62 research outputs found

    Robot Mapping and Localisation for Feature Sparse Water Pipes Using Voids as Landmarks

    Get PDF
    Robotic systems for water pipe inspection do not generally include navigation components for mapping the pipe network and locating damage. Such navigation systems would be highly advantageous for water companies because it would allow them to more effectively target maintenance and reduce costs. In water pipes, a major challenge for robot navigation is feature sparsity. In order to address this problem, a novel approach for robot navigation in water pipes is developed here, which uses a new type of landmark feature - voids outside the pipe wall, sensed by ultrasonic scanning. The method was successfully demonstrated in a laboratory environment and showed for the first time the potential of using voids for robot navigation in water pipes

    Robot Mapping and Localisation for Feature Sparse Water Pipes Using Voids as Landmarks

    Get PDF
    Robotic systems for water pipe inspection do not generally include navigation components for mapping the pipe network and locating damage. Such navigation systems would be highly advantageous for water companies because it would allow them to more effectively target maintenance and reduce costs. In water pipes, a major challenge for robot navigation is feature sparsity. In order to address this problem, a novel approach for robot navigation in water pipes is developed here, which uses a new type of landmark feature - voids outside the pipe wall, sensed by ultrasonic scanning. The method was successfully demonstrated in a laboratory environment and showed for the first time the potential of using voids for robot navigation in water pipes

    Robot Mapping and Localisation in Water Pipes

    Get PDF
    The demand for inspection and repair technologies for the water industries on their water mains and distribution pipes is increasing. In urban water distribution systems, due to the fact that water pipes are ageing, pipe leakages and serious damage may occur. Compared with the cost of pipe replacement in the underground distribution system, regular pipe inspection and repair is more cost effective to water companies and local communities. However, small-diameter pipes are not accessible to humans because they are small in size and often buried underground. Therefore, inspection robotic systems are more suited to this task in terms of underground pipe networks mapping and damage localisation, in order to target repair from above ground. There are a number of challenges for robot mapping and localisation in water pipes, which are: 1) feature sparsity in water pipes – lack of navigation landmarks, 2) in-pipe robot can only detect nearby features, and 3) unlike indoor/outdoor SLAM problems, in-pipe robot has less movement flexibility. The main aim of this thesis is to solve these challenges and address the problem of robot mapping and localisation in small-diameter feature-sparse water pipes. This thesis presents a number of novel contributions. Firstly, for the front end, where raw sensor data is transformed into signals useful for mapping and localisation algorithms, new types of maps are developed here for water pipes: for plastic pipes, ultrasound data is used to map the ground profile through the plastic pipe wall, whilst for metal pipes a hydrophone is used to determine a map based on pipe vibration amplitude over space. Secondly, a new sequential approach to mapping and localisation is developed, based on alignment of multiple maps based on dynamic time warping averaging. Thirdly, a new simultaneous localisation and mapping algorithm is developed, which overcomes the limitation of the sequential approach in that the map is not updated. Finally, a new sensor fusion algorithm is developed that transforms the robot location in the local coordinate frame to the world coordinate frame, which would be essential for targeting repairs from above ground

    A robust method for approximate visual robot localization in feature-sparse sewer pipes

    Get PDF
    Buried sewer pipe networks present many challenges for robot localization systems, which require non-standard solutions due to the unique nature of these environments: they cannot receive signals from global positioning systems (GPS) and can also lack visual features necessary for standard visual odometry algorithms. In this paper, we exploit the fact that pipe joints are equally spaced and develop a robot localization method based on pipe joint detection that operates in one degree-of-freedom along the pipe length. Pipe joints are detected in visual images from an on-board forward facing (electro-optical) camera using a bag-of-keypoints visual categorization algorithm, which is trained offline by unsupervised learning from images of sewer pipe joints. We augment the pipe joint detection algorithm with drift correction using vision-based manhole recognition. We evaluated the approach using real-world data recorded from three sewer pipes (of lengths 30, 50 and 90 m) and benchmarked against a standard method for visual odometry (ORB-SLAM3), which demonstrated that our proposed method operates more robustly and accurately in these feature-sparse pipes: ORB-SLAM3 completely failed on one tested pipe due to a lack of visual features and gave a mean absolute error in localization of approximately 12%–20% on the other pipes (and regularly lost track of features, having to re-initialize multiple times), whilst our method worked successfully on all tested pipes and gave a mean absolute error in localization of approximately 2%–4%. In summary, our results highlight an important trade-off between modern visual odometry algorithms that have potentially high precision and estimate full six degree-of-freedom pose but are potentially fragile in feature sparse pipes, versus simpler, approximate localization methods that operate in one degree-of-freedom along the pipe length that are more robust and can lead to substantial improvements in accuracy

    Simultaneous localization and mapping for inspection robots in water and sewer pipe networks: a review

    Get PDF
    At the present time, water and sewer pipe networks are predominantly inspected manually. In the near future, smart cities will perform intelligent autonomous monitoring of buried pipe networks, using teams of small robots. These robots, equipped with all necessary computational facilities and sensors (optical, acoustic, inertial, thermal, pressure and others) will be able to inspect pipes whilst navigating, selflocalising and communicating information about the pipe condition and faults such as leaks or blockages to human operators for monitoring and decision support. The predominantly manual inspection of pipe networks will be replaced with teams of autonomous inspection robots that can operate for long periods of time over a large spatial scale. Reliable autonomous navigation and reporting of faults at this scale requires effective localization and mapping, which is the estimation of the robot’s position and its surrounding environment. This survey presents an overview of state-of-the-art works on robot simultaneous localization and mapping (SLAM) with a focus on water and sewer pipe networks. It considers various aspects of the SLAM problem in pipes, from the motivation, to the water industry requirements, modern SLAM methods, map-types and sensors suited to pipes. Future challenges such as robustness for long term robot operation in pipes are discussed, including how making use of prior knowledge, e.g. geographic information systems (GIS) can be used to build map estimates, and improve the multi-robot SLAM in the pipe environmen

    Autocalibrating vision guided navigation of unmanned air vehicles via tactical monocular cameras in GPS denied environments

    Get PDF
    This thesis presents a novel robotic navigation strategy by using a conventional tactical monocular camera, proving the feasibility of using a monocular camera as the sole proximity sensing, object avoidance, mapping, and path-planning mechanism to fly and navigate small to medium scale unmanned rotary-wing aircraft in an autonomous manner. The range measurement strategy is scalable, self-calibrating, indoor-outdoor capable, and has been biologically inspired by the key adaptive mechanisms for depth perception and pattern recognition found in humans and intelligent animals (particularly bats), designed to assume operations in previously unknown, GPS-denied environments. It proposes novel electronics, aircraft, aircraft systems, systems, and procedures and algorithms that come together to form airborne systems which measure absolute ranges from a monocular camera via passive photometry, mimicking that of a human-pilot like judgement. The research is intended to bridge the gap between practical GPS coverage and precision localization and mapping problem in a small aircraft. In the context of this study, several robotic platforms, airborne and ground alike, have been developed, some of which have been integrated in real-life field trials, for experimental validation. Albeit the emphasis on miniature robotic aircraft this research has been tested and found compatible with tactical vests and helmets, and it can be used to augment the reliability of many other types of proximity sensors

    Ultrasonic sensor platforms for non-destructive evaluation

    Get PDF
    Robotic vehicles are receiving increasing attention for use in Non-Destructive Evaluation (NDE), due to their attractiveness in terms of cost, safety and their accessibility to areas where manual inspection is not practical. A reconfigurable Lamb wave scanner, using autonomous robotic platforms is presented. The scanner is built from a fleet of wireless miniature robotic vehicles, each with a non-contact ultrasonic payload capable of generating the A0 Lamb wave mode in plate specimens. An embedded Kalman filter gives the robots a positional accuracy of 10mm. A computer simulator, to facilitate the design and assessment of the reconfigurable scanner, is also presented. Transducer behaviour has been simulated using a Linear Systems approximation (LS), with wave propagation in the structure modelled using the Local Interaction Simulation Approach (LISA). Integration of the LS and LISA approaches were validated for use in Lamb wave scanning by comparison with both analytical techniques and more computationally intensive commercial finite element/diference codes. Starting with fundamental dispersion data, the work goes on to describe the simulation of wave propagation and the subsequent interaction with artificial defects and plate boundaries. The computer simulator was used to evaluate several imaging techniques, including local inspection of the area under the robot and an extended method that emits an ultrasonic wave and listens for echos (B-Scan). These algorithms were implemented in the robotic platform and experimental results are presented. The Synthetic Aperture Focusing Technique (SAFT) was evaluated as a means of improving the fidelity of B-Scan data. It was found that a SAFT is only effective for transducers with reasonably wide beam divergence, necessitating small transducers with a width of approximately 5mm. Finally, an algorithm for robot localisation relative to plate sections was proposed and experimentally validated

    Advanced Characterization and On-Line Process Monitoring of Additively Manufactured Materials and Components

    Get PDF
    This reprint is concerned with the microstructural characterization and the defect analysis of metallic additively manufactured (AM) materials and parts. Special attention is paid to the determination of residual stress in such parts and to online monitoring techniques devised to predict the appearance of defects. Finally, several non-destructive testing techniques are employed to assess the quality of AM materials and parts
    • …
    corecore