87 research outputs found

    Application of artificial neural networks and colored petri nets on earthquake resilient water distribution systems

    Get PDF
    Water distribution systems are important lifelines and a critical and complex infrastructure of a country. The performance of this system during unexpected rare events is important as it is one of the lifelines that people directly depend on and other factors indirectly impact the economy of a nation. In this thesis a couple of methods that can be used to predict damage and simulate the restoration process of a water distribution system are presented. Contributing to the effort of applying computational tools to infrastructure systems, Artificial Neural Network (ANN) is used to predict the rate of damage in the pipe network during seismic events. Prediction done in this thesis is based on earthquake intensity, peak ground velocity, and pipe size and material type. Further, restoration process of water distribution network in a seismic event is modeled and restoration curves are simulated using colored Petri nets. This dynamic simulation will aid decision makers to adopt the best strategies during disaster management. Prediction of damages, modeling and simulation in conjunction with other disaster reduction methodologies and strategies is expected to be helpful to be more resilient and better prepared for disasters --Abstract, page iv

    Methodologies synthesis

    Get PDF
    This deliverable deals with the modelling and analysis of interdependencies between critical infrastructures, focussing attention on two interdependent infrastructures studied in the context of CRUTIAL: the electric power infrastructure and the information infrastructures supporting management, control and maintenance functionality. The main objectives are: 1) investigate the main challenges to be addressed for the analysis and modelling of interdependencies, 2) review the modelling methodologies and tools that can be used to address these challenges and support the evaluation of the impact of interdependencies on the dependability and resilience of the service delivered to the users, and 3) present the preliminary directions investigated so far by the CRUTIAL consortium for describing and modelling interdependencies

    A network-based system for assessment and management of infrastructure interdependency

    Get PDF
    Critical infrastructures (CIs) provide services that are essential to both the economy and well-being of nations and their citizens. Over the years, CIs are becoming more complex and interconnected, they are all interdependent in various ways, including logically, functionally, and geographically. The interconnection between CIs results in a very complex and dynamic system which increases their vulnerability to failures. In fact, when an infrastructure is experiencing failures, it can rapidly generate a cascade or domino effect to impact the other infrastructures. Thus, identifying, understanding and modeling infrastructure interdependency is a new field of research that deals with interrelationships between critical infrastructure sectors for disaster management. In the present research project, an integrated network-based analysis system with a user-friendly graphic user interface (GUI) was developed for risk analysis of complex critical infrastructure systems and their component interdependencies, called FCEPN (Fragility Curve and Extended Petri Net analysis). This approach combines: 1) Fragility Curve analysis of the vulnerability of the infrastructure, based on predefined "damage states" due to particular "hazards"; 2) Extended Petri Net analysis of the infrastructure system interdependency to determine the possible failure states and risk values. Two types of Extended Petri Net, Stochastic Petri Net and Fuzzy Petri Net were discussed in this study respectively. The FCEPN system was evaluated using the Bluestone Dam in West Virginia and Huai River Watershed in China as the case studies. Evaluation study results suggested that the FCEPN system provides a useful approach for analyzing dam system design, potential and actual vulnerability of dam networks to flood related impact, performance and reliability of existing dam systems, and appropriate maintenance and inspection work

    List of requirements on formalisms and selection of appropriate tools

    Get PDF
    This deliverable reports on the activities for the set-up of the modelling environments for the evaluation activities of WP5. To this objective, it reports on the identified modelling peculiarities of the electric power infrastructure and the information infrastructures and of their interdependencies, recalls the tools that have been considered and concentrates on the tools that are, and will be, used in the project: DrawNET, DEEM and EPSys which have been developed before and during the project by the partners, and M\uf6bius and PRISM, developed respectively at the University of Illinois at Urbana Champaign and at the University of Birmingham (and recently at the University of Oxford)

    GIS in Healthcare

    Get PDF
    The landscape of healthcare is dynamic, gradually becoming more complicated with factors beyond simple supply and demand. Similar to the diversity of social, political and economic contexts, the practical utilization of healthcare resources also varies around the world. However, the spatial components of these contexts, along with aspects of supply and demand, can reveal a common theme among these factors. This book presents advancements in GIS applications that reveal the complexity of and solutions for a dynamic healthcare landscape

    On analyzing the vulnerabilities of a railway network with Petri nets

    Get PDF
    Petri nets are used in this paper to estimate the indirect consequences of accidents in a railway network, which belongs to the class of the so-called transportation Critical Infrastructures (CIs), that is, those assets consisting of systems, resources and/or processes whose total or partial destruction, or even temporarily unavailability, has the effect of significantly weakening the functioning of the system. In the proposed methodology, a timed Petri ne<t represents the railway network and the trains travelling over the rail lines; such a net also includes some places and some stochastically-timed transitions that are used to model the occurrence of unexpected events (accidents, disruptions, and so on) that make some resources of the network (tracks, blocks, crossovers, overhead line, electric power supply, etc.) temporarily unavailable. The overall Petri net is a live and bounded Generalized Stochastic Petri Net (GSPN) that can be analyzed by exploiting the steady-state probabilities of a continuous-time Markov chain (CTMC) that can be derived from the reachability graph of the GSPN. The final target of such an analysis is to determine and rank the levels of criticality of transportation facilities and assess the vulnerability of the whole railway network

    Survivability modeling for cyber-physical systems subject to data corruption

    Get PDF
    Cyber-physical critical infrastructures are created when traditional physical infrastructure is supplemented with advanced monitoring, control, computing, and communication capability. More intelligent decision support and improved efficacy, dependability, and security are expected. Quantitative models and evaluation methods are required for determining the extent to which a cyber-physical infrastructure improves on its physical predecessors. It is essential that these models reflect both cyber and physical aspects of operation and failure. In this dissertation, we propose quantitative models for dependability attributes, in particular, survivability, of cyber-physical systems. Any malfunction or security breach, whether cyber or physical, that causes the system operation to depart from specifications will affect these dependability attributes. Our focus is on data corruption, which compromises decision support -- the fundamental role played by cyber infrastructure. The first research contribution of this work is a Petri net model for information exchange in cyber-physical systems, which facilitates i) evaluation of the extent of data corruption at a given time, and ii) illuminates the service degradation caused by propagation of corrupt data through the cyber infrastructure. In the second research contribution, we propose metrics and an evaluation method for survivability, which captures the extent of functionality retained by a system after a disruptive event. We illustrate the application of our methods through case studies on smart grids, intelligent water distribution networks, and intelligent transportation systems. Data, cyber infrastructure, and intelligent control are part and parcel of nearly every critical infrastructure that underpins daily life in developed countries. Our work provides means for quantifying and predicting the service degradation caused when cyber infrastructure fails to serve its intended purpose. It can also serve as the foundation for efforts to fortify critical systems and mitigate inevitable failures --Abstract, page iii

    MACHS: Mitigating the Achilles Heel of the Cloud through High Availability and Performance-aware Solutions

    Get PDF
    Cloud computing is continuously growing as a business model for hosting information and communication technology applications. However, many concerns arise regarding the quality of service (QoS) offered by the cloud. One major challenge is the high availability (HA) of cloud-based applications. The key to achieving availability requirements is to develop an approach that is immune to cloud failures while minimizing the service level agreement (SLA) violations. To this end, this thesis addresses the HA of cloud-based applications from different perspectives. First, the thesis proposes a component’s HA-ware scheduler (CHASE) to manage the deployments of carrier-grade cloud applications while maximizing their HA and satisfying the QoS requirements. Second, a Stochastic Petri Net (SPN) model is proposed to capture the stochastic characteristics of cloud services and quantify the expected availability offered by an application deployment. The SPN model is then associated with an extensible policy-driven cloud scoring system that integrates other cloud challenges (i.e. green and cost concerns) with HA objectives. The proposed HA-aware solutions are extended to include a live virtual machine migration model that provides a trade-off between the migration time and the downtime while maintaining HA objective. Furthermore, the thesis proposes a generic input template for cloud simulators, GITS, to facilitate the creation of cloud scenarios while ensuring reusability, simplicity, and portability. Finally, an availability-aware CloudSim extension, ACE, is proposed. ACE extends CloudSim simulator with failure injection, computational paths, repair, failover, load balancing, and other availability-based modules

    Modeling IT Availability Risks in Smart Factories

    Get PDF
    In the course of the ongoing digitalization of production, production environments have become increasingly intertwined with information and communication technology. As a consequence, physical production processes depend more and more on the availability of information networks. Threats such as attacks and errors can compromise the components of information networks. Due to the numerous interconnections, these threats can cause cascading failures and even cause entire smart factories to fail due to propagation effects. The resulting complex dependencies between physical production processes and information network components in smart factories complicate the detection and analysis of threats. Based on generalized stochastic Petri nets, the paper presents an approach that enables the modeling, simulation, and analysis of threats in information networks in the area of connected production environments. Different worst-case threat scenarios regarding their impact on the operational capability of a close-to-reality information network are investigated to demonstrate the feasibility and usability of the approach. Furthermore, expert interviews with an academic Petri net expert and two global leading companies from the automation and packaging industry complement the evaluation from a practical perspective. The results indicate that the developed artifact offers a promising approach to better analyze and understand availability risks, cascading failures, and propagation effects in information networks in connected production environments
    • …
    corecore