3,524 research outputs found

    Practical classification of different moving targets using automotive radar and deep neural networks

    Get PDF
    In this work, the authors present results for classification of different classes of targets (car, single and multiple people, bicycle) using automotive radar data and different neural networks. A fast implementation of radar algorithms for detection, tracking, and micro-Doppler extraction is proposed in conjunction with the automotive radar transceiver TEF810X and microcontroller unit SR32R274 manufactured by NXP Semiconductors. Three different types of neural networks are considered, namely a classic convolutional network, a residual network, and a combination of convolutional and recurrent network, for different classification problems across the four classes of targets recorded. Considerable accuracy (close to 100% in some cases) and low latency of the radar pre-processing prior to classification (∼0.55 s to produce a 0.5 s long spectrogram) are demonstrated in this study, and possible shortcomings and outstanding issues are discussed

    Overview of contextual tracking approaches in information fusion

    Get PDF
    Proceedings of: Geospatial InfoFusion III. 2-3 May 2013 Baltimore, Maryland, United States.Many information fusion solutions work well in the intended scenarios; but the applications, supporting data, and capabilities change over varying contexts. One example is weather data for electro-optical target trackers of which standards have evolved over decades. The operating conditions of: technology changes, sensor/target variations, and the contextual environment can inhibit performance if not included in the initial systems design. In this paper, we seek to define and categorize different types of contextual information. We describe five contextual information categories that support target tracking: (1) domain knowledge from a user to aid the information fusion process through selection, cueing, and analysis, (2) environment-to-hardware processing for sensor management, (3) known distribution of entities for situation/threat assessment, (4) historical traffic behavior for situation awareness patterns of life (POL), and (5) road information for target tracking and identification. Appropriate characterization and representation of contextual information is needed for future high-level information fusion systems design to take advantage of the large data content available for a priori knowledge target tracking algorithm construction, implementation, and application.Publicad

    New multiple target tracking strategy using domain knowledge and optimisation

    Get PDF
    This paper proposes an environment-dependent vehicle dynamic modeling approach considering interactions between the noisy control input of a dynamic model and the environment in order to make best use of domain knowledge. Based on this modeling, a new domain knowledge-aided moving horizon estimation (DMHE) method is proposed for ground moving target tracking. The proposed method incorporates different types of domain knowledge in the estimation process considering both environmental physical constraints and interaction behaviors between targets and the environment. Furthermore, in order to deal with a data association ambiguity problem of multiple-target tracking in a cluttered environment, the DMHE is combined with a multiple-hypothesis tracking structure. Numerical simulation results show that the proposed DMHE-based method and its extension could achieve better performance than traditional tracking methods which utilize no domain knowledge or simple physical constraint information only

    An improved multiple model particle filtering approach for manoeuvring target tracking using airborne GMTI with geographic information

    Get PDF
    This paper proposes a ground vehicle tracking method using an airborne ground moving target indicator radar where the surrounding geographic information is considered to determine vehicle's movement type as well as constrain its positions. Multiple state models corresponding to different movement modes are applied to represent the vehicle's behaviour in different terrain conditions. Based on geographic conditions and multiple state models, a constrained variable structure multiple model particle filter algorithm is proposed. Compared with the traditional multiple model particle filtering schemes, the proposed algorithm utilises a particle swarm optimisation technique which generates more effective particles and generated particles are constrained into the feasible geographic region. Numerical simulation results in a realistic environment show that the proposed method achieves better tracking performance compared with current state-of-the-art ones for manoeuvring vehicle tracking

    Contextual information aided target tracking and path planning for autonomous ground vehicles

    Get PDF
    Recently, autonomous vehicles have received worldwide attentions from academic research, automotive industry and the general public. In order to achieve a higher level of automation, one of the most fundamental requirements of autonomous vehicles is the capability to respond to internal and external changes in a safe, timely and appropriate manner. Situational awareness and decision making are two crucial enabling technologies for safe operation of autonomous vehicles. This thesis presents a solution for improving the automation level of autonomous vehicles in both situational awareness and decision making aspects by utilising additional domain knowledge such as constraints and influence on a moving object caused by environment and interaction between different moving objects. This includes two specific sub-systems, model based target tracking in environmental perception module and motion planning in path planning module. In the first part, a rigorous Bayesian framework is developed for pooling road constraint information and sensor measurement data of a ground vehicle to provide better situational awareness. Consequently, a new multiple targets tracking (MTT) strategy is proposed for solving target tracking problems with nonlinear dynamic systems and additional state constraints. Besides road constraint information, a vehicle movement is generally affected by its surrounding environment known as interaction information. A novel dynamic modelling approach is then proposed by considering the interaction information as virtual force which is constructed by involving the target state, desired dynamics and interaction information. The proposed modelling approach is then accommodated in the proposed MTT strategy for incorporating different types of domain knowledge in a comprehensive manner. In the second part, a new path planning strategy for autonomous vehicles operating in partially known dynamic environment is suggested. The proposed MTT technique is utilized to provide accurate on-board tracking information with associated level of uncertainty. Based on the tracking information, a path planning strategy is developed to generate collision free paths by not only predicting the future states of the moving objects but also taking into account the propagation of the associated estimation uncertainty within a given horizon. To cope with a dynamic and uncertain road environment, the strategy is implemented in a receding horizon fashion

    A Tutorial on Joint Radar and Communication Transmission for Vehicular Networks-Part I: Background and Fundamentals

    Get PDF
    This letter is part of a three-part tutorial that focuses on joint radar-communication system design for vehicular networks. As Part I of the tutorial, this letter reviews the fundamental principles of dual-functional radar-communication from a technical perspective. First of all, we briefly introduce the background and the emerging applications of the technique. We then revisit the preliminaries of both radar and communication systems, with emphasis on the system modeling and key performance metrics. We then present the general design criteria and representative methodologies for joint radar-communication transmission in general settings, before finally focusing our study to the vehicular network which is the scope of Part II and III of this tutorial
    corecore