634 research outputs found

    Fuzzy Logic

    Get PDF
    The capability of Fuzzy Logic in the development of emerging technologies is introduced in this book. The book consists of sixteen chapters showing various applications in the field of Bioinformatics, Health, Security, Communications, Transportations, Financial Management, Energy and Environment Systems. This book is a major reference source for all those concerned with applied intelligent systems. The intended readers are researchers, engineers, medical practitioners, and graduate students interested in fuzzy logic systems

    Response-based methods to measure road surface irregularity: a state-of-the-art review

    Get PDF
    "jats:sec" "jats:title"Purpose"/jats:title" "jats:p"With the development of smart technologies, Internet of Things and inexpensive onboard sensors, many response-based methods to evaluate road surface conditions have emerged in the recent decade. Various techniques and systems have been developed to measure road profiles and detect road anomalies for multiple purposes such as expedient maintenance of pavements and adaptive control of vehicle dynamics to improve ride comfort and ride handling. A holistic review of studies into modern response-based techniques for road pavement applications is found to be lacking. Herein, the focus of this article is threefold: to provide an overview of the state-of-the-art response-based methods, to highlight key differences between methods and thereby to propose key focus areas for future research."/jats:p" "/jats:sec" "jats:sec" "jats:title"Methods"/jats:title" "jats:p"Available articles regarding response-based methods to measure road surface condition were collected mainly from “Scopus” database and partially from “Google Scholar”. The search period is limited to the recent 15 years. Among the 130 reviewed documents, 37% are for road profile reconstruction, 39% for pothole detection and the remaining 24% for roughness index estimation."/jats:p" "/jats:sec" "jats:sec" "jats:title"Results"/jats:title" "jats:p"The results show that machine-learning techniques/data-driven methods have been used intensively with promising results but the disadvantages on data dependence have limited its application in some instances as compared to analytical/data processing methods. Recent algorithms to reconstruct/estimate road profiles are based mainly on passive suspension and quarter-vehicle-model, utilise fewer key parameters, being independent on speed variation and less computation for real-time/online applications. On the other hand, algorithms for pothole detection and road roughness index estimation are increasingly focusing on GPS accuracy, data aggregation and crowdsourcing platform for large-scale application. However, a novel and comprehensive system that is comparable to existing International Roughness Index and conventional Pavement Management System is still lacking."/jats:p" "/jats:sec Document type: Articl

    Reduction of axis acceleration of quarter car suspension using pneumatic actuator and active force control technique

    Get PDF
    This paper presents the design of a control technique applied to the pneumatic active suspension system of a quarter car model using controller with fuzzy logic embedded in the active force control component. The overall control system is decomposed into two loops. In the main loop the desired force signal is calculated using an active force control strategy with a sugeno fuzzy logic element which is being employed to estimate the mass needed to feed the control loop. A Mamdani fuzzy logic controller is implemented in the outer loop to design a force controller such that the desired force signal is achieved in a robust manner. The resulting control strategy known as fuzzy – active force controller (FLC-AFC) is used to control a nonlinear actuator attached between the sprung mass and the unsprung mass of the quarter car model. The performances of the proposed control method were evaluated and later compared to examine the effectiveness in suppressing the vibration effect of the suspension system. Resulting fuzzy active force control gives better results if compared to the fuzzy logic and the passive suspension system

    The ride comfort versus handling decision for off-road vehicles

    Get PDF
    Today, Sport Utility Vehicles are marketed as both on-road and off-road vehicles. This results in a compromise when designing the suspension of the vehicle. If the suspension characteristics are fixed, the vehicle cannot have good handling capabilities on highways and good ride comfort over rough terrain. The rollover propensity of this type of vehicle compared to normal cars is high because it has a combination of a high centre of gravity and a softer suspension. The 4 State Semi-active Suspension System (4S4) that can switch between two discrete spring characteristics as well as two discrete damper characteristics, has been proven to overcome this compromise. The soft suspension setting (soft spring and low damping) is used for ride comfort, while the hard suspension setting (stiff spring and high damping) is used for handling. The following question arises: when is which setting most appropriate? The two main contributing factors are the terrain profile and the driver’s actions. Ride comfort is primarily dependant on the terrain that the vehicle is travelling over. If the terrain can be identified, certain driving styles can be expected for that specific environment. The terrains range from rough and uncomfortable to smooth with high speed manoeuvring. Terrain classification methods are proposed and tested with measured data from the test vehicle on known terrain types. Good results were obtained from the terrain classification methods. Five terrain types were accurately identified from over an hour’s worth of vehicle testing. Handling manoeuvres happen unexpectedly, often to avoid an accident. To improve the handling and therefore safety of the vehicle, the 4S4 can be switched to the hard suspension setting, which results in a reduced body roll angle. This decision should be made quickly with the occupants’ safety as the priority. Methods were investigated that will determine when to switch the suspension to the handling mode based on the kinematics of the vehicle. The switching strategies proposed in this study have the potential, with a little refinement, to make the ride versus handling decision correctly. Copyright 2007, University of Pretoria. All rights reserved. The copyright in this work vests in the University of Pretoria. No part of this work may be reproduced or transmitted in any form or by any means, without the prior written permission of the University of Pretoria. Please cite as follows: Bester, R 2007, The ride comfort versus handling decision for off-road vehicles, MEng dissertation, University of Pretoria, Pretoria, viewed yymmdd Dissertation (MEng (Mechanical Engineering))--University of Pretoria, 2007.Mechanical and Aeronautical Engineeringunrestricte

    Intelligent controllers for vechicle suspension system using magnetorheological damper

    Get PDF
    Semi-active suspension control with magnetorheological (MR) damper is one of the most fascinating systems being studied in improving the vehicle ride comfort. This study aims to investigate the development of intelligent controllers for vehicle suspension system using MR damper, namely, the proportional-integral-derivative (PID) and fuzzy logic (FL) controllers optimized using particle swarm optimization (PSO), firefly algorithm (FA) and advanced firefly algorithm (AFA). Since the conventional optimization method always has a problem in identifying the optimum values and it is time consuming, the evolutionary algorithm is the best approach in replacing the conventional method as it is very efficient and consistent in exploring the values for every single space. The PSO and FA are among of the evolutionary algorithms which have been studied in this research. Nevertheless, the weakness of FA such as getting trapped into several local minima is an attractive area that has been focused more as a possible improvement during the evolutionary process. Thus, a new algorithm based on the improvement of the original FA was introduced to improve the solution quality of the FA. This algorithm is called advanced firefly algorithm. A parametric modelling technique known as Spencer model was proposed and employed to compute the dynamic behaviour of the MR damper system. The Spencer model was experimentally validated and conducted to capture the behaviour of the Lord RD-1005-3 MR damper with the same excitation input. A simulation of a semi-active suspension system was developed within MATLAB Simulink environment. The effectiveness of all control schemes were investigated in two major issues, namely the ability of the controller to reject the unwanted motion of the vehicle and to overcome the damping constraints. The result indicates that, the PID-AFA control scheme is more superior as compared to the PID-PSO, PID-FA, FL-PSO, FL-FA, FL-AFA and passive system with up to 27.1% and 19.1% reduction for sprung mass acceleration and sprung mass displacement, respectively. Finally, the performance of the proposed intelligent control schemes which are implemented experimentally on the developed quarter vehicle suspension test rig shows a good agreement with the results of the simulation study. The proposed control scheme of PID-AFA has reduced the sprung mass acceleration and sprung mass displacement over the FL-AFA and passive system up to 28.21% and 16.9%, respectively

    Adaptive neural network control for semi-active vehicle suspensions

    Get PDF
    An adaptive neural network (ANN) control method for a continuous damping control (CDC) damper is used in vehicle suspension systems. The control objective is to suppress positional oscillation of the sprung mass in the presence of road irregularities. To achieve this, a boundary model is first applied to depict dynamic characteristics of the CDC damper based on experimental data. To overcome nonlinearity issues of the model system and uncertainties in the suspension parameters, an adaptive radial basis function neural network (RBFNN) with online learning capability is utilized to approximate unknown dynamics, without the need for prior information related to the suspension system. In addition, particle swarm optimization (PSO) technique is adopted to determine and optimize the parameters of the controller. Closed loop stability and asymptotic convergence performance are guaranteed based on Lyapunov stability theory. Finally, simulation results demonstrate that the proposed controller can effectively regulate the chassis vertical position under different road excitations. Furthermore, the control performance is determined to be better than that of the typical Skyhook controller

    Control strategies of series active variable geometry suspension for cars

    Get PDF
    This thesis develops control strategies of a new type of active suspension for high performance cars, through vehicle modelling, controller design and application, and simulation validation. The basic disciplines related to automotive suspensions are first reviewed and are followed by a brief explanation of the new Series Active Variable Geometry Suspension (SAVGS) concept which has been proposed prior to the work in this thesis. As part of the control synthesis, recent studies in suspension control approaches are intensively reviewed to identify the most suitable control approach for the single-link variant of the SAVGS. The modelling process of the high-fidelity multi-body quarter- and full- vehicle models, and the modelling of the linearised models used throughout this project are given in detail. The design of the controllers uses the linearised models, while the performance of the closed loop system is investigated by implementing the controllers to the nonlinear models. The main body of this thesis elaborates on the process of synthesising H∞ control schemes for quarter-car to full-car control. Starting by using the quarter-car single-link variant of the SAVGS, an H∞ -controlled scheme is successfully constructed, which provides optimal road disturbance and external force rejection to improve comfort and road holding in the context of high frequency dynamics. This control technique is then extended to the more complex full-car SAVGS and its control by considering the pitching and rolling motions in the context of high frequency dynamics as additional objectives. To improve the level of robustness to single-link rotations and remove the geometry nonlinearity away from the equilibrium position, an updated approach of the full-car SAVGS H∞ -controlled scheme is then developed based on a new linear equivalent hand-derived full-car model. Finally, an overall SAVGS control framework is developed, which operates by blending together the updated H∞ controller and an attitude controller, to tackle the comfort and road holding in the high frequency vehicle dynamics and chassis attitude motions in the low frequency vehicle dynamics simultaneously. In all cases, cascade inner position controllers developed prior to the work in this thesis are employed at each corner of the vehicle and combined with the control systems developed in this thesis, to ensure that none of the physical or design limitations of the actuator are violated under any circumstances.Open Acces

    Road profile estimation for suspension system based on the minimum model error criterion combined with a Kalman filter

    Get PDF
    This paper presents a novel approach for improving the estimation accuracy of the road profile for a vehicle suspension system. To meet the requirements of road profile estimation for road management and reproduction of system excitation, previous studies can be divided into data-driven and model based approaches. These studies mainly focused on road profile estimation while seldom considering the uncertainty of parameters. However, uncertainty is unavoidable for various aspects of suspension system, e.g., varying sprung mass, damper and tire nonlinear performance. In this study, to improve the estimation accuracy for a varying sprung mass, a novel algorithm was derived based on the Minimum Model Error (MME) criterion and a Kalman Filter (KF). Since the MME criterion method utilizes the minimum value principle to solve the model error based on a model error function, the MME criterion can effectively deal with the estimation error. Then, the proposed algorithm was applied to a 2 degree-of-freedom (DOF) suspension system model under ISO Level-B, ISO Level-C and ISO Level-D road excitations. Simulation results and experimental data obtained using a quarter-vehicle test rig revealed that the proposed approach achieves higher road estimation accuracy compared to traditional KF methods
    corecore