234 research outputs found

    Computer-assisted access to the kidney

    Full text link
    OBJECTIVES: The aim of this paper is to introduce the principles of computer-assisted access to the kidney. The system provides the surgeon with a pre-operative 3D planning on computed tomography (CT) images. After a rigid registration with space-localized ultrasound (US) data, preoperative planning can be transferred to the intra-operative conditions and an intuitive man-machine interface allows the user to perform a puncture. MATERIAL AND METHODS: Both CT and US images of informed normal volunteer were obtained to perform calculation on the accuracy of registration and punctures were carried out on a kidney phantom to measure the precision of the whole of the system. RESULTS: We carried out millimetric registrations on real data and guidance experiments on a kidney phantom showed encouraging results of 4.7 mm between planned and reached targets. We noticed that the most significant error was related to the needle deflection during the puncture. CONCLUSION: Preliminary results are encouraging. Further work will be undertaken to improve efficiency and accuracy, and to take breathing into account

    Ultrasound 3D reconstruction of malignant masses in robotic-assisted partial nephrectomy using the PAF rail system: a comparison study

    Get PDF
    PURPOSE: In robotic-assisted partial nephrectomy (RAPN), the use of intraoperative ultrasound (IOUS) helps to localise and outline the tumours as well as the blood vessels within the kidney. The aim of this work is to evaluate the use of the pneumatically attachable flexible (PAF) rail system for US 3D reconstruction of malignant masses in RAPN. The PAF rail system is a novel device developed and previously presented by the authors to enable track-guided US scanning. METHODS: We present a comparison study between US 3D reconstruction of masses based on: the da Vinci Surgical System kinematics, single- and stereo-camera tracking of visual markers embedded on the probe. An US-realistic kidney phantom embedding a mass is used for testing. A new design for the US probe attachment to enhance the performance of the kinematic approach is presented. A feature extraction algorithm is proposed to detect the margins of the targeted mass in US images. RESULTS: To evaluate the performance of the investigated approaches the resulting 3D reconstructions have been compared to a CT scan of the phantom. The data collected indicates that single camera reconstruction outperformed the other approaches, reconstructing with a sub-millimetre accuracy the targeted mass. CONCLUSIONS: This work demonstrates that the PAF rail system provides a reliable platform to enable accurate US 3D reconstruction of masses in RAPN procedures. The proposed system has also the potential to be employed in other surgical procedures such as hepatectomy or laparoscopic liver resection

    Towards Computer Aided Management of Kidney Disease

    Get PDF
    Autosomal dominant polycystic kidney disease (ADPKD) is the fourth most common cause of kidney transplant worldwide accounting for 7-10% of all cases. Although ADPKD usually progresses over many decades, accurate risk prediction is an important task. Identifying patients with progressive disease is vital to providing new treatments being developed and enable them to enter clinical trials for new therapy. Among other factors, total kidney volume (TKV) is a major biomarker predicting the progression of ADPKD. Consortium for Radiologic Imaging Studies in Polycystic Kidney Disease (CRISP) have shown that TKV is an early, and accurate measure of cystic burden and likely growth rate. It is strongly associated with loss of renal function. While ultrasound (US) has proven as an excellent tool for diagnosing the disease; monitoring short-term changes using ultrasound has been shown to not be accurate. This is attributed to high operator variability and reproducibility as compared to tomographic modalities such as CT and MR (Gold standard). Ultrasound has emerged as one of the standout modalities for intra-procedural imaging and with methods for spatial localization has afforded us the ability to track 2D ultrasound in the physical space in which it is being used. In addition to this, the vast amount of recorded tomographic data can be used to generate statistical shape models that allow us to extract clinical value from archived image sets. Renal volumetry is of great interest in the management of chronic kidney diseases (CKD). In this work, we have implemented a tracked ultrasound system and developed a statistical shape model of the kidney. We utilize the tracked ultrasound to acquire a stack of slices that are able to capture the region of interest, in our case kidney phantoms, and reconstruct 3D volume from spatially localized 2D slices. Approximate shape data is then extracted from this 3D volume using manual segmentation of the organ and a shape model is fit to this data. This generates an instance from the shape model that best represents the scanned phantom and volume calculation is done on this instance. We observe that we can calculate the volume to within 10% error in estimation when compared to the gold standard volume of the phantom

    Registration of ultrasound and computed tomography for guidance of laparoscopic liver surgery

    Get PDF
    Laparoscopic Ultrasound (LUS) imaging is a standard tool used for image-guidance during laparoscopic liver resection, as it provides real-time information on the internal structure of the liver. However, LUS probes are di cult to handle and their resulting images hard to interpret. Additionally, some anatomical targets such as tumours are not always visible, making the LUS guidance less e ective. To solve this problem, registration between the LUS images and a pre-operative Computed Tomography (CT) scan using information from blood vessels has been previously proposed. By merging these two modalities, the relative position between the LUS images and the anatomy of CT is obtained and both can be used to guide the surgeon. The problem of LUS to CT registration is specially challenging, as besides being a multi-modal registration, the eld of view of LUS is signi cantly smaller than that of CT. Therefore, this problem becomes poorly constrained and typically an accurate initialisation is needed. Also, the liver is highly deformed during laparoscopy, complicating the problem further. So far, the methods presented in the literature are not clinically feasible as they depend on manually set correspondences between both images. In this thesis, a solution for this registration problem that may be more transferable to the clinic is proposed. Firstly, traditional registration approaches comprised of manual initialisation and optimisation of a cost function are studied. Secondly, it is demonstrated that a globally optimal registration without a manual initialisation is possible. Finally, a new globally optimal solution that does not require commonly used tracking technologies is proposed and validated. The resulting approach provides clinical value as it does not require manual interaction in the operating room or tracking devices. Furthermore, the proposed method could potentially be applied to other image-guidance problems that require registration between ultrasound and a pre-operative scan

    Medical image computing and computer-aided medical interventions applied to soft tissues. Work in progress in urology

    Full text link
    Until recently, Computer-Aided Medical Interventions (CAMI) and Medical Robotics have focused on rigid and non deformable anatomical structures. Nowadays, special attention is paid to soft tissues, raising complex issues due to their mobility and deformation. Mini-invasive digestive surgery was probably one of the first fields where soft tissues were handled through the development of simulators, tracking of anatomical structures and specific assistance robots. However, other clinical domains, for instance urology, are concerned. Indeed, laparoscopic surgery, new tumour destruction techniques (e.g. HIFU, radiofrequency, or cryoablation), increasingly early detection of cancer, and use of interventional and diagnostic imaging modalities, recently opened new challenges to the urologist and scientists involved in CAMI. This resulted in the last five years in a very significant increase of research and developments of computer-aided urology systems. In this paper, we propose a description of the main problems related to computer-aided diagnostic and therapy of soft tissues and give a survey of the different types of assistance offered to the urologist: robotization, image fusion, surgical navigation. Both research projects and operational industrial systems are discussed
    • …
    corecore