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Abstract 

 
This paper presents an agent-based traffic simulation framework that supports intelligent 
virtual driver behaviour. The framework exploits concepts used in Artificial Life (ALife), 
Artificial Intelligence (AI) and Agent technology to model the inherent unpredictability and 
autonomous behaviour of drivers within traffic simulation models. Each driver agent in our 
system contains knowledge and a decision-making mechanism, both of which are based on 
heuristics. This approach replaces some of the prescriptive nature of driving simulation 
models by allowing behaviours to emerge as a result of individual driver agent interactions. 
The framework also contributes to accident analysis by improving current limitations in 
which accident investigation methods concentrate on the events themselves, rather than pre-
crash influences. Within this context, the framework provides an opportunity to increase the 
understanding of accident causation factors, to examine alternative traffic scenarios (what if 
analyses) and methodology to obtain quantitative estimates of accident risk. Current 
implementation results show that driver agents within the integrated simulation are able to 
perceive other drivers’ speeds and distances, avoid collisions, perform realistic vehicle 
following, and demonstrate emergent traffic flow. A major application area for this 
framework includes the evaluation of vehicle, highway and road user factors that precede a 
collision, or near misses.   
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Un modèle de simulation de circulation capable 
de mettre en scène les comportements de 

conducteurs virtuellement intelligents 

Résumé 

 
Ce document présente un modèle de simulation de circulation capable de mettre en scène les 
comportements de conducteurs virtuellement intelligents. Afin de représenter le 
comportement autonome et l’imprévisibilité inhérente aux conducteurs, ce modèle de 
simulation exploite les concepts issus des recherches dans les domaines de la Vie Artificielle 
(Alife), de l’Intelligence Artificielle (AI) et de la Technologie d’Agent (Agent Technology). 
Dans notre système, chaque agent-conducteur possède une base de connaissance et un 
mécanisme de prise de décision basés sur des heuristiques. Cette approche repousse certaines 
limites des modèles de simulation de conduite actuels en permettant l’émergence de 
comportements résultant de l’interaction entre agents-conducteurs. Ce modèle contribue 
également à l’analyse d’accidents en repoussant les limites des modèles aujourd’hui basés sur 
l’étude des évènements en eux-mêmes plutôt que les influences de la période précédent 
l’accident. Dans ce contexte, notre modèle permet d’approfondir la compréhension des 
facteurs provoquant l’accident, d’examiner d’autres scénarios de circulation  (« Que se passe-
t-il si …») et offre une méthodologie afin d’obtenir des estimations quantitatives de risque 
d’accident. Les résultats d’implémentation actuels montrent que les agents-conducteurs, dans 
la simulation intégrée, sont capables de percevoir les distances et vitesses des autres 
conducteurs, d’éviter les collisions, de suivre une file de véhicules et de montrer ainsi 
l’émergence d’un flux de circulation. Une des principales applications de ce modèle est 
l’évaluation des facteurs ‘véhicule’, ‘autoroute’ et ‘automobiliste’ dans le temps qui précède 
la collision ou son risque.    
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Introduction  

The application of Artificial Intelligent (AI), Artificial Life (Alife) and Agent concepts offer 
the opportunity to simulate realistic behaviour through efficient model abstraction whilst 
minimising software complexity. The definition of AI covers a broad spectrum, however, in 
[1] the author suggests that at a minimum level, intelligence requires the ability to sense the 
environment, to make decisions and to control action. These elements provide a suitable 
context in which to describe intelligent behaviour. In ALife, the focus is on the synthesis of 
lifelike systems that exhibit behaviour characteristic of natural living systems [2]. The 
underlying principle of ALife is the simulation of simple interactions that produce complex 
emergent behaviours. Like AI, the definition of agent means different things to different 
people. However, within the context of software engineering in general, agent-based 
abstractions are often very similar to traditional object-oriented design methodologies [3]. An 
agent is simply an object or class entity with its own attributes and methods. As a result, 
agent-based frameworks can easily be represented for example, by the Unified Modelling 
Language (UML) notation albeit with modifications to standard UML representation. As 
noted in [4], ‘an agent oriented semantic to UML provides a straightforward generalisation of 
its well-known object-oriented semantic’. Such a framework offers an effective approach to 
representing structure, behaviour and associated complexities in both real world and software 
systems. 
 
Scenario modelling is a fundamental element in agent-based simulation. However, since the 
underlying objective of agent-based paradigms is to endow entities with life-like properties 
e.g. autonomy, reactivity, etc., it invariably poses many problems in creating realistic driving 
scenarios. For example, if agents are created to have their own agenda/mind how do we build 
scenarios that specify their behaviour and monitor their interaction? Papelis [5] identifies 
three possible levels of scenario authoring that attempt to address some of these issues. 
Examples of these levels include hand-tuned scenario authoring where direct access and 
modification of the source code is required to create various scenarios; parameterized 
scenario authoring allows some flexibility by allowing the specification of initialised 
parameters such as preferred speed, preferred distance, preferred lane position etc. for the 
different scenarios, each defined at the start of the simulation. Finally, the authoring with 
dynamic coordinators level essentially assigns simple instructions to modules (BMO, 
Behaviour Modification Options) responsible for high level behaviours instead of these high 
level tasks being scripted by the scenario creator.  
 
In the context of these developments, the aim of this paper is two fold: firstly, to discuss the 
recent development of a framework that models inherent unpredictability and autonomous 
behaviour of drivers through scenario modelling. This has been achieved by using ALife, AI 
and Agent concepts and abstraction mechanisms to define intelligent behaviour for virtual 
driver agents operating in a microscopic or agent-based traffic simulation. As such, our virtual 
driver agents mimic the essential elements of human drivers, and are implemented within the 
simulation framework as objects or class interactions, using UML as a standard notation. 
These developments have been supported by a range of driving experiments involving the 
Police. The second aim of this paper is to discuss how these developments can contribute to 
the understanding of accident causation factors through evaluation of traffic scenarios, 

__________________________________________________________________________________________ 
 
   



DSC2002 - Paris - September 2002  
__________________________________________________________________________________________ 

analyses of pre-crash influences and quantitative estimation of accident risk. In addition, the 
work reported here is not too dissimilar to the traffic generation framework described in [6] 
where individual agent interaction is based on perception-decision-action mechanism. 
However, our work differs in the way our individual virtual driver agents combine vision and 
decision-making capabilities within an ALife concept.  

Functional design of the agent-based traffic simulation framework  

This section discusses the conceptual framework of our Synthetic Driving Simulation (SD-
SIM) illustrated in figure 1. The framework consists of three main components: Synthetic 
Traffic Environment (STE), Vehicle Dynamics Model (VDM) and Intelligent Virtual Driver 
(IVD). From a control system’s point of view, the fundamental interactions within the 
framework can be described as either open-loop or closed-loop. The open-loop operation is 
represented as a perception-decision-action sequence whilst closed-loop operation involves 
update of the driver/vehicle current state based on feedback from the synthetic traffic 
environment. Such feedback mechanism allows virtual driver agents, for example, to perform 
mental evaluation of the traffic situation so that any deviations from the desired goals could 
trigger corrective actions such as steering to avoid collision. Within SD-SIM, the three main 
components are integrated in a well-structured and realistic manner.  
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Figure 1: An agent-based approach to microscopic traffic modelling and simulation 

 

Intelligent Virtual Driver  
The IVD module is the core to the agent based traffic simulation framework and consists of 
three main subsystems; Visual Perception Model (VPM), Decision Making Model (DMM), 
and Execute Action Model (EAM). The concept of the IVD module is rooted in the areas of 
Artificial Life, Artificial Intelligence and Driver Psychology. Virtual drivers can be described 
as reactive (autonomous) agents because of their individual capability to perceive their 
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environment, make decisions based on what they ‘see’ and take appropriate actions. This 
autonomous and unpredictable driver behaviour leads to the emergence of traffic flow due to 
interactions between individual agents. Figure 2 demonstrates the logical sequence of 
processes performed by a virtual driver agent within SD-SIM. The agents’ percepts are 
currently only associated with its vision capabilities but future implementations could include 
sound. To introduce further realism by removing the unrealistic availability of ‘perfect 
knowledge’ concerning the positions and velocities of vehicles in the simulation, a Scene En-
capturing and Evaluation – SEE model was proposed as part of the VPM. The VPM is based 
on the abstraction of key visual processes into a logical vision model. SEE provides both 
image capture and visual information processing. Image capture uses ray tracing techniques to 
generate a binary image in each eye. Images at successive times are mapped into a 16-plane 
plane ‘visual memory’ for further processing.  
 
The introduction of uncertainty is achieved through the driver’s cognitive state, which holds 
their knowledge of the current traffic environment. Knowledge representation is achieved in 
terms of visual information processing heuristics for object detection and recognition, 
collision detection, estimation of apparent distance and speed, estimation of direction of 
motion and object tracking. These heuristics are simply AI algorithms based on binary image 
processing techniques e.g. segmentation and stereo analysis. In this regard, SEE not only acts 
as a filter for global visual information but also introduces an element of uncertainty within 
driver decision-making. For example, by comparing stereo images driver agents estimate the 
depth of objects. In addition, subtraction of images in successive visual memory planes, 
separated by a known time interval allows estimation of average velocities of objects. The 
expanding and contracting of image patterns due to looming and receding of objects also 
provide time to collision information. Thus, driver agents no longer rely on accurate position 
and velocity information, but instead generate their own subjective interpretation of the traffic 
situation. More detail of the vision model is given in [7, 8]. In terms of concept, the vision 
model is similar to the synthetic vision models proposed in [9, 10], however, unlike these and 
other previous models [11, 12], our vision model is adapted to support intelligent decision 
making in driving. 
 
Decision making for each virtual driver agent is formulated as a rule-based approach 
employing a set of rules common to all drivers. A description of the DMM sub-system is 
given in [13]. Decisions are executed based on individual driver agents being able to 
determine the relevance of their rules using personal rule weightings, visual information 
received from the synthetic environment and other quantitative parameters (that collectively 
define individual driver preferences and personality). Driver agents also have a set of 
preferred parameters, which they strive to attain throughout the simulation. These parameters 
include speed, headway (distance to the vehicle in front), distance from the car behind, etc.  
             
Finally, the EAM component is intended to be part of the biomechanical system of the driver 
agent and performs functions such as head gaze (e.g. scan within a wider field of view) and 
other driving related tasks. A complete ‘man-model’ derived from anthropometrics data is 
required to allow functionality of legs, hands and body of the driver agents. In other words, 
the EAM represents the operational level of Michon’s driver cognitive hierarchy [14]. The 
execution of actions in terms of acceleration, braking and steering to effect vehicle control 
within the virtual environment is currently achieved by abstract processes.  
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Person(percept)  

 

           returns  chosen_action 
          

          static:                 cognitve_state, internal description of the current state of the traffic 
           environment, knowledge and decision making mechanisms.  

         

           rules, describes set of 6 rules common to all drivers 
               

          cognitve_state ←updateCognitiveState(cognitve_state, percept)   
          

         chosen_rule ←makeDecision(cognitve_state, rules)   
       

         chosen_action ←executeDecision(chosen_rule)   
          

         cognitve_state ← updateCognitiveState(cognitve_state, chosen_action)   
                      

                      return             chosen_action 
 
 

Figure 2: An agent-based implementation structure 
 

Vehicle Dynamics Model 

The current VDM module exists as a simple deterministic rule-based entity, with vehicle 
responses resulting directly from driver actions. Whilst this is perhaps appropriate for a high 
level study on emergent behaviour within stable traffic flows, it excludes factors likely to be 
important to the understanding of accident causation, which may be as much physical as 
psychological. The intention is to incorporate a physically based vehicle model of the form 
commonly used in vehicle dynamics simulation [15]. Such a model places limitations on 
vehicle manoeuvrability due to factors such as vehicle inertia, limited engine power, limited 
friction between the tyre and road, dynamic changes in vertical tyre loads, etc. Limitations 
also arise from driver skills, which are sometimes crucial in accident causation; a skilled 
driver can recover from a skid or spin, regaining control of the vehicle, whilst a novice is 
more easily confused by unexpected vehicle behaviour. 
 
Introducing more realistic vehicle behaviour immediately implies a need for a more 
sophisticated approach to the decision-action modelling within the Intelligent Virtual Driver. 
Currently the IVD operates at a high ‘conscious’ level based on the logical processing of 
traffic and driver intentions. Translating such desired actions into vehicle responses requires 
both open-loop and closed-loop activity at several levels.  For example, once a decision has 
been made to attempt an overtaking manoeuvre, feedback from the traffic environment can 
countermand this decision, e.g. when new visual input indicates the danger of an accident. If 
the initial decision stands, the driver plans a new speed and path for the vehicle. An incredibly 
skilled driver could perform this ‘with his eyes shut’ (open-loop control) but in reality 
corrections (closed-loop control) are needed – extra throttle or slight changes in the steering 
for example.  The more familiar the driver is with the car, the more smoothly he or she will 
drive, and the less feedback is required. At a lower level still, some control actions are very 
much sub-conscious; reactively, the driver will ‘hit the brakes’ if a child suddenly emerges 
from behind a parked car, or pro-actively a skilled driver will use opposite lock steering to 
correct incipient loss of control in spin. These actions are generally learned through driver 
training, and represent low level conditioned reflexes.  These various levels of behaviour have 
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been described in various papers (see for example [16] and a flexible and generic driver 
model that incorporates path planning and feedback control (at the conscious level) has been 
described in [17]). It should be clear from the above that the use of physically based 
modelling is a challenging development that is fundamental to the integration of an agent-
based traffic model with real-life accident causation factors. 

Scenario modelling within SD-SIM  

The Synthetic Driving Simulation framework was designed in UML notation version 1.3 [18] 
and implemented in the C++ object orientated programming language. This approach is 
consistent with the principles of agent abstractions, based on traditional object-oriented design 
methodologies [3, 4]. The integrated simulation allows interactive creation and manipulation 
of scenarios. Scenario configuration in SD-SIM is based on a parameterised scenario 
authoring approach to define initialised parameters through the Scenario Modeller interface. 
The process of defining scenarios is performed in three main processes as illustrated in figure 
3. The first process involves the specification by the user, of initial and state parameters as 
part of the scenario definition. Scenario definition includes (1) define people, vehicles and the 
road network (2) specification of road/traffic events (i.e. links between driver and vehicle, 
between vehicles and road network, and between pedestrians and road network) and (3) 
specification of simulation parameters (e.g. initial position, speed and acceleration of each 
driver). The internal data management of the scenarios is implemented in a hierarchical file 
structure containing vehicle properties, driver properties and road geometry descriptions. The 
final process, i.e. post-processing, is responsible for the visualisation of simulation runs as 
well as providing results and interaction to the user. As a compromise between reality and 
efficiency, the visualisation is currently achieved by a Virtual Reality Modelling Language 
(VRML) based tool [19], which is loosely integrated within a common Graphical User 
Interface (GUI). SD-SIM currently runs on a standard PC in a series of time steps. 
 

  

Scenario Files 

Pre-processing Post-Processing

GUI 

USER 

Simulation 

 
Figure 3: The main processes of scenario definition  

 
 
In a run of SD-SIM, every driver agent employs vision capabilities to compare their current 
image pattern with the previous image pattern stored in the ‘visual memory plane’ at each 
time step, to infer whether there is a looming or receding effect (i.e. expanding and 
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contracting image patterns). If there is growing looming effect then the driver agent initiates 
corrective actions using decision-making mechanisms to identify those rules that are relevant 
to their situation, and to assess the importance of each relevant rule. Therefore, behaviours 
such as following, overtaking and other ‘composite’ behaviours emerge as a consequence of 
individual driver interactions. Figure 4 illustrates an emergent overtaking behaviour. 
 

  

 
Figure 4: Visualisation of emergent overtaking behaviour 

 

Evaluation of SD-SIM 

As part of the evaluation of SD-SIM, experiments have been conducted with the assistance of 
Leicestershire Constabulary, Traffic Division to collect data in their instrumented vehicles 
whilst driving on a British motorway (M1 North) and on a racetrack. A more detailed 
description of the experiments and validation is given elsewhere [8]. In the experiments, 
video images of a lead car on the motorway were recorded from a following vehicle and its 
speed and distance measured using a laser gun. The video images were processed at a rate of 
5 frames per second. Figure 5 shows the definition of some of these variables within the 
scenario modeller.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

 

Figure 5: Specification of initialised parameters as part of scenario configuration within SD-SIM 
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The speed and distance estimated by the virtual driver agents were compared to the measured 
data as shown in Table 1. Figure 6 shows the errors in the estimates. These estimates depend 
on the virtual driver vision parameters, figure 5, for example, the visual acuity which is 
represented by the eye resolution parameters. Although the agent’s estimates are close to the 
measured value, there is consistent underestimation and overestimation in both distance and 
speed. This is because distance calculations in SEE rely on comparing stereo images to obtain 
depth information, rather than exact distance value (i.e. z-buffer) along the ray at the point of 
intersection. These observations are plausible and consistent with experiments that have 
shown that human drivers tend to under- and overestimate distances and speeds respectively 
[20]. 
 
 

_ 
 
   

 
 
 
 
 
 

 Leading veh. (5s) Following veh. (5s) 

Measured data Estimated data Frame rate 
[s] Relative 

distance [m] 
Relative 

speed [m/s] 
Relative 

distance [m] 
Relative 

speed [m/s] 
5 33.80 0.00 33.79 0.00 
10 38.62 0.45 38.62 0.45 
15 32.19 -0.45 32.19 -0.45 
20 32.19 0.45 32.18 0.44 
25 28.97 0.00 28.97 0.00 
30 32.19 -0.89 32.19 -0.89 
35 27.36 0.45 27.36 0.45 
40 41.84 0.89 41.85 0.90 
45 41.84 1.34 41.84 1.34 
50 53.11 2.24 53.11 2.24 
55 62.76 1.79 62.77 1.79 
60 67.59 1.34 67.59 1.34 
65 74.03 0.00 74.03 0.00 
70 67.59 0.00 67.59 0.00 

 
Table 1: Comparison of relative distance and speed 

 
 

Figure 6: Perception errors by virtual driver agents 
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Potential applications in modelling road accident data 
An understanding of crash causation is necessary to develop countermeasures to reduce 
crashes and traditionally a “chain of events” approach is adopted. This assumes that a crash 
occurs when several factors occur together but if one factor is removed the crash would be 
prevented. These factors are identified by in-depth crash investigations [21], and have resulted 
in strategies for improved crashworthiness, drink/drive enforcement, speed control and 
improved highway design for example. Current in-depth studies of traffic causation frequently 
develop models to support an understanding of the crash events, reconstruction models 
quantify the pre-crash vehicle kinematics while rigid body or finite element models are used 
to simulate the crash phase. There are no models currently available that simulate the pre-
crash decision making of the crash participants in a quantified manner and the availability of 
an agent based simulation framework opens the possibility for a variety of new understanding. 
A pre-crash simulation procedure, implemented via SD-SIM for example will enable crash 
researchers to recreate specific crashes and examine the perceptions and decision making of 
each crash participant. Parametric modifications to driver, vehicle or highway characteristics 
can be made within the simulation to assess the relative probability of modified crash 
outcomes. The use of multiple driver agents, corresponding to the spread of specific driver 
characteristics in the normal driving population, will permit crash involvement risk to be 
assessed quantitatively. In modelling road accident data, it is generally the case that 
parameterised– rather than hand tuned scenario authoring is more appropriate since it removes 
the need for accident investigators to have programming skills.  This is consistent with the use 
of a GUI. Therefore, by providing an interface, with the internal logic hidden away, there is 
flexibility and ease for the investigator to simply define accident parameters within the GUI 
and observer the implication of the data.  

Conclusions  

The traffic simulation framework introduced in this paper draws inspiration from three key 
concepts – Artificial Intelligent (AI), Artificial Life (Alife) and Agent technology to model 
intelligent behaviour within virtual driver agents. In so doing it explicitly integrates the three 
main interacting components of traffic – driver, vehicle and the environment in a well-
structured and realistic manner. In particular, it represents virtual drivers as autonomous 
agents with inherent unpredictability by allowing individual driver agents to perceive their 
environment, make decisions based on what they see and take appropriate driving related 
actions. This provides an effective approach to representing structure, behaviour and 
associated complexities in the context of scenario modelling for traffic simulation models. 
Finally, this approach also has implications in the understanding of accident causation factors 
through evaluation of traffic and accident scenarios.  
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