18,426 research outputs found

    Road Vehicle Detection and Classification Using Magnetic Field Measurement

    Full text link
    © 2013 IEEE. This paper presents a road vehicle recognition and classification approach for intelligent transportation systems. This approach uses a roadside installed low-cost magnetometer and associated data collection system. The system measures the magnetic field changing, detects passing vehicles, and recognizes vehicle types. We introduce Mel Frequency Cepstral Coefficients (MFCC) to analyze vehicle magnetic signals and extract it as vehicle feature with the representation of cepstrum, frame energy, and gap cepstrum of magnetic signals. We design a 3-dimensional map algorithm using Vector Quantization (VQ) to classify vehicle magnetic features to 4 typical types of vehicles in Australian suburbs: sedan, van, truck, and bus. In order to train an accurate classifier, training samples are selected using the Dynamic Time Warping (DTW). The verification experiments show that our approach achieves a high level of accuracy for vehicle detection and classification

    Road vehicle recognition and classification using magnetic field measurement

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.This dissertation presents a road vehicle detection approach for intelligent transportation systems. This approach uses a roadside-installed, low-cost magnetic sensor and associated data collection system. The system measures magnetic field changes to count, detect, and classify passing vehicles into a number of vehicle types. We compare each vehicle using dynamic time warping (DTW), then extend Mel-Frequency Cepstral Coefficients to analyse the vehicles’ magnetic signals and extract them as vehicle features using the representations of cepstrum, frame energy, and gap cepstrum of magnetic signals. There are three directions (X-axis, Y-axis, and Z-axis directions) in the earth’s magnetic field. We design one- (X-axis direction) and three-dimensional (i.e. X-axis, Y-axis, and Z-axis direction) map algorithms using Vector Quantisation to classify the vehicle magnetic features according to four typical vehicle types for the Australian suburbs: sedan, van, truck, and bus. We also compared experimental results between these two methods. Results show that our approach achieves a high level of accuracy for vehicle detection and classification. In the end, we found that filtering raw magnetic measurement signals can significantly influence vehicle recognition accuracy. Compared with the one-dimensional map, we reached the highest accuracy of vehicle classification in our test data using the three-dimensional map

    Wireless magnetic sensor network for road traffic monitoring and vehicle classification

    Get PDF
    Efficiency of transportation of people and goods is playing a vital role in economic growth. A key component for enabling effective planning of transportation networks is the deployment and operation of autonomous monitoring and traffic analysis tools. For that reason, such systems have been developed to register and classify road traffic usage. In this paper, we propose a novel system for road traffic monitoring and classification based on highly energy efficient wireless magnetic sensor networks. We develop novel algorithms for vehicle speed and length estimation and vehicle classification that use multiple magnetic sensors. We also demonstrate that, using such a low-cost system with simplified installation and maintenance compared to current solutions, it is possible to achieve highly accurate estimation and a high rate of positive vehicle classification

    Fiber-optic interferometric sensor for monitoring automobile and rail traffic

    Get PDF
    This article describes a fiber-optic interferometric sensor and measuring scheme including input-output components for traffic density monitoring. The proposed measuring system is based on the interference in optical fibers. The sensor, based on the Mach-Zehnder interferometer, is constructed to detect vibration and acoustic responses caused by vehicles moving around the sensor. The presented solution is based on the use of single-mode optical fibers (G.652.D and G.653) with wavelength of 1550 nm and laser source with output power of 1 mW. The benefit of this solution lies in electromagnetic interference immunity and simple implementation because the sensor does not need to be installed destructively into the roadway and railroad tracks. The measuring system was tested in real traffic and is characterized by detection success of 99.27% in the case of automotive traffic and 100% in the case of rail traffic.Web of Science2662995298

    Managed information gathering and fusion for transient transport problems

    Get PDF
    This paper deals with vehicular traffic management by communication technologies from Traffic Control Center point of view in road networks. The global goal is to manage the urban traffic by road traffic operations, controlling and interventional possibilities in order to minimize the traffic delays and stops and to improve traffic safety on the roads. This paper focuses on transient transport, when the controlling management is crucial. The aim was to detect the beginning time of the transient traffic on the roads, to gather the most appropriate data and to get reliable information for interventional suggestions. More reliable information can be created by information fusion, several fusion techniques are expounded in this paper. A half-automatic solution with Decision Support System has been developed to help with engineers in suggestions of interventions based on real time traffic data. The information fusion has benefits for Decision Support System: the complementary sensors may fill the gaps of one another, the system is able to detect the changing of the percentage of different vehicle types in traffic. An example of detection and interventional suggestion about transient traffic on transport networks of a little town is presented at the end of the paper. The novelty of this paper is the gathering of information - triggered by the state changing from stationer to transient - from ad hoc channels and combining them with information from developed regular channels. --information gathering,information fusion,Kalman filter,transient traffic,Decision Support System

    Real-Time Vehicle Classification System Using a Single Magnetometer

    Get PDF
    Vehicle count and classification data are very important inputs for intelligent transportation systems (ITS). Magnetic sensor-based technology provides a very promising solution for the measurement of different traffic parameters. In this work, a novel, real-time vehicle detection and classification system is presented using a single magnetometer. The detection, feature extraction, and classification are performed online, so there is no need for external equipment to conduct the necessary computation. Data acquisition was performed in a real environment using a unit installed into the surface of the pavement. A very large number of samples were collected containing measurements of various vehicle classes, which were applied for the training and the validation of the proposed algorithm. To explore the capabilities of magnetometers, nine defined vehicle classes were applied, which is much higher than in relevant methods. The classification is performed using three-layer feedforward artificial neural networks (ANN). Only time-domain analysis was performed on the waveforms using multiple novel feature extraction approaches. The applied time-domain features require low computation and memory resources, which enables easier implementation and real-time operation. Various combinations of used sensor axes were also examined to reduce the size of the classifier and to increase efficiency. The effect of the detection length, which is a widely used feature, but also speed-dependent, on the proposed system was also investigated to explore the suitability of the applied feature set. The results show that the highest achieved classification efficiencies on unknown samples are 74.67% with, and 73.73% without applying the detection length in the feature set

    Towards a real-time microscopic emissions model

    Get PDF
    This article presents a new approach to microscopic road traffic exhaust emission modelling. The model described uses data from the SCOOT demand-responsive traffic control system implemented in over 170 cities across the world. Estimates of vehicle speed and classification are made using data from inductive detector loops located on every SCOOT link. This data feeds into a microscopic traffic model to enable enhanced modelling of the driving modes of vehicles (acceleration, deceleration, idling and cruising). Estimates of carbon monoxide emissions are made by applying emission factors from an extensive literature review. A critical appraisal of the development and validation of the model is given before the model is applied to a study of the impact of high emitting vehicles. The article concludes with a discussion of the requirements for the future development and benefits of the application of such a model

    Bridges Structural Health Monitoring and Deterioration Detection Synthesis of Knowledge and Technology

    Get PDF
    INE/AUTC 10.0

    Importance and applications of robotic and autonomous systems (RAS) in railway maintenance sector: a review

    Get PDF
    Maintenance, which is critical for safe, reliable, quality, and cost-effective service, plays a dominant role in the railway industry. Therefore, this paper examines the importance and applications of Robotic and Autonomous Systems (RAS) in railway maintenance. More than 70 research publications, which are either in practice or under investigation describing RAS developments in the railway maintenance, are analysed. It has been found that the majority of RAS developed are for rolling-stock maintenance, followed by railway track maintenance. Further, it has been found that there is growing interest and demand for robotics and autonomous systems in the railway maintenance sector, which is largely due to the increased competition, rapid expansion and ever-increasing expense
    corecore