4,105 research outputs found

    From a Competition for Self-Driving Miniature Cars to a Standardized Experimental Platform: Concept, Models, Architecture, and Evaluation

    Full text link
    Context: Competitions for self-driving cars facilitated the development and research in the domain of autonomous vehicles towards potential solutions for the future mobility. Objective: Miniature vehicles can bridge the gap between simulation-based evaluations of algorithms relying on simplified models, and those time-consuming vehicle tests on real-scale proving grounds. Method: This article combines findings from a systematic literature review, an in-depth analysis of results and technical concepts from contestants in a competition for self-driving miniature cars, and experiences of participating in the 2013 competition for self-driving cars. Results: A simulation-based development platform for real-scale vehicles has been adapted to support the development of a self-driving miniature car. Furthermore, a standardized platform was designed and realized to enable research and experiments in the context of future mobility solutions. Conclusion: A clear separation between algorithm conceptualization and validation in a model-based simulation environment enabled efficient and riskless experiments and validation. The design of a reusable, low-cost, and energy-efficient hardware architecture utilizing a standardized software/hardware interface enables experiments, which would otherwise require resources like a large real-scale test track.Comment: 17 pages, 19 figues, 2 table

    Trajectory Planning for Autonomous High-Speed Overtaking in Structured Environments using Robust MPC

    Get PDF
    Automated vehicles are increasingly getting mainstreamed and this has pushed development of systems for autonomous manoeuvring (e.g., lane-change, merge, overtake, etc.) to the forefront. A novel framework for situational awareness and trajectory planning to perform autonomous overtaking in high-speed structured environments (e.g., highway, motorway) is presented in this paper. A combination of a potential field like function and reachability sets of a vehicle are used to identify safe zones on a road that the vehicle can navigate towards. These safe zones are provided to a tube-based robust model predictive controller as reference to generate feasible trajectories for combined lateral and longitudinal motion of a vehicle. The strengths of the proposed framework are: (i) it is free from nonconvex collision avoidance constraints, (ii) it ensures feasibility of trajectory even if decelerating or accelerating while performing lateral motion, and (iii) it is real-time implementable. The ability of the proposed framework to plan feasible trajectories for highspeed overtaking is validated in a high-fidelity IPG CarMaker and Simulink co-simulation environment

    Trajectory planning for autonomous high-speed overtaking in structured environments using robust MPC

    Get PDF
    Automated vehicles are increasingly getting main-streamed and this has pushed development of systems for autonomous manoeuvring (e.g., lane-change, merge, and overtake) to the forefront. A novel framework for situational awareness and trajectory planning to perform autonomous overtaking in high-speed structured environments (e.g., highway and motorway) is presented in this paper. A combination of a potential field like function and reachability sets of a vehicle are used to identify safe zones on a road that the vehicle can navigate towards. These safe zones are provided to a tube-based robust model predictive controller as reference to generate feasible trajectories for combined lateral and longitudinal motion of a vehicle. The strengths of the proposed framework are: 1) it is free from non-convex collision avoidance constraints; 2) it ensures feasibility of trajectory even if decelerating or accelerating while performing lateral motion; and 3) it is real-time implementable. The ability of the proposed framework to plan feasible trajectories for high-speed overtaking is validated in a high-fidelity IPG CarMaker and Simulink co-simulation environment

    Shared control strategies for automated vehicles

    Get PDF
    188 p.Los vehículos automatizados (AVs) han surgido como una solución tecnológica para compensar las deficiencias de la conducción manual. Sin embargo, esta tecnología aún no está lo suficientemente madura para reemplazar completamente al conductor, ya que esto plantea problemas técnicos, sociales y legales. Sin embargo, los accidentes siguen ocurriendo y se necesitan nuevas soluciones tecnológicas para mejorar la seguridad vial. En este contexto, el enfoque de control compartido, en el que el conductor permanece en el bucle de control y, junto con la automatización, forma un equipo bien coordinado que colabora continuamente en los niveles táctico y de control de la tarea de conducción, es una solución prometedora para mejorar el rendimiento de la conducción manual aprovechando los últimos avances en tecnología de conducción automatizada. Esta estrategia tiene como objetivo promover el desarrollo de sistemas de asistencia al conductor más avanzados y con mayor grade de cooperatición en comparación con los disponibles en los vehículos comerciales. En este sentido, los vehículos automatizados serán los supervisores que necesitan los conductores, y no al revés. La presente tesis aborda en profundidad el tema del control compartido en vehículos automatizados, tanto desde una perspectiva teórica como práctica. En primer lugar, se proporciona una revisión exhaustiva del estado del arte para brindar una descripción general de los conceptos y aplicaciones en los que los investigadores han estado trabajando durante lasúltimas dos décadas. Luego, se adopta un enfoque práctico mediante el desarrollo de un controlador para ayudar al conductor en el control lateral del vehículo. Este controlador y su sistema de toma de decisiones asociado (Módulo de Arbitraje) se integrarán en el marco general de conducción automatizada y se validarán en una plataforma de simulación con conductores reales. Finalmente, el controlador desarrollado se aplica a dos sistemas. El primero para asistir a un conductor distraído y el otro en la implementación de una función de seguridad para realizar maniobras de adelantamiento en carreteras de doble sentido. Al finalizar, se presentan las conclusiones más relevantes y las perspectivas de investigación futuras para el control compartido en la conducción automatizada

    Motion Planning of Autonomous Vehicles on a Dual Carriageway without Speed Lanes

    Get PDF
    The problem of motion planning of an autonomous vehicle amidst other vehicles on a straight road is considered. Traffic in a number of countries is unorganized, where the vehicles do not move within predefined speed lanes. In this paper, we formulate a mechanism wherein an autonomous vehicle may travel on the “wrong” side in order to overtake a vehicle. Challenges include assessing a possible overtaking opportunity, cooperating with other vehicles, partial driving on the “wrong” side of the road and safely going to and returning from the “wrong” side. The experimental results presented show vehicles cooperating to accomplish overtaking manoeuvres

    A Two-Stage Real-Time Path Planning: Application to the Overtaking Manuever

    Get PDF
    This paper proposes a two-stage local path planning approach to deal with all kinds of scenarios (i.e. intersections, turns, roundabouts). The first stage carries out an off-line optimization, considering vehicle kinematics and road constraints. The second stage includes all dynamic obstacles in the scene, generating a continuous path in real-time. Human-like driving style is provided by evaluating the sharpness of the road bends and the available space among them, optimizing the drivable area. The proposed approach is validated on overtaking scenarios where real-time path planning generation plays a key role. Simulation and real results on an experimental automated platform provide encouraging results, generating real-time collision-free paths while maintaining the defined smoothness criteria.INRIA and VEDECOM Institutes under the Ph.D. Grant; 10.13039/501100011688-Electronic Components and Systems for European Leadership (ECSEL) Project AutoDriv

    An agent-directed-marine navigation simulator

    Get PDF

    An agent-based traffic simulation framework to model intelligent virtual driver behaviour

    Get PDF
    This paper presents an agent-based traffic simulation framework that supports intelligent virtual driver behaviour. The framework exploits concepts used in Artificial Life (ALife), Artificial Intelligence (AI) and Agent technology to model the inherent unpredictability and autonomous behaviour of drivers within traffic simulation models. Each driver agent in our system contains knowledge and a decision-making mechanism, both of which are based on heuristics. This approach replaces some of the prescriptive nature of driving simulation models by allowing behaviours to emerge as a result of individual driver agent interactions. The framework also contributes to accident analysis by improving current limitations in which accident investigation methods concentrate on the events themselves, rather than pre-crash influences. Within this context, the framework provides an opportunity to increase the understanding of accident causation factors, to examine alternative traffic scenarios (what if analyses) and methodology to obtain quantitative estimates of accident risk. Current implementation results show that driver agents within the integrated simulation are able to perceive other drivers’ speeds and distances, avoid collisions, perform realistic vehicle following, and demonstrate emergent traffic flow. A major application area for this framework includes the evaluation of vehicle, highway and road user factors that precede a collision, or near misses
    corecore