9,949 research outputs found

    Estimation of tool-tissue forces in robot-assisted minimally invasive surgery using neural networks

    Get PDF
    A new algorithm is proposed to estimate the tool-tissue force interaction in robot-assisted minimally invasive surgery which does not require the use of external force sensing. The proposed method utilizes the current of the motors of the surgical instrument and neural network methods to estimate the force interaction. Offline and online testing is conducted to assess the feasibility of the developed algorithm. Results showed that the developed method has promise in allowing online estimation of tool-tissue force and could thus enable haptic feedback in robotic surgery to be provided

    The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review

    Get PDF
    BACKGROUND: Virtual reality (VR) as surgical training tool has become a state-of-the-art technique in training and teaching skills for minimally invasive surgery (MIS). Although intuitively appealing, the true benefits of haptic (VR training) platforms are unknown. Many questions about haptic feedback in the different areas of surgical skills (training) need to be answered before adding costly haptic feedback in VR simulation for MIS training. This study was designed to review the current status and value of haptic feedback in conventional and robot-assisted MIS and training by using virtual reality simulation. METHODS: A systematic review of the literature was undertaken using PubMed and MEDLINE. The following search terms were used: Haptic feedback OR Haptics OR Force feedback AND/OR Minimal Invasive Surgery AND/OR Minimal Access Surgery AND/OR Robotics AND/OR Robotic Surgery AND/OR Endoscopic Surgery AND/OR Virtual Reality AND/OR Simulation OR Surgical Training/Education. RESULTS: The results were assessed according to level of evidence as reflected by the Oxford Centre of Evidence-based Medicine Levels of Evidence. CONCLUSIONS: In the current literature, no firm consensus exists on the importance of haptic feedback in performing minimally invasive surgery. Although the majority of the results show positive assessment of the benefits of force feedback, results are ambivalent and not unanimous on the subject. Benefits are least disputed when related to surgery using robotics, because there is no haptic feedback in currently used robotics. The addition of haptics is believed to reduce surgical errors resulting from a lack of it, especially in knot tying. Little research has been performed in the area of robot-assisted endoscopic surgical training, but results seem promising. Concerning VR training, results indicate that haptic feedback is important during the early phase of psychomotor skill acquisitio

    Temporal perception of visual-haptic events in multimodal telepresence system

    Get PDF
    Book synopsis: Haptic interfaces are divided into two main categories: force feedback and tactile. Force feedback interfaces are used to explore and modify remote/virtual objects in three physical dimensions in applications including computer-aided design, computer-assisted surgery, and computer-aided assembly. Tactile interfaces deal with surface properties such as roughness, smoothness, and temperature. Haptic research is intrinsically multi-disciplinary, incorporating computer science/engineering, control, robotics, psychophysics, and human motor control. By extending the scope of research in haptics, advances can be achieved in existing applications such as computer-aided design (CAD), tele-surgery, rehabilitation, scientific visualization, robot-assisted surgery, authentication, and graphical user interfaces (GUI), to name a few. Advances in Haptics presents a number of recent contributions to the field of haptics. Authors from around the world present the results of their research on various issues in the field of haptics

    Modular integration of a 3 DoF F/T sensor for robotic manipulators

    Get PDF
    Robot assisted surgery and minimally invasive robotic surgery inherently entail that the hands of the surgeon indirectly interact with the patient tissues and organs even if the operator is out of the affected body. Hence, transferring sensor information from the inside of the patient to the outside of the surgeon may certainly improve the perception of the robotic enduser. To this aim – within the EU framework of the STIFF-FLOP project (STIFFness controllable Flexible and Learnable Manipulator for Surgical Operations), we developed a novel design of miniaturized and magnetic resonance compatible sensors for force and torque real-time measurements in robotic surgery. The sensor design has a hollow shape, whose geometry allows its integration and embedding within snake-like surgical robots and modular devices. According to typical requirements and specifications of a surgical procedure, the sensor operates in a range of force and torque of 0-5 N and 0-5 N⋅cm, respectively. Due to a customized tool and calibration procedure, an error of less than 15% of sensor range can be obtained. This novel transducer may advance force and haptic feedback in robot assisted and minimally invasive surgeries

    Task Dynamics of Prior Training Influence Visual Force Estimation Ability During Teleoperation

    Full text link
    The lack of haptic feedback in Robot-assisted Minimally Invasive Surgery (RMIS) is a potential barrier to safe tissue handling during surgery. Bayesian modeling theory suggests that surgeons with experience in open or laparoscopic surgery can develop priors of tissue stiffness that translate to better force estimation abilities during RMIS compared to surgeons with no experience. To test if prior haptic experience leads to improved force estimation ability in teleoperation, 33 participants were assigned to one of three training conditions: manual manipulation, teleoperation with force feedback, or teleoperation without force feedback, and learned to tension a silicone sample to a set of force values. They were then asked to perform the tension task, and a previously unencountered palpation task, to a different set of force values under teleoperation without force feedback. Compared to the teleoperation groups, the manual group had higher force error in the tension task outside the range of forces they had trained on, but showed better speed-accuracy functions in the palpation task at low force levels. This suggests that the dynamics of the training modality affect force estimation ability during teleoperation, with the prior haptic experience accessible if formed under the same dynamics as the task.Comment: 12 pages, 8 figure

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    State of the art of robotic surgery related to vision: Brain and eye applications of newly available devices

    Get PDF
    Raffaele Nuzzi, Luca Brusasco Department of Surgical Sciences, Eye Clinic, University of Torino, Turin, Italy Background: Robot-assisted surgery has revolutionized many surgical subspecialties, mainly where procedures have to be performed in confined, difficult to visualize spaces. Despite advances in general surgery and neurosurgery, in vivo application of robotics to ocular surgery is still in its infancy, owing to the particular complexities of microsurgery. The use of robotic assistance and feedback guidance on surgical maneuvers could improve the technical performance of expert surgeons during the initial phase of the learning curve. Evidence acquisition: We analyzed the advantages and disadvantages of surgical robots, as well as the present applications and future outlook of robotics in neurosurgery in brain areas related to vision and ophthalmology. Discussion: Limitations to robotic assistance remain, that need to be overcome before it can be more widely applied in ocular surgery. Conclusion: There is heightened interest in studies documenting computerized systems that filter out hand tremor and optimize speed of movement, control of force, and direction and range of movement. Further research is still needed to validate robot-assisted procedures. Keywords: robotic surgery related to vision, robots, ophthalmological applications of robotics, eye and brain robots, eye robot

    Optical coherence tomography-based consensus definition for lamellar macular hole.

    Get PDF
    BackgroundA consensus on an optical coherence tomography definition of lamellar macular hole (LMH) and similar conditions is needed.MethodsThe panel reviewed relevant peer-reviewed literature to reach an accord on LMH definition and to differentiate LMH from other similar conditions.ResultsThe panel reached a consensus on the definition of three clinical entities: LMH, epiretinal membrane (ERM) foveoschisis and macular pseudohole (MPH). LMH definition is based on three mandatory criteria and three optional anatomical features. The three mandatory criteria are the presence of irregular foveal contour, the presence of a foveal cavity with undermined edges and the apparent loss of foveal tissue. Optional anatomical features include the presence of epiretinal proliferation, the presence of a central foveal bump and the disruption of the ellipsoid zone. ERM foveoschisis definition is based on two mandatory criteria: the presence of ERM and the presence of schisis at the level of Henle's fibre layer. Three optional anatomical features can also be present: the presence of microcystoid spaces in the inner nuclear layer (INL), an increase of retinal thickness and the presence of retinal wrinkling. MPH definition is based on three mandatory criteria and two optional anatomical features. Mandatory criteria include the presence of a foveal sparing ERM, the presence of a steepened foveal profile and an increased central retinal thickness. Optional anatomical features are the presence of microcystoid spaces in the INL and a normal retinal thickness.ConclusionsThe use of the proposed definitions may provide uniform language for clinicians and future research
    corecore