflectors. To observe these characteristics, the autonomous vehicle is equipped with an active radar system. On one hand, this paper presents the basic idea and concept of our new approach towards indoor vehicle positioning and especially focuses on the crucial placement of the reflectors. On the other hand, it also provides a proof of concept by conducting a full system simulation including the placement of the local reference points, the radar-based distance estimation and the comparison of two different positioning methods. It successfully demonstrates the feasibility of our proposed approach

    Space and camera path reconstruction for omni-directional vision

    Full text link
    In this paper, we address the inverse problem of reconstructing a scene as well as the camera motion from the image sequence taken by an omni-directional camera. Our structure from motion results give sharp conditions under which the reconstruction is unique. For example, if there are three points in general position and three omni-directional cameras in general position, a unique reconstruction is possible up to a similarity. We then look at the reconstruction problem with m cameras and n points, where n and m can be large and the over-determined system is solved by least square methods. The reconstruction is robust and generalizes to the case of a dynamic environment where landmarks can move during the movie capture. Possible applications of the result are computer assisted scene reconstruction, 3D scanning, autonomous robot navigation, medical tomography and city reconstructions

    Vision-based Navigation and Mapping Using Non-central Catadioptric Omnidirectional Camera

    Get PDF
    Omnidirectional catadioptric cameras find their use in navigation and mapping, owing to their wide field of view. Having a wider field of view, or rather a potential 360 degree field of view, allows the user to see and move more freely in the navigation space. A catadioptric camera system is a low cost system which consists of a mirror and a camera. A calibration method was developed in order to obtain the relative position and orientation between the two components so that they can be considered as one monolithic system. The position of the system was determined, for an environment using the conditions obtained from the reflective properties of the mirror. Object control points were set up and experiments were performed at different sites to test the mathematical models and the achieved location and mapping accuracy of the system. The obtained positions were then used to map the environment

    Learning cognitive maps: Finding useful structure in an uncertain world

    Get PDF
    In this chapter we will describe the central mechanisms that influence how people learn about large-scale space. We will focus particularly on how these mechanisms enable people to effectively cope with both the uncertainty inherent in a constantly changing world and also with the high information content of natural environments. The major lessons are that humans get by with a less is more approach to building structure, and that they are able to quickly adapt to environmental changes thanks to a range of general purpose mechanisms. By looking at abstract principles, instead of concrete implementation details, it is shown that the study of human learning can provide valuable lessons for robotics. Finally, these issues are discussed in the context of an implementation on a mobile robot. © 2007 Springer-Verlag Berlin Heidelberg

    The effect of anomaly detection accurancy in varying the angular resolution of sonar using repetitive observation strategy

    Get PDF
    This paper presents the feasibility study of implementing Repetitive Observation Strategy (ROS) using a sonar sensor array. ROS is a method that collects observation data taken from different observer positions for anomaly detection purposes. This strategy had never been implemented using sonar sensor. The study is conducted using simulation in MATLAB. The simulation is run by varying the angular resolution of the sonar sensor array which covered 180 degrees. The performance of anomaly detection is analyzed using Receiver Operating Characteristic (ROC) curve. Result shows that the performance of anomaly detection decrease as the angular resolution of sensor increases

    Low-Resolution Vision for Autonomous Mobile Robots

    Get PDF
    The goal of this research is to develop algorithms using low-resolution images to perceive and understand a typical indoor environment and thereby enable a mobile robot to autonomously navigate such an environment. We present techniques for three problems: autonomous exploration, corridor classification, and minimalistic geometric representation of an indoor environment for navigation. First, we present a technique for mobile robot exploration in unknown indoor environments using only a single forward-facing camera. Rather than processing all the data, the method intermittently examines only small 32X24 downsampled grayscale images. We show that for the task of indoor exploration the visual information is highly redundant, allowing successful navigation even using only a small fraction (0.02%) of the available data. The method keeps the robot centered in the corridor by estimating two state parameters: the orientation within the corridor and the distance to the end of the corridor. The orientation is determined by combining the results of five complementary measures, while the estimated distance to the end combines the results of three complementary measures. These measures, which are predominantly information-theoretic, are analyzed independently, and the combined system is tested in several unknown corridor buildings exhibiting a wide variety of appearances, showing the sufficiency of low-resolution visual information for mobile robot exploration. Because the algorithm discards such a large percentage (99.98%) of the information both spatially and temporally, processing occurs at an average of 1000 frames per second, or equivalently takes a small fraction of the CPU. Second, we present an algorithm using image entropy to detect and classify corridor junctions from low resolution images. Because entropy can be used to perceive depth, it can be used to detect an open corridor in a set of images recorded by turning a robot at a junction by 360 degrees. Our algorithm involves detecting peaks from continuously measured entropy values and determining the angular distance between the detected peaks to determine the type of junction that was recorded (either middle, L-junction, T-junction, dead-end, or cross junction). We show that the same algorithm can be used to detect open corridors from both monocular as well as omnidirectional images. Third, we propose a minimalistic corridor representation consisting of the orientation line (center) and the wall-floor boundaries (lateral limit). The representation is extracted from low-resolution images using a novel combination of information theoretic measures and gradient cues. Our study investigates the impact of image resolution upon the accuracy of extracting such a geometry, showing that centerline and wall-floor boundaries can be estimated with reasonable accuracy even in texture-poor environments with low-resolution images. In a database of 7 unique corridor sequences for orientation measurements, less than 2% additional error was observed as the resolution of the image decreased by 99.9%
    corecore