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Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is the fourth most

common cause of kidney transplant worldwide accounting for 7-10% of all cases. Al-

though ADPKD usually progresses over many decades, accurate risk prediction is an

important task. Identifying patients with progressive disease is vital to providing new

treatments being developed and enable them to enter clinical trials for new therapy.

Among other factors, total kidney volume (TKV) is a major biomarker predicting

the progression of ADPKD. Consortium for Radiologic Imaging Studies in Polycystic

Kidney Disease (CRISP) have shown that TKV is an early, and accurate measure

of cystic burden and likely growth rate. It is strongly associated with loss of renal

function. While ultrasound (US) has proven as an excellent tool for diagnosing the

disease; monitoring short-term changes using ultrasound has been shown to not be

accurate. This is attributed to high operator variability and reproducibility as com-

pared to tomographic modalities such as CT and MR (Gold standard). Ultrasound

has emerged as one of the standout modalities for intra-procedural imaging and with

methods for spatial localization has afforded us the ability to track 2D ultrasound

in the physical space in which it is being used. In addition to this, the vast amount

of recorded tomographic data can be used to generate statistical shape models that

allow us to extract clinical value from archived image sets.

Renal volumetry is of great interest in the management of chronic kidney dis-
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eases (CKD). In this work, we have implemented a tracked ultrasound system and

developed a statistical shape model of the kidney. We utilize the tracked ultrasound

to acquire a stack of slices that are able to capture the region of interest, in our

case kidney phantoms, and reconstruct 3D volume from spatially localized 2D slices.

Approximate shape data is then extracted from this 3D volume using manual seg-

mentation of the organ and a shape model is fit to this data. This generates an

instance from the shape model that best represents the scanned phantom and volume

calculation is done on this instance. We observe that we can calculate the volume to

within 10% error in estimation when compared to the gold standard volume of the

phantom.
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Chapter 1

Introduction

1.1 Autosomal Dominant Polycystic Kidney Dis-

ease (ADPKD): A Background

Autosomal dominant polycystic kidney disease (ADPKD) is the fourth lead-

ing cause of end-stage renal disease in adults. It accounts for 7-10 % of all patients

for renal replacement therapy worldwide and is the most common inherited kidney

disease. In the United States, ADPKD affects 300,000 to 600,000 individuals. One in

every twenty cases of end-stage renal disease (ESRD) is caused due to ADPKD[50].

It is caused by the mutations in the PDK1 gene or the PKD2 gene located on chromo-

some 16 and 4 respectively. These genes are responsible for proteins polycystin-1 and

polycystin-2. The mutation in PDK genes causes signal dysregulation and eventual

cystogenesis due to higher levels of cyclic adenosine monophosphate (cAMP)[42, 24].

It is a progressive disorder that begins with a relatively small number of cystic re-

nal tubules which expand over time. Cystogenesis is triggered with the levels of

polycsitin-1 and polycystin-2 fall below the threshold that is necessary to maintain
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Figure 1.1: Illustration of the early stages of cyst formation and enlargement with
fibrotic tissue deposition.

normal tubule geometry. However, in addition to this other unidentified factors pro-

mote the proliferation of cells that give rise to fluid-filled saccular cysts. These are

benign tumors that directly invade and displace adjacent parenchyma. As these cysts

begin to emerge the extracellular matrix is also modified causing an expanding mass

(Figure 1.1). An inflammatory response then takes place with the proliferation of

macrophages; these along with resident fibroblasts cause fibrosis as a response to

potential perceived injury[25].

The cysts detach from the tubules when they grow greater than 2 mm and

become isolated sacs filled with trans-epithelial secretions. These apply pressure

on normal tubules and further induce an inflammatory response leading to extensive
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Figure 1.2: Cyst formation at the level of the cell, nephron, and kidney. Defects in the
genes encoding PKD1 or PKD2 lead to aberrant gene transcription, cell proliferation,
and ion secretion, which in turn result in the formation of fluid-filled cysts. As cysts
balloon out from individual nephrons, their collective effect leads to the displacement
of the normal renal parenchyma and the formation of a cyst-filled kidney with reduced
functional capacity. Cyst formation at the level of the cell, nephron, and kidney.
Defects in the genes encoding PKD1 or PKD2 lead to aberrant gene transcription,
cell proliferation, and ion secretion, which in turn result in the formation of fluid-filled
cysts. As cysts balloon out from individual nephrons, their collective effect leads to
the displacement of the normal renal parenchyma and the formation of a cyst-filled
kidney with reduced functional capacity.

fibrosis. The vasculature around these cysts is obstructed thereby affecting glomerular

function and in turn limiting the kidney's normal capacity for proper filtering. This

cycle of injury response is repeated endlessly (Figure 1.1). Nephrons are destroyed

and replaced by cysts that are supported by fibrotic tissue causing a severe reduction

in the functional parenchyma[7].

1.1.1 Screening and diagnosis of ADPKD

Many patients without a hereditary history of the disease are typically asymp-

tomatic and ADPKD diagnosis takes place when the patient displays symptoms such

as hypertension, sudden onset of renal pain, and haematuria. Around half of ADPKD

patients aged 20-34 display hypertension and a normal renal function. Abnormal re-
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modeling of renal parenchyma, reduced blood flow, increased filtration fraction and

abnormal renal handling of sodium are identified as contributing factors[56, 57, 54].

Renal pain is contributed by the abnormal endothelial growth associated with cysto-

genesis which can promote hemorrhage and gross haematuria. Patients can develop

flank pain which can be associated with the passing of kidney stones. Around 20% of

patients have kidney stones. ADPKD patients are also susceptible to urinary tract

infections[54]. In addition to the presence of cysts in the kidney, they are also found

in the liver, pancreas and the intestines. Patients are also at an increased risk of suf-

fering from further complications such as aortic aneurysms, heart valve defects and

in rare cases intra-cerebral aneurysms.

Typically, establishing a diagnosis of ADPKD in patients presenting above

mentioned symptoms is straight forward. In some cases however, cystic development

in kidneys can be a result of hereditary and acquired disorders that are not ADPKD.

Patients exhibiting autosomal dominant polycystic liver disease(PCLD) is often mis-

diagnosed for a mild form of ADPKD. These patients can sometimes present with a

few renal cysts, but they don't develop end stage renal disease[48, 29]. ADPKD can

also be confused with autosomal recessive polycystic kidney disease (ARPKD) due

to the onset of the disease in adulthood. Mutations in the uromodulin gene, encod-

ing the Tamm-Horsfall protein, on chromosome 16 can cause the autosomal dominant

medullary cystic kidney disease(MCKD)[28]. It is symptomatic in the adulthood with

renal dysfunction and occasional renal cysts which may be confused with ADPKD.

Although ADPKD is a hereditary disease, several studies have suggested that a sig-

nificant portion of the patients lack a family history. This could either be attributed

to the presence of a de novo mutation, estimated to be present in less than 10% of

the cases, or a failure to diagnose the disease in mildly affected family members[49].

Ultrasound is the first choice imaging modality for diagnosing at risk patients
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for ADPKD. Ravine et al. found an age stratified ultrasound criteria for ADPKD

which was later corroborated by Pei et al. The recommended criteria are as follows.

For individuals at risk in age group 15 to 39 years it is the presence of ”Three or more

unilateral or bilateral renal cysts”. This showed a positive predictive value of 100%

and a sensitivity of 81.7% for age group 15-29 and of 95.5% for age group 30-39. A

PPV of 100% and sensitivity of 90% was associated with age group 40-59 when the

criteria was ”At least two cysts in each kidney”. For the age group of 60 and above,

”Presence of at least four cysts in each kidny” had a PPV and sensitivity of 100%.

1.1.2 Management of ADPKD

Currently there are no therapies to prevent ADPKD patients from developing

ESRD due to loss of parenchyma due to cystic burden. However, advances in under-

standing of genetic and molecular pathways of the disease has spurred several clinical

trials for therapies to reduce the rate of cyst growth and slow down the progression of

ADPKD. Myint at el.[39] did a meta analysis of all the clinical trials that were aimed

at testing therapies to reduce the cystic growth. They found that for a period of 18-24

months, treatment with Target of Rapamycin Complex 1 (TORC1) inhibitors did not

alter the progression of TKV. A rate reduction of up to 9% in TKV was observed

with treatment using smatostatin analogues but no effect on GFR progression was

noted. A 36 month long treatment with tolvaptan reduced the annual rate of TKV

increase by 2.5% when compared to the placebo group and also noted an improve-

ment in GFR decline[53]. Apart from these findings, treatment for ADPKD involves

mitigating symptoms discussed in the previous section.
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1.1.3 Prognostic biomarkers to monitor disease progression

In a chronic kidney disease (CKD), functional measurement is done in terms

of the glomerular filtration rate (GFR) as the disease has a direct effect on the abil-

ity of the glomeruli to generate filtrate. In clinical practice, the National Kidney

Foundation's Kidney Disease Quality and Outcome Initiative (NKF-K/DQOI) define

chronic kidney disease as a GFR of less than 60 mL/min per 1.73 m2, regardless of

the cause[6].

GFR is considered a fundamental indicator for disease progression in most

escalating renal disorders. However, it can be highly misleading in the case of mon-

itoring kidney efficacy in ADPKD patients. Kidneys have a remarkable ability to

compensate for the loss of filtration ability. The patchy distribution of cysts and

the associated loss of healthy parenchyma leaves behind islands of functional areas

that typically escape any injury from inflammation, scarring, and apoptosis caused

directly or indirectly by cystogenesis. These islands are responsible for remarkable

hyperfiltration and compensation to offset the lost GFR[61]. As a result of this, in

ADPKD patients, the GFR is maintained in normal range until about the fourth or

the fifth decade of life. Eventually, these functional areas are lost after years of service

and the GFR begins to fall drastically. As a result, GFR is a very insensitive measure

of renal function in ADPKD to monitor disease progression before it is significantly

compromised. Woon et al.[62], have conducted an in-depth review of the various pub-

lished work on prognostic markers for disease progression in ADPKD. However, it has

emerged that there is a lack of unanimous agreement in the community about the

factors for prediction of renal outcomes and the variables that need to be measured

to predict and monitor disease progression, total kidney volume (TKV) seems to be a

strong surrogate biomarker that can be used to predict declining renal health. TKV

6



is defined as the sum of the volume of the left and right kidney.

The Consortium for Radiologic Imaging Studies of Polycystic Kidney Disease

(CRISP) was established to study the progression of disease in early stage individuals.

CRISP has created a resource of MRI data, renal function parameters and other se-

lected markers (genetic, molecular) in correlation to disease progression. This research

thrust has revealed that kidney volume measurements from MRI can be considered as

the gold standard for assessing the yearly progression of the disease[26]. The decline

in renal function, which eventually leads to ESRD, is strongly associated with the

enlargement of the kidney, which is in turn driven by the expansion in number and

volume of cysts in the organ. CRISP and various other groups have conducted stud-

ies that have shown a significant relationship between total kidney volume (TKV)

and kidney function[14]. Having been considered the best representative marker in

predicting declining renal volume[45], kidney volume growth needs to be accurately

monitored over a short period of time in order to assess the efficacy of new therapeutic

techniques. Research has shown that early intervention in ADPKD promises more

therapeutic benefit than late treatment, as cysts have not yet replaced the bulk of

intact renal parenchyma and renal function is still maintained[53, 52]. These novel,

and often experimental, therapies are aimed at controlling the rate of cystic develop-

ment as a specific treatment for ADPKD. Other than supportive care treatment does

not exist.

1.1.4 Imaging for prognosis

In current practice MR and CT imaging are used to monitor the rate of kidney

volume enlargement. CRISP has developed reliable MR-based protocols to measure

and detect relatively small changes in TKV over a small period of time in ADPKD
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patients[4, 55]. The volume of individual kidneys is measured from tomographic

images using stereology method, which has been widely used to measure volumes

of a variety of organs. In this technique, the measurement is done by counting the

number of intersections of a randomly oriented and positioned grid over the region

of interest. The area of this region is calculated and the total volume is obtained

by summing the products of area measurement and the tomographic slice thickness

essentially voxel counting method. MR is used over CT because it provides high-

resolution 3D images with excellent tissue contrast without the exposure to ionizing

radiation or iodinated contrast agent. A multi-center study has shown MR imaging

to be well suited to assess kidney morphology and changes in renal volume[4, 16].

The use of gadolinium contrast media further enhances the ability of MR for this

application, however, previously held belief about the relative safety of gadolinium

for renal imaging has changed. New research has indicated that for patients with

impaired renal function, the clinical benefits and risks of using MR contrast need to

be considered carefully. This is especially a concern when imaging ADPKD patients.

In addition to this, MR imaging involves relatively long image acquisition times and

image quality varies with different scanners.

Ultrasonography (US) is a great technique for performing diagnostic as well

as interventional imaging. Ultrasound has advantages that it is a non-ionizing, real-

time and multi-planar method that can be utilized at the bedside. It also has fast

scan times and is incredibly cheap, both in terms of capital investment and long term

use, when compared to MR scanning systems. These characteristics make US a great

candidate for diagnosis of ADPKD and long-term monitoring of disease progression.

However, studies have indicated that this technique is inconsistent for short term

analysis of kidney volume. A study conducted to compare the efficacy of US versus

MR for volume measurement showed that using current standard protocols, US show
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Figure 1.3: Autosomal Dominant Polycystic Kidney (a) as compared to a healthy
kidney, (b) imaged under ultrasound and (c) imaged under MRI.

a substantial systemic underestimation to the tune of 25% of renal volume when

compared to MR measuring techniques[5]. This indicates the limited accuracy of

US for precise measurements of TKV. In addition to this, it has been shown that the

repeatability of this method is not very good. For inter-observer variation in US renal

volumetry, it was observed that the standard deviation spread anywhere from 16% -

48% of the TKV as compared to MR techniques where the variation was in a range

of 2% - 3%. However, the correlation between US and MRI volume was shown to be

0.88 - 0.89[44]. This is a very good indicator that US needs to be further explored

as a viable modality for precise and reproducible measurement of TKV in ADPKD

patients.

1.2 Specific Aims

Aim 1: Development of a tracked ultrasound system.

In this aim, our goal is to build a system that is capable of augmenting 2D

ultrasound imaging with spatial tracking data. Doing so enables us to localize real-

time imaging information within the physical framework of patient anatomy. Tracked
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ultrasound also gives us the ability to generate 3D datasets of regions of interest

dynamically, thereby furnishing with the latest changes to tissue or structures under

the scanning plane of the probe. We will implement state of the art calibration

techniques to minimize localization errors between the ultrasound images and patient

anatomy.

Aim 2: Use statistical shape analysis of kidneys to develop tech-

niques for accurately measuring total kidney volume (TKV).

The goal of this aim is to generate shape models of kidneys in order to capture

the variation in volume within a population. We will treat the shapes as a Gaussian

mixture model and generate mean shape and capture majority of the variation within

3SD. We believe that by doing so, we can also capture the variation in total kidney

volume accurately. Once the model is generated, tracked ultrasound developed at

the end of aim 1 will be used to capture a kidney volume of the patient in question.

The captured volume will then be registered with the shape model using deformable

coherent points drift (CPD) algorithm. The rationale behind this is to use the shape

information from the US and use this to drive the change in shape model, which will

accurately predict TKV.

Aim 3: Perform mock clinical experiments using tissue analogous

phantoms to assess the efficacy of developed techniques.

We will quantitatively test our techniques within clinically acceptable margins

through a set of mock clinical experiments. We will construct a series of tissue

analogous phantoms. The phantoms will then be subjected to tracked ultrasound

imaging to generate a volumetric scan. The US volume will be registered with the

statistical shape model and TKV will be calculated using techniques developed in

Aim 2. The computed values from ultrasound images will then be compared with the

CT volume to assess the quantitative efficacy of our method.

10



Chapter 2

Development of a tracked freehand

ultrasound system

2.1 Introduction

2.1.1 Image-guided surgery (IGS) paradigm

Over the past decade, development of hardware for positional tracking of tools

has allowed for interactive approaches to imaging and therapy guidance[17]. A tool

within the procedure room is tracked using a positional localizer within an arbitrary

coordinate system (physical space or tracker space). Tracker space is co-registered

with pre-operative medical images and/or the intra-operative imaging system (image

space). With co-registration, the location of surgical tools can be reported relative

to the position in the medical images. These techniques are analogous to using GPS

navigation when applied to the human body. Subsequently, they are employed for

(i) procedure planning (planning intervention based on diagnostic and pre-procedure

images), (ii) intraprocedural targeting (for guidance of tool, e.g. Needle, to the in-

11



tended target), (iii) intraprocedural monitoring and control (monitor tissue changes

make adjustments), and (iv) post-procedural assessment (assess and monitor efficacy

of procedure).

At the heart of any image-guidance system is spatial tracking. The role of a

tracking system is to determine the position and the pose (orientation) of the sensor,

which is attached to the medical instrument, and as an extension of the medical

instrument is within its frame of reference. In the IGS domain, there are typically

four technologies that exist to spatially localize medical instruments: 1. Mechanical

2. Acoustic 3. Electromagnetic and 4. Optical (Figure 2.1).

Mechanical Tracking

Mechanical tracking systems consist of articulated arms where the tip position

is determined by inverse kinematics. Mechanical arms are accurate, however can only

track one object at a time and are quite cumbersome. FARO surgical arm (FARO

Medical Technologies, Orlando, FL) is a mechanical tracking system used in practice.

Acoustic Tracking

These tracking systems compose of emitters (speakers) and receivers (micro-

phones) that work in ultrasound frequency range. The position of the receivers is

computed using two approaches: 1. Time of Flight measurement of the propagation

time of sound waves between the emitters and receivers and 2. The phase difference

between the sound waves emitted and received. These systems are sensitive to vari-

ations in temperature, pressure and humidity which affect the speed of sound in air.

They also require constant line of sight and an area free of any ultrasound source.

Electromagnetic Tracking

The idea for magnetic tracking has been around since the 1970s when Wynn

et al. presented a method for sensor localization in 2D[63]. The idea behind magnetic

tracking is in measuring the currents induced in receiver coil placed in the medical
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Figure 2.1: Mechanical tracking system FARO arm (a), Electromagnetic tracking
system NDI Aurora (b), Optical tracking system NDI Polaris and Vicra.
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instrument when moved in a magnetic field. The field can be generated by either al-

ternating current (AC) or direct current (DC). EM tracking uses the known geometry

of the magnetic field to determine the position and orientation of sensors used to mea-

sure the magnetic flux. The geometry of the field is governed by the Biot-Savart law

and controlling the coil geometry can set determine the shape of the magnetic field.

Special sensors are then used to measure the magnetic flux inside this field to back

out the spatial position and orientation with respect to the field geometry[64, 22].

Electromagnetic tracking is susceptible to two metal related phenomenon that are

present in the operating or clinical environment: ferromagnetism and eddy currents.

Ferromagnetism affects both AC and DC tracking as it influences the geometry of

the field generated. AC systems are at a risk of field distortion due to the genera-

tion of eddy currents that can be generated in metallic objects in its field vicinity.

Under ideal conditions, electromagnetic tracking systems are capable of error rates

ranging from 0.5 mm to 1.5 mm depending up on their application and surroundings

of use[31].

Optical Tracking

Optical tracking involves use of multiple cameras with distributed markers af-

fixed to a predefined rigid geometrical structure. A minimum of three markers are

required to determine the pose of the rigid body. Optical tracking systems can be

divided into three categories: 1. Videometric systems, 2. Infrared based tracking sys-

tems and 3. Laser tracking systems. Videometric systems involve multiple calibrated

cameras that identify marker patterns on image sequences. Well known commercial

system is the Claron tracker (Claron Technology Inc., Toronto, Ontario, Canada).

IR based systems use an optical filter to eliminate all wavelengths of light except

IR. These systems employ active IR markers or passive markers. Active systems use

IR LEDs that are sequentially fired and detected by either planar or linear charged
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coupled device (CCD) units. Using the process of triangulation based on the se-

quence of firing and known geometric configuration as well as the distance between

the CCD elements, the pose of the rigid body is estimated. In passive systems, IR

reflective spheres arranged in a predefined unique geometry are used. The camera

system employs 2 CCDs and the pattern of the reflective markers is identified on a

2D image. The pose is determined using stereo geometry. In laser tracking systems

an array of photo-sensors are mounted on a rigid body with predefined geometry. A

semiconductor laser emits light that is reflected by rotating mirrors into 2 or 3 fans

of coherent lasers. The volume is swept by a fan shaped laser beam and the position

of the rigid body is estimated by simultaneously sampling the position of the swept

fan and the signal from the photo-sensor[13]. The most popular optical tracking in

use are the IR-based systems and the success of these in the clinic is owed to its high

accuracy. Localization accuracy for the Polaris Spectra is about 0.25 mm to 0.3 mm

in its standard and extended pyramid zones[60, 19]. The Polaris Spectra showed a

tracking error of 0.33 mm in active mode and 0.64 mm in passive mode.

For this work, we chose to use the Polaris Spectra system in active tracking

mode.

2.1.2 Tracked freehand ultrasound

Since the discovery of X-rays in 1895 by Wilhelm Roentgen, medical imaging

has been used to visualize the interior structures in human body in two-dimensions.

As indispensable as 2D imaging is, most information about human anatomy is lost

to the physician owing to the 3D structure of internal organs. Diagnostic imaging

has seen a massive boost in visualizing 3D anatomical information with the advent

of CT and MRI technologies. Ultrasound is conventionally a 2D modality. It is used
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to capture a series of 2D images that the operator interprets mentally to form a

subjective impression of the 3D anatomy. The skill and experience of the user plays

a big goal in the diagnostic or interventional accuracy.

The limitation is in the fact that the user has to mentally transform a large

number of 2D images to form a 3D impression of the internal structure and its asso-

ciated pathology. This is highly variable and subjective and can cause disagreements

in diagnosis, planning, and delivery of therapy effectively. Staging and planning of

procedures also often requires accurate anatomical dimensions. The issue with 2D ul-

trasound is that techniques to calculate the volume of tumors or organs is often done

from their linear measurements such as height, length, and width using estimation

formulas based on the 2D view. This can cause low accuracy and high variability due

to operator dependence. 2D ultrasound, being a real-time modality is still subopti-

mal to monitor therapeutic procedures effectively. The operator has to constantly

adjust the 2D plane of viewing to keep the same anatomical site in the field of view

where the therapy is being delivered. This requires a long learning curve and a lot of

experience. 3D ultrasound is a modality that can ameliorate some of these issues.

Typically, 3D ultrasound is generated from combining a stack of 2D slices

around an anatomical region of interest. Unlike CT and MRI, images can be generated

in arbitrary orientations and at a high rate of acquisition. This results in unique

challenges and opportunities to extend 2D ultrasound to a 3D imaging modality.

There are typically four methods to acquire 3D ultrasound:

1. Constrained sweeping systems are mechanical systems that sweep the entire

probe over a predefined area. The slice acquisition is either in a wedge pattern,

parallel or rotation around a central axis. Typically an external motorized rig

is used to control the sweeps of the probe.
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Table 2.1: Summary of 3D scanning methods, acquisition modes and disadvantages.

Scanning
method

Image
acquisition
method

Disadvantage

Constrained
sweeping
systems

Linear
Tilt

Rotational

Acquired images
are parallel to
each other with
equal spacing;
images are
fan-like with
equal angular
spacing; images
are
propeller-like
with equal
angular spacing

Bulky device;
resolution
degrades with
depth; motion
related artifacts

Untracked
freehand
systems

Image
correlation

Measure speckle
decorrelation
between
adjacent images

Special
computing
required;
compound
motion is
difficult to track

Tracked
freehand
systems

Magnetic sensor
Optical sensor
Articulating

arm

Slice positional
data is obtained
from magnetic
field generated,
optical
triangulation or
angulation
between joints
in moving arm

magnetic
systems prone
to errors in
presence of field
distorting
materials;
optical systems
need line of
sight;
mechanical arms
are too bulky
and
cumbersome

3D probes

2D phased array
transmits a
diverging
pyramidal beam
and returned
echoes are
displayed in real
time as multiple
planes

System cost and
signal/noise
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2. 3D ultrasound probes use 2D arrays of ultrasound crystals inside the probe

housing. The crystal arrays are either mechanically steered or are controlled vial

electronic beam steering. These probes are usually larger and more expensive,

but suffer with lower quality image resolution as compared to 2D probes[51, 34].

In some probes a ring like probe can be accurately controlled by an internal

motor to acquire high resolution 3D volumes.

3. Sensor-less techniques use information from 2D images to align it with temporal

data to generate 3D volumes. Decorrelation or linear regression is utilized to

analyze the speckle in US images to align the volume[59, 47].

4. Freehand systems typically consist of a sensor attached to a the ultrasound probe

which is tracked by a spatial localization system in 3D space. The clinicians

scan the area of interest and along with the images, the trajectory, position and

orientation data is recorded. Subsequently, this information is used to calculate

the location of each pixel in the image in physical (3D) space. These pixels, and

as an extension the imaging data, are now located within a frame of reference.

This allows for various ways the data can be used. One example is being able to

co-register the ultrasound data with other modalities. Before the data from the

images can be used, the rotational, translation and scaling information needs

to be computed via calibration schemes.

In this work we are using the tracked freehand system and the following sec-

tions will describe the methods utilized to implement such a system.

2.1.3 PLUS Toolkit

For our work, we utilize the tools provided in the open-source PLUS toolkit

[33]. PLUS is a freely available, simple to use toolkit for the rapid prototyping of clin-
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Figure 2.2: Software components of PLUS toolkit[33].
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ical research work-flows that are based on tracked freehand ultrasound. The toolkit

consists of the core library and applications built using the functionality encapsulated

in the library. The goal is to provide a hardware independent interface to obtain im-

age, pose and time information to implement ultrasound based guidance work-flows.

To maintain interoperability PLUS uses standardized data representation.

Image Data

In ultrasound based work-flows, image orientation plays a crucial part and

needs to be defined for every ultrasound slice. It represents the relationship between

the physical transducer axes and the image slice axes. In PLUS this is defined by a two

letter acronym that represents the transducer orientation with respect to the image

axes in the +x and +y directions. The four directions are defined as: Marked(M) -

Direction towards the marker on the probe, Unmarked(U) - Direction away from the

marker on the probe, Far(F) - Direction facing away from the transducer face, and

Near(N) - Direction going into the transducer face[33].

Pose Data

In PLUS a frame of reference is specified to define the pose of images, and tools

for each individual item and the transformation between them. A 4x4 homogeneous

transformation matrix represents this and each coordinate system is defined by its

name, origin position, axis direction and scaling units. In addition to this, the process

of computing transformation between two arbitrary reference frames is required. For

this PLUS stores all the transforms as edges of a graph, where each vertex represents

a coordinate system.

All transforms in PLUS are stored in a transform repository that is accessible

throughout the entire framework. Each transform is uniquely identified by its name.

PLUS uses a standard naming convention. The transform name is constructed from

the name of the reference frames that it transforms from to the name of the reference
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frame it transforms to, with the word ”To” in between[33].

The transforms are computed automatically. As mentioned above, all the

transformations and their inverses are stored in a system-wide directed graph. Each

vertex is identified by the coordinate system name it represents. To compute the

transformation, first the path (series of transformations) between two vertices (co-

ordinate systems) is identified and then the corresponding transformation matrices

are multiplied and inverted as needed. The goal of having one repository is to avoid

ambiguity in the definition of transformation names[33].

Time Data

PLUS also implements methods to time-stamp data-items. It uses a system

time internally for all time stamps. The system time is obtained from a high-resolution

on-board timer and starts at 0 when any PLUS application is launched. PLUS con-

verts all the hardware device timestamps to system time-stamp.

In PLUS ultrasound and tracking data are independently acquired from differ-

ent hardware. It is therefore required that these data streams be fused together. In

order to handle this, in PLUS, each hardware device or processing algorithm is treated

as a ”Device”. The device receives and provides data through ”Input” or ”Output

Channels” and can either generate data internally or receive data from another de-

vice via the other device's output channel. Each hardware device has a corresponding

device in the processing pipeline in PLUS. In addition there are ”Virtual Devices”

which perform operations such as fusion of multiple channels, disk storage, volume

reconstruction, or simulated data generation. The channels store data in a circular

buffer to allow for temporal calibration and mitigate any data loss issues. In addi-

tion, PLUS needs to resample data before fusion as data is acquired at different time

points. As resampling image data is complex, PLUS resamples the pose data at each

time point during image acquisition before data fusion[33].
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Figure 2.3: Sonosite M-Turbo with 6-15MHz linear array probe.

In PLUS all the definitions of hardware configurations, acquisition and con-

nection related settings, device and virtual device configurations are stored in an .xml

based configuration file[33].

2.2 Methods

2.2.1 Construction of tracked ultrasound probe

The ultrasound system in use is the portable Sonosite M-Turbo (Fujifilm

SonoSite Inc., Bothell, Washington) with a 6-15MHz linear array probe (Figure 2.3).

The probe is mounted with an actively tracked rigid body marker. For our applica-

tion we use the Polaris Spectra system with active IR based tracking. The rigid body

marker is constructed using the wiring diagram described in Figure 2.4 according to

which IR LED’s are populated on the marker surface. Individual LEDs are turned on

when appropriate rows and columns are energized. The optimal way to wire LEDs is
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Figure 2.4: Polaris active tool marker wiring matrix.
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to distribute them evenly across the columns so as to fire them at equal intensities. In

our tools, the LEDs are positioned in locations A, G, M ,and S. Each active marker

contains a serial read only memory (SROM) device that stores the tool definition file.

The tool definition file is generated as a result of tool characterization. The tool def-

inition file stores information containing the geometry of the tool, the manufacturing

data, settings and parameters, and the wiring definition.

2.2.2 Calibration of tracked ultrasound probe

Figure 2.5: Plot of temporal offset for calibration at imaging depth of 6 cms before

and after applying offset. The moving signal represents tracker pose data and fixed

signal represents imaging data.

Temporal Calibration

The tracked ultrasound systems in research setting, as in our case, often consist
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of dedicated hardware for image acquisition and processing, for acquiring pose data

and the US system. These systems typically timestamp their data using their internal

clocks. Occasionally some devices also do not provide with a timestamp for their data

stream. In order to accurately track images and relate them to the appropriate pose

data, synchronization via correct timestamps is vital. In order to do so a temporal

calibration scheme needs to be carried out.

To carry out temporal calibration, the tracked probe is moved along the ver-

tical axis in a tank filled with water. The key is to image the bottom of the tank

while moving the probe in a quasi-periodic motion. The position signal for tracker is

calculated as the position along the principle axis of motion. For the image data the

bottom of the tank is taken as the feature of interest and its change in position along

the vertical axis is noted. The time offset is then calculated from the two positional

signals where the highest correlation between the two signals is obtained.

Spatial Calibration

Ultrasound is a real-time imaging modality and its data is rapidly changing

in time. In contrast tomographic modalities like MRI and CT have static and well

defined data. Because of this rapidly varying nature of US data, it is vital to estab-

lish a common frame of reference for this data in the context of an image-guidance

system. The positional tracking marker attached to the ultrasound probe, let us call

it sensor, returns the 3D location of itself rather than the ultrasound image plane.

This position is in the tracker space or the world coordinate system. The goal is to

find the relative location of the imaging data in 3D space and therefore to obtain

the pose of the image in terms of the world coordinate system. The process of find-

ing the transformation from image pixels to sensor (TS←I) involves determining six

parameters- three translations and three rotations[30].
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Figure 2.6: Illustration of coordinate system and transforms involved in a freehand

ultrasound system[30].

Figure 2.6 illustrates the transformations involved in calculating the 3D loca-

tion of a point from the image plane (scan plane). TS←I is the transformation that

needs to be calculated via the process of spatial calibration. TW←S is the transforma-

tion describing the sensor with respect to world coordinate frame and is obtained from

the tracking information given by the pose tracker. TF←W is the transform between

a the world coordinate frame to the calibration phantom. The location of point in

3D space is then given by[30],

P = TF←WTW←STS←ISPimage (2.1)

where S is the scale in the image plane.

26



Figure 2.7: Illustration of Z-wire phantom used in freehand ultrasound calibration[30].

The phantom used in this case is called the Z-wire or the N-wire phantom. In

this type of phantom wires are arranged in a ’Z’ or ’N’ shaped configuration (Figure

2.7) and the phantom is precision manufactured. This is done in order to accurately

know the geometric locations of the wires in 3D space. The phantom typically has

divots which are the points of reference from where the location of the wires is precisely

known. The phantom is then registered to the tracker (world coordinates) using a

calibrated stylus which is used to locate the divots on the phantom in physical space.

The location of the the tip of the stylus is known with respect to the tracker and as

a consequence after registration, the location of the wires is also known in 3D space

via the transform TF←W .

As illustrated in Figure 2.7 the absolute positions of w1, w2, w3 and w4 are

known. In order to find the transform needed, first the location of point z needs

to be determined in 3D space. To do this the wires are scanned under water using
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the probe. The wires appear as points in the image plane and are segmented. This

gives the distances |z − b| and |a − b|. Due to similar triangles, the ratios of these

quantities remain the same in the image plane as in the real world. Using this, point

z is determined as,

zworld = w3 +
|zimage − b|
|a− b|

(w2 − w3) (2.2)

The transformation TS←I can then be found by minimizing the following

function[30],

f = ΣN
i=1ΣM

j=1|T−1
W←Szij(world) − TS←ISzij(image)| (2.3)

where N are the number of images of the phantom captured and individual

images containing M number of z-fiducial points. The implementation provided in

PLUS is as described by Carbajal et. al[12].

2.2.3 Volume reconstruction of tracked images

In order to generate the volume, each pixel from the 2D image needs to be

placed into a 3D volume corresponding to its real world location given by the trans-

formations given via the pose information. In PLUS this is done either via placing

the pixel information into a corresponding voxel by nearest neighbor interpolation or

it is distributed among 8 voxels via linear interpolation. The value of the pixel to be

inserted is averaged between overlapping 2D slices for the same location if more than

one pixel have the same pose information.

In tracked ultrasound, the stacks of 2D slices are bound to have uneven slice

spacing and orientation. Due to this when putting together a 3D volume, artifacts

due this misalignment can manifest itself as regions of unfilled data. These regions

need to be filled to have a consistent volume. In order to do this, in PLUS, a ’hole’
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filling method is implemented. This is done by interpolating the voxel values based

on nearby known voxels using a gaussian or an elliptical kernel[33].

2.2.4 Evaluation of calibration

In order to evaluate the accuracy of calibration, two objects of known dimen-

sions were scanned and their volume was reconstructed. The two tests used to check

for accuracy were to measure the distance accuracy and the volume accuracy.

For distance accuracy measurement the edge of a cuboid of known dimensions

was scanned. The goal was to reconstruct this edge in 3D to get distance measurement

between the endpoints of the line segment that the edge represents. The error is then

measured as,

Errordistance = |Distanceworld(P1, P2)| − |Distance3D(P1, P2)| (2.4)

The object was scanned in a manner where the probe was made to do a tilt

sweep rather than parallel sweep of the edge as this prevents an uniform offset of error

to be applied due to bad calibration[30]. By scanning the object in a tilted sweep

in different directions the error is applied non uniformly to the reconstruction, which

is desirable as a uniformly applied error generates higher accuracy results which are

misleading.

In our application volumetric measurements are of importance and assessing

the accuracy of this task gives us a better metric. Again, two objects, one a cuboid

and a cylinder of known dimensions, are scanned using tilt sweeping techniques. The

volume is reconstructed in 3D space and the difference in the volume between the

real world volume and the reconstructed volume is the error metric.
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Table 2.2: Actual and measured dimensions of cuboid using tracked ultrasound

Actual Measured Error

Length (mm) 100 102 2

Width (mm) 38 39 1

Volume (mL) 144.4 155.1 10.7

Table 2.3: Actual and measured dimensions of cylinder using tracked ultrasound

Actual Measured Error

Length (mm) 100 106 6

Diameter (mm) 22 20 2

Volume (mL) 38.02 33.30 4.72

2.3 Summary

With the availability of spatial localizer technology, it is possible to track and

accurately obtain pose information about tools that are used in a clinical environ-

ment. This has enabled development of new clinical workflows that utilize the precise

positional information of tools to plan and guide therapy. For our work, we have uti-

lized Polaris optical tracking in order to track 2D ultrasound frames in 3D physical

space in order to generate 3D volumetric data of a region of interest which is subjected

to some form of therapy or analysis. In our work, the goal is to utilize tracked 2D

ultrasound to recover 3D shape information for the kidney in order to calculate the

volume of the organ. For this a tracked ultrasound probe was constructed that used

active tracking and a tracked ultrasound system was implemented using the PLUS

toolkit. In order to acquire accurate volumetric data, the system was subjected to

steps of calibration. Since the entire system is loosely coupled of components which
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comprises of tracking system, ultrasound interfaced to a PC via a frame grabber and

the processing software on the PC at first, a temporal calibration scheme was per-

formed. The goal of this was to make sure all the data streams were in sync and the

pose information acquired from the tracking system accurately corresponded with

the image information gathered from the ultrasound system via the frame grabber.

Following this, a spatial calibration was performed. Spatial calibration is a vital step

as it is important to obtain the position of a feature of interest in the image plane in

terms of its real world coordinates. In the system implemented here, we used a linear

array with frequency from 6-15 MHz that was calibrated for an imaging depth of 6

cms. The accuracy was then verified by scanning objects of known dimensions and

was found to be within a few millimeters, which is reasonable for our application.
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Chapter 3

Development of statistical shape

model of the human kidney

3.1 Introduction

The shape of an object can be mathematically represented as a set of n points

in any dimension (typically 2D or 3D for our application). The configuration of

points in a shape is of the highest quality when it is invariant under some transfor-

mation. This configuration does not change when the shape is translated, rotated

or scaled (similarity transform). The statistics of shape allow us to analyze shape

differences and changes by applying formal statistical techniques. The goal is to seek

a parametrized model of the form, x = M(b) where b is a vector of parameters of the

model. This model can then be used to generate other new vectors based on b.

Principal component analysis (PCA) is a statistical method that applies an

orthogonal transformation to convert a collection of observations with possible cor-

relation to a set of linearly uncorrelated variables called principal components. Each

principal component is used to measure the variance in data along one of a set of
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orthogonal directions in the space of measurements. The first component describes

the largest variance in the data, with the subsequent ones having lesser influence.

In PCA based shape models, the variation in shape is learned from a set of

training shapes X1, ..., Xn. Each shape is made up of discrete landmark points. These

can range from a few points of interests taken at certain anatomical landmarks or

dense set of points that range in thousands. It is important for the points to be

in correspondence which can be done via registration of shapes to each other. For

shapes, the distribution of points can be modeled as a multivariate normal distribution

in three dimensions[36]

s ∼ N(µ,Σ) (3.1)

µ =
1

n
Σn
i=1
−→xi (3.2)

Σ =
1

n− 1
Σn
i=1(−→xi − µ)(−→xi − µ)T (3.3)

the training data is used to estimate the mean µ and the covariance matrix Σ.

This is estimated using PCA and leads to a model of the form

x = µ+
n∑
i=1

αi
√
di
−→ui (3.4)

where di and ui are the eigenvalue/eigenvector pairs.

A Gaussian process is a statistical model used to model data that is defined on

a continuous domain such as time or space. It is completely defined by the mean and

covariance functions. It can be interpreted as a Gaussian distribution over functions.

Functions are infinitely long vectors containing the values of function at every point

in the input space. For an input space X, let f : X → IR, then f is a Gaussian
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process if for input vectors x = [x1, ..., xn]T , xi ∈ X, the vector containing f(x) =

[f(x1), ..., f(xn)]T is Gaussian distributed.

Luthi et. al[36] apply this idea to shape analysis by modeling variations in

shape by modeling the deformations between a set of shapes as a gaussian process.

These deformations are added to a reference shape to get a new shape instance. The

Karhunen-Loève expansion allows GP to be represented in terms of an orthogonal set

of basis functions and gives the form

f ∼ µ(x) +
n∑
i=1

αi
√
λiφi(x) (3.5)

which is similar to PCA. This implies that the eigen values and eigen functions define

the variance around a mean shape.

The deformation fields are learned from a set of training surfaces X1, ..., Xn.

This is done by establishing correspondence between a reference surface and each

individual training surface such that a set of deformation fields is obtained where the

fields map a point on the reference to the point on the training surface. The Gaussian

process is then obtained by estimating the sample mean and covariance function.

Another interesting feature of Gaussian processes is that the covariance func-

tion need not be estimated from the sample dataset. Any valid positive definite

covariance function can be used. This allows us to define zero mean Gaussian process

over a mean shape with an arbitrary smooth covariance function that describes the

shape variation. One of the most commonly used function is the Gaussian kernel[36],

kg(x, y) = exp(− ‖ x− y ‖2 /σ2) (3.6)
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k(x, y) = s · I3×3kg(x, y) (3.7)

is the matrix form where s is the scale factor that determines the variance of a

vector. The covariance function or the kernel function defines the characteristics

of the deformation fields. In shape modeling, the deformations are smooth over a

region i.e. the points in the same neighborhood are correlated. By applying a smooth

kernel, the points in the same neighborhood experience change relatively similarly.

This is controlled by the parameter σ or the bandwidth of the kernel. If this value

is small, the changes will be correlated between points over a small radius. In other

words, small local chances will be modeled. In real world values, the unit for σ is in

mm and the points in that radius will experience smooth deformations. The scale

factor s controls how far a point will move from its mean position i.e. how large the

deformation of the point is going to be. These values can be controlled based on the

application and will directly influence the flexibility, i.e. its ability to represent new

shapes, of a model.

Gaussian process models really shine because they can be easily extended by

using multiple kernels. Since the kernels are positive definite kernels, a sum of kernels

is also positive definite. This allows for multiple kernels to be added together in

order to extend the shape model. A case where this could be done is when there

is limited amount of training data. In this case, the model can be extended by

adding a smoothening kernel to the sample covariance kernel which is estimated

from the example data. Another case where this can be used is to take a multi-

resolution approach to modeling local and global shape variations. This gives a flexible

approach to developing shape models. By estimating the variation in shape from

limited training data, flexible models can be created by extending these variations by
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Figure 3.1: Screen capture of the segmentation workflow in Mimics.

adding multiple kernels together.

3.2 Methods

The kidney dataset was acquired from the cancer imaging archive[xx]. The

dataset was segmented using Mimics in order to obtain closed triangular meshes of

the kidneys.

The meshes were then aligned using rigid coherent point drift algorithm[40].

This algorithm considers the alignment of two point sets as a probability density

estimation problem. The surface points can be considered as observations of a proba-

bility distribution. In CPD, one of the surface points represent centroids of a Gaussian
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mixture model (GMM) and the other point set represents data points. The goal is

to fit the centroids to the data points by maximizing the likelihood. The crux is to

get the centroids to move as a group in order to preserve the topological structure

of the point set. At convergence, the point sets become aligned and the posterior

probability of GMM gives the correspondence. The advantage of using this method

is that its very robust to noise, outliers, and missing points.

In coherent point drift, the alignment of two D-dimensional point sets, XN×D =

(x1, .., xN)T and YM×D = (y1, .., yM)T , is treated as a probability density estimation

problem where YM×D represents the GMM centroids and XN×D the data points[40].

The probability density function for the GMM is then written as,

p(x) = ΣM+1
m=1P (m)p(x|m) (3.8)

To take into account noise and outliers the density function takes the following

form,

p(x) = w(
1

N
) + (1− w)ΣM+1

m=1 (
1

M
)p(x|m) (3.9)

where the weight w(0 ≤ w ≤ 1) takes into account the probability of an

observation being classified as an outlier, and p(x|m) = 1

(2πσ2)
3
2

exp(−‖x−ym‖
2

2σ2 )[40].

The locations GMM centroids are then adjusted based on some transformation

parameters θ. The two unknowns θ and σ2 are then found by using Expectation

Maximization (EM) algorithm. Before the expectation step (E-step) the initial values

of transformation parameters (rotation, scale and translation) are initialized to unit

values and the variance σ2 is estimated from the data as,

σ2 =
1

3NM
ΣN+1
n=1 ΣM+1

m=1 ‖ xn − ym ‖2 (3.10)
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In the E-step the posterior probability, which defines the correspondence be-

tween two points xn and ym, is estimated as,

P (m|xn) =
exp−

1
2
‖xn−T (ym,θ)

σ
‖2

ΣM
k=1 exp−

1
2
‖xn−T (yk,θ)

σ
‖2 +(2πσ2)3/2 w

1−w
M
N

(3.11)

where T (ym, θ) is the transformation applied to Y [40].

In the maximization step (M-step) the new values for transformation param-

eters and σ2 are estimated by minimizing the following objective function,

Q(θ, σ2) =
1

2σ2
ΣN+1
n=1 ΣM+1

m=1P
old(m|xn) ‖ xn − T (ym, θ

old) ‖2 +
3NP

2
log σ2 (3.12)

where NP = ΣN+1
n=1 ΣM+1

m=1P
old(m|xn). The old superscript denotes that the

values used for calculating are from the previous iteration.

The EM steps iterate until the variance σ2 falls below a threshold value. The

new variance calculated at each iteration is,

σ2 =
1

3NP

ΣN+1
n=1 ΣM+1

m=1 ‖ xn − T (yk, θ) ‖2 (3.13)

The transformation T (yk, θ) is different based on the type of registration in

use (rigid, non-rigid or affine) and an in-depth discussion of the details can be found

in Myronenko and Song[40][41].

Once the datasets are aligned using CPD, a reference shape of the kidney

needs to be generated. The reference shape is generated to minimize the bias of the

shape model towards one particular instance from the training data. For performing

the registration to get point correspondences as well as to generate the shape model,

we use the tools provided with the open-source toolkit Statismo[35].
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Figure 3.2: Kidney datasets before and after rigid CPD alignment.

39



In order to generate a reference shape, a zero mean Gaussian process is built

on an arbitrarily chosen shape from the training sample using a Gaussian kernel.

The bandwidth σ used was 50 mm. Larger value of the bandwidth will model larger

deformations i.e. on a more global scale whereas, smaller value will focus on smaller

variations at a more local scale.

Before building the shape model, in order to learn the deformations from the

training data, all the training samples need to be in correspondence with each other.

In order to do so, a second registration step is required. Luthi et. al[37] present a novel

approach to use a Gaussian process model to establish correspondence (Registration)

via shape fitting. In this approach, registration is viewed as an optimization problem

to find a deformation field that maps points on the reference surface to the target

surface. The optimization problem is of the form,

û = arg min
u∈F

D[ΓR, IT , u] + ηR[u] (3.14)

where D is a distance metric between the target and reference surface, R is a

regularizer term[37] and u is the component that parametrizes the transformation, in

this case it is a shape model.

For a Gaussian process, as described previously, the deformation can be ex-

pressed as,

u(x) = µ(x) + Σn
i=1αi

√
λiφi(x) (3.15)

The equation 3.7 takes the form,

û = arg min
α1,..,αn

Σxj∈ΓRDT (xj + µ(xj) + Σn
i=1αi

√
λiφi(xj))

2 + ηΣn
i=1

α2
i

λi
(3.16)

Here DT is the distance map of the target surface. The shape model is fitted
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Figure 3.3: Reference kidney shape generated iteratively.

to the distance map of the target surface as this is computationally efficient as imple-

mented in ITK. The implementation of this algorithm that is provided with Statismo

utilizes Euclidean distance map for the target image. They also use a LBFGS opti-

mizer with a mean squared metric. More details can be found in [35] and [37]. The

goal of this step is to deformably fit the shape model to the target surface so as to

get an instance of deformed reference shape that is in one to one correspondence with

the target surface.

The Gaussian process model built previously on an arbitrary training shape

is fit to all the shapes in the training set. Once they are in correspondence, a mean

shape is calculated. The Gaussian process model is rebuilt on this mean shape and the

same process of registering with rest of the training sets is repeated. The mean shape

from every step is compared to the previous step via the average distance between

the meshes. This process is repeated till the mean shapes show very little change.

This is then chosen as the final reference shape.
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The training set is then brought into correspondence with the reference shape

and is subjected to principal component analysis. The model is of the form,

new shape = mean + linear combination of eigen values and eigen vectors

As the amount of training data will always be a limiting factor, there will

always be a bias. Taking advantage of Gaussian process, the PCA model can be

extended to be more expressive by adding a Gaussian kernel to the kernel learned

from the training data as discussed previously. In this case in order to build an

extended model a Gaussian kernel was added with a bandwidth value of σ 100 mm

and scale value s of 10 mm.

The shape model is then evaluated over three metrics. Compactness, Gener-

alization and Specificity. Compactness of a model is its ability to describe a shape

instance with as few principal components or modes as possible. It is calculated as

the cumulative variance of the model as a function of number of modes. A compact

model should be able to capture most of the variance in the shape with as few modes

M as possible. It is calculated as,

C(M) = ΣM
i=1λi (3.17)

The generalization is the ability of a model to represent an unseen instance of

an object. It is a property that can describe how well the model is able to capture the

possible variation in shape from its training data. In order to measure generalization,

a model is first built from a set of training data. The model is then fit to an unseen

test sample. The quality of fit is measured as the average distance between the target

shape and the shape instance from the model that best describes the unseen shape.

This is done for a set of test samples and the average distance (error metric in this

case) is calculated for the entire test set. Generalization is again measured as a
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function of modes used to describe the shape model.

G(M) =
1

ntr
Σn
i=1Di(M) (3.18)

where ntr is the number of samples in the training set and Di is the average

distance between two shapes.

Specificity of a model describes the ability of a model to generate instances of

the shape that are similar to those in the training set. This means that the model

is able to generate instances that are anatomically accurate representations. For

measuring how specific the model is, a set of instances is sampled from the model and

are compared to the shapes in the training set. It is measured as the average distance

between the sampled shapes and their closest representation in the training set.

S(M) =
1

Ns

ΣN
i=1Di(M) (3.19)

where Ns is the number of sample instances generated from the shape model

and Di is the average distance between two shapes.
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3.3 Results

Figure 3.4: Samples from PCA shape model with samples from first three modes

representing ±3SD.
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Figure 3.5: Metrics for assessment of the shape model.
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Figure 3.6: Metrics for assessment of the extended shape model.

The Figure 3.3 shows the variation in shape learned from the kidney training

set. The first mode of the model typically shows the most variation in the shape
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as compared to the subsequent modes. It is also important to note that the model

represents anatomically realistic shapes.

Figure 3.7: Comparison of compactness between PCA model and Extended model.

The assessment of the PCA model and the extended model show that they are

able to capture around 96% and 93% of the total variance in the data in the first 10

modes respectively. This indicates that both the models are sufficiently compact, i.e.

they represent majority of the variation in relatively small number of modes. What

this implies is that the model can be expressive enough with reduced dimensionality

from the original data.
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Figure 3.8: Comparison of generalization between PCA model and Extended model.

The generalization metric indicates how well the model can represent new

shapes that the model has not seen previously. Figure 3.3 shows that for the PCA

model the error ranges from 2.4 mm for one mode to a reduced error of around 1.2 mm

for 19 modes. For the extended model the error further reduces below 1 mm after 15

modes. This implies that both the models are able to accurately represent shapes from

the test sample with the performance of the extended model improving with increasing

modes. This can be attributed to the fact that the PCA model was extended using a

Gaussian kernel to model smooth deformations. This increased the variance in shape,

in terms of real world dimensional distances, for every principal mode in addition to

what was learned from the sample data. This enables the extended model to better

represent some shapes in the test set, thereby reducing the average distance metric.
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Figure 3.9: Comparison of specificity between PCA model and Extended model.

The specificity of the PCA shape model is slightly better than the extended

model. This can be attributed to the fact that extending the model might have

produced samples that were very different from the training dataset. As a result

there is a higher average error. But as it can be seen from the above graph, the

difference between the two is less than 1 mm and hence both the models represent

good specificity in terms of expressing the shape that the model is defined to describe.
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3.4 Summary

Statistical shape modeling utilizes statistical analysis to analyze geometrical

properties of shapes and to model the variation seen in a population. In this work

we build a shape model of the kidney on a set of shapes segmented from CT image

dataset. The differences in shape within a population can be parametrically defined

by a shape model. In order to do so, we first align a set of segmented shapes in a

common frame of reference using the rigid coherent point drift algorithm. Correspon-

dence matching was then done on these aligned shapes using a modified version of

the iterative closest point algorithm. The shapes once in correspondence are then

subjected to principal component analysis. PCA reduces the dimensionality of data

and allows for the representation of shapes with a few orthogonal basis functions.

The new shape instance can be represented as a sum of the mean and a linear combi-

nation of the eigenvalues and eigenvectors of the covariance matrix, which describes

the variation of the shape from the mean. In the presence of limited training data,

the shape model can be over constrained and can introduce bias towards generating

instances of shapes that will closely match the training data.

In order to improve up on this, we utilize the concept of Gaussian processes

to expand the flexibility of the model. The Karhunen-Loève expansion of a Gaus-

sian process makes it similar to the representation of PCA model. We utilize this to

expand the covariance kernel learned from the data by defining a zero-mean Gaus-

sian process over the PCA model and adding a smooth covariance kernel based on a

Gaussian function. The scale and the bandwidth of the function control the variation

of individual points and hence the shape. The bandwidth of the kernel controls how

many points in a neighborhood are correlated. This controls the smoothness of the

deformations. Larger values of the bandwidth parameter will allow for more global de-
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formations as mode points are correlated where as a smaller value will model smaller,

local changes. The scale factor controls the amplitude of the variation i.e. how much

distance will the points move from their original (mean) location. The value of scale

and bandwidth were chosen arbitrarily based on our application. The model is then

assessed for compactness, generalization and specificity metrics. Compactness defines

how few modes express the maximum amount of variance in shape in the model. For

the PCA model 95% variance was captured by 10 modes and for the extended model

this was at 13 modes. This indicated that the models were sufficiently compact and

could be expressive enough by reducing the number of eigenvectors required to define

a shape. The generalization metric is used to assess how well a model represents

shape instances it has not seen in the training dataset. This is measured by fitting

the shape model to a number of test shapes that were excluded from the training

data and the average surface distance is calculated. The extended model performs

slightly better as it has more flexibility in terms of representing variability in shape.

The specificity metric looks at the ability of the model to represent instances that

belong to the shape class. The extended model showed specificity slightly worse than

the PCA model.
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Chapter 4

Statistical shape modeling based

renal volume measurement using

tracked ultrasound

4.1 Introduction

Renal volume measurement is of great diagnostic and prognostic value when

treating various kidney diseases. Autosomal dominant polycystic kidney disease

(ADPKD) is the fourth most common cause of kidney transplant worldwide account-

ing for 7-10% of all cases. In the United States, one in every twenty cases of end-stage

renal disease (ESRD) is caused due to ADPKD[50]. It is a progressive disorder that

begins with a relatively small number of cystic renal tubules which expand over

time. These are benign fluid-filled tumors that directly invade and displace adjacent

parenchyma. Although ADPKD usually progresses over many decades, accurate risk

prediction is an important task[50]. This is because identifying patients with progres-

sive disease is vital to providing new treatments being developed and enable them to
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enter clinical trials for new therapy. Genotype, age, gender, glomerular filtration rate

(GFR) and total kidney volume (TKV) are the major factors predicting the progres-

sion of ADPKD. Longitudinal studies conducted by the Consortium for Radiologic

Imaging Studies in Polycystic Kidney Disease (CRISP)[1] has shown that TKV is an

early and accurate measure of cystic burden and likely growth rate. Increased renal

volume predicts and is associated with loss of renal function[15].

Currently, the use of MR is considered as a gold standard measure to moni-

tor TKV accurately. While clinical ultrasound (US) has proven as an excellent tool

for diagnosing the disease and assessing long-term changes; monitoring short-term

changes using ultrasound has been shown to not be accurate. This inaccuracy can

be attributed to high operator variability and inability to accurately reproduce quan-

titative measures as compared to tomographic modalities such as CT and MR. A

study conducted to compare the efficacy of US versus MR for volume measurement

showed that using current standard protocols, US show a substantial systemic un-

derestimation to the tune of 25% of renal volume when compared to MR measuring

techniques[5], it has been shown that the repeatability of this method is not very

good. For inter-observer variation in US renal volumetry, it was observed that the

standard deviation spread anywhere from 16% - 48% of the TKV as compared to MR

techniques where the variation was in a range of 2% - 3%. However, the correlation

between US and MRI volume was shown to be 0.88 - 0.89[44]. This is a very good

indicator that US needs to be further explored as a viable modality for precise and

reproducible measurement of TKV in ADPKD patients. However, US has shown

reasonable correlation with MR in a head-to-head comparison.

Over the past decade, as imaging hardware has advanced, ultrasound has

emerged as one of the standout modality for intra-procedural imaging. In parallel to

this, the development of hardware and methods for spatial localization has afforded
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us the ability to track 2D ultrasound, in three-dimensional, physical space which

they are being used. The availability of excellent diagnostic and intra-procedural

imaging, combined with the ability to track tools during a procedure, has created new

possibilities for the use of imaging for surgery and intervention. In addition to this,

the vast amount of recorded tomographic data can be used to generate statistical

shape models that allow us to extract clinical value from archived image sets. In

this work, we aim at improving the prognostic value of US in managing ADPKD by

assessing the accuracy of using statistical shape model augmented US data, to predict

TKV, with the end goal of monitoring short-term changes.

4.2 Methods

Step 1 : A shape model was developed using the techniques as explained in

chapter 3. It was assessed for quality and concluded that the model we have developed

for our application is sufficient to represent anatomically correct shapes of kidney.

Step 2 : Tissue mimicking phantoms of the kidney were constructed using

platinum cured silicone rubber Smooth-on Ecoflex 0030(Smooth-On Inc, Macungie,

PA). In order to do this at first positive models of kidneys were hand crafted in order

to construct moulds from plaster of paris. Upon curing, silicone rubber was poured

in the moulds and phantoms were cast in order to best represent the kidney shapes

of various sizes. The kidneys were made to have slightly irregular surface rather than

a smooth surface so as to simulate deformity. The cured kidney models were then

embedded in gelatin hydrogel crosslinked with Chromium(III) potassium sulphate

dodechahydrate. The hydrogel has echoic properties that mimic those seen within

tissue when under ultrasound.
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Figure 4.1: Kidney phantoms made from Smooth-on Ecoflex0030.

Figure 4.2: Kidney phantom under ultrasound showing partial surface.

Step 3 : A tracked ultrasound system as implemented in chapter 2 was used
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to scan the phantoms. 3D volume was constructed from these scans for the purpose

of manual segmentation.

Step 4 : The reconstructed volume was then imported into the open-source

3D Slicer[21] application for the process of segmentation. The kidney was manually

segmented in all three axes. During segmentation, when the shape of the kidney

was not fully visible, estimation was used to demarcate the boundaries. The goal

was to approximately capture the shape of the organ as best as possible from the

partial data available from the stack of tracked ultrasound slices. The segmentation

mask was then exported as a mesh for further processing. The segmentation mask

meshes are partial in nature and need to be converted to a closed mesh. In order to

do so a spherical mesh was deformably fit to the segmentation mask. This was done

by applying deformable registration to the spherical mask via the non-rigid coherent

point drift algorithm. The deformed mesh gives a closed mesh representation of the

segmented kidney from the ultrasound data.
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Figure 4.3: Kidney segmentation in 3D slicer. Bottom image shows manual segmen-

tation masks.
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Figure 4.4: Segmentation mask and the deformed sphere fit to the mask to generate

a closed mesh representation.

Step 5 : The deformed spherical mesh is aligned with the reference shape from

the shape model developed in the previous chapter. The shape model was than fit

to the deformed mesh to obtain the best instance that describes the shape of the

deformed spherical mesh. Calculating the volume of an enclosed mesh is relatively a

simple solution due to an elegant method presented in Zhang et. al[65]. The idea is

to calculate the volume of each tetrahedron that makes the surface mesh assuming it

has the origin at (0, 0, 0).
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Figure 4.5: Illustration of a unit tetrahedron used for calculating the volume of a

triangular mesh.

The volume for individual tetrahedron is then calculated as,

|VOACB| = |
1

6
(−x3y2z1 + x2y3z1 + x3y1z2 − x1y3z2 − x2y1z3 + x1y2z3)| (4.1)

where A,B,C are the vertices of a surface triangle. This gives us a signed-

volume of the triangle (tetrahedron). To get the total volume we add up the signed

volumes of each triangle.

|Vtotal| = |ΣiVi| (4.2)

where i stands for the index of individual surface triangles.
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Figure 4.6: Workflow for volume calculation.

The true volume of the kidney phantoms is determined by volume displacement

test. The phantoms are individually placed in a water bath in a measuring beaker.

The volume is calculated by measuring the difference in water displaced once the

phantom is completely immersed in the water. This gives the gold standard volume

for the phantoms against which our method will be examined.

In order to test the feasibility of our method, two experiments are designed.

The first one involves asking participants to scan the kidney phantoms using a tracked

ultrasound. The goal of this is to see how well the participants could acquire kidney

shape. The ultrasound probe in use is a linear array with frequency range of 6-

15MHz. As seen in a typical clinical scenario, capturing large sized kidneys is not

trivial as the entire organ can not be imaged in a single plane. But taking advantage

of using a tracked US system, the entire extent of the kidney can be captured by

stacking multiple pose tracked 2D frames. These frames are then converted to a 3D

volume and the organ boundaries are demarcated by individual with segmentation

experience.

In the second experiment, the participants are given a set of kidney volumes

and are asked to segment the organ boundaries. The participants are given a brief

training on how to segment the region of interest. The goal in this scenarios is to see

how well the method works in order to calculate the kidney volume when segmented

by multiple subjects.
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4.3 Results

Table 4.1: Volume calculated from segmentations done by subjects and the corre-

sponding absolute percentage difference in volume from gold standard volume of 175

mL for Phantom 1

Subject Volume (mL)

Absolute

Percentage

Difference

1 177.09 1.19

2 178.99 1.28

3 176.06 0.60

4 193.79 10.74

5 193.12 10.35

6 186.02 6.30

7 175.98 0.56

8 172.86 1.22

9 152.55 12.83

10 168.16 3.91

Mean ± SD 177.46 ± 12.11 4.99 ± 4.72
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Table 4.2: Volume calculated from segmentations done by subjects and the corre-

sponding absolute percentage difference in volume from gold standard volume of 266

mL for Phantom 2

Subject Volume (mL)

Absolute

Percentage

Difference

1 245.74 7.62

2 249.66 6.14

3 254.41 4.35

4 253.45 4.72

5 268.33 0.87

6 266.96 0.36

7 234.66 11.78

8 266.75 0.28

9 235.85 11.33

10 246.76 7.23

Mean ± SD 252.26 ± 12.24 5.47 ± 4.19
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Table 4.3: Volume calculated from segmentations done by subjects and the corre-

sponding absolute percentage difference in volume from gold standard volume of 200

mL for Phantom 3

Subject Volume (mL)

Absolute

Percentage

Difference

1 181.71 9.15

2 206.82 3.41

3 209.75 4.88

4 181.50 9.25

5 214.22 7.11

6 203.75 1.88

7 198.73 0.64

8 202.35 1.18

9 172.02 13.99

10 184.60 7.70

Mean ± SD 195.55 ± 14.89 5.91 ± 4.28

Renal volumetry is of great interest in the management of chronic kidney

diseases (CKD). In polycystic kidney disease, kidney volume has a strong prognostic

indication of declining function. While ultrasound has played an important role in

diagnosis, its use as a modality with high prognostic value is limited. In our work,

we take advantage of tracked ultrasound to generate a stack of images and in turn a

volume of our region of interest. In this case, our volume of interest should capture

the extent of kidney phantoms. Fitting a statistical model to the acquired volume
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mesh, we are able to generate a possible instance that best represents the anatomical

shape of the scanned phantom.

Table 4.1, 4.2, 4.3 show the volumes calculated by our method when phantoms

1, 2 and 3 were segmented by 10 different subjects. The absolute percentage difference

between the calculated volume and the gold standard volume of the phantom is

derived. One sample t-test was performed and it was noted that the percentage error

in wrongly estimating the volume when compared to the gold standard was less than

10% (p<0.05) for all three phantoms.

We also looked at the ability of our method to discern the volume change

between individual phantoms. This is important as it can indicate if the method is

able to detect a relatively small change in volume. Again the absolute percentage

difference between two phantom volumes was calculated and compared to the actual

difference in their gold standard volumes. It was seen that between phantom 1 and 2,

where the difference was 91 mL, our method could discern the volume with an esti-

mation error of up to 25% (p<0.05). Between phantom 2 and 3, where the difference

was 66 mL, the error of estimation was up to 27% (p<0.05). For a small change of

25 mL between phantom 1 and 3, the error was too large and volumes could not be

told apart reliably.
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Figure 4.7: Scatter plot showing the volumes obtained by segmenting the same phan-

tom twice by subjects.

The participants were also made to segment phantom 3 images twice, once

as the first set for segmentation and second after having segmented the other two

phantoms. It can be observed from the scatter plot (Figure 4.7) that majority of

the participants demonstrated good repeatability in their segmentations that led to

good agreement in volume reading between the two measurements. There were two

outliers where the volume calculations showed a difference of around 25.16 and 31.04

mL.

In addition, the scans obtained from the participants scanning the phantoms

were segmented by individual with prior segmentation experience. It was again ob-

served that the absolute percentage difference between the actual volume and the

calculated volume of the phantom was wrongly estimated by an error of upto 10%

(p<0.05) for all three phantoms. This indicates that the volume can be reliably calcu-

lated by someone with prior segmentation experience as well as someone without prior

segmentation experience within a reasonable amount of over or under estimation.
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It is important to note that manual segmentation is prone to wrong demarca-

tion of organ boundaries. Even though the segmentation relies on the user's knowledge

of anatomical shape, in the cases where the entire extent of the organ is not known

the method is prone to underestimating the volume. This could be a realistic scenario

when scanning kidneys of very large size.

In conclusion, we have presented a new method to measure the volume of a

kidney using tracked ultrasound augmented by statistical shape model. Once the ap-

proximate segmentation of the organ is obtained from reconstructed volume, applying

shape model to the segmentation produces an instance that is anatomically accurate

based on the shape model that is trained using ground truth segmentations from CT

scans.
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Chapter 5

Conclusion and Future Work

In this work we present a novel approach to measuring renal volume using

tracked ultrasound and statistical shape models. In our work, the goal was to utilize

tracked 2D ultrasound to recover 3D shape information for the kidney in order to

calculate the volume of the organ. The polaris tracking system was used to track

the ultrasound probe in 3D space and using the tools provided in the PLUS toolkit,

this information was used to map the pixel coordinates from the image plane to real

world 3D coordinates. In order to do this two step calibration was performed. The

entire system is loosely coupled of components which comprises of tracking system,

ultrasound interfaced to a PC via a frame grabber and the processing software on the

PC, at first a temporal calibration scheme was performed. This ensured that all the

data streams were in sync and the pose information acquired from the tracking system

accurately corresponded with the image information gathered from the ultrasound

system via the frame grabber. Following this, a spatial calibration was performed

using a N-wire phantom. Spatial calibration is a vital step as it is important to

obtain the position of a feature of interest in the image plane in terms of its real

world coordinates. In the system implemented here, we used a linear array with
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frequency from 6-15 MHz that was calibrated for an imaging depth of 6 cms.

We then developed a statistical shape model of the kidney using 20 segmented

kidney CT scans. The differences in shape within a population can be parametrically

defined by a shape model. In order to do so, we first align a set of segmented shapes

in a common frame of reference using the rigid coherent point drift algorithm. Corre-

spondence matching was then done on these aligned shapes using a modified version

of the iterative closes point algorithm. The shapes once in correspondence are then

subjected to principal component analysis. PCA reduces the dimensionality of data

and allows for the representation of shapes with a few orthogonal basis functions.

The new shape instance can be represented as a sum of the mean and a linear combi-

nation of the eigen values and eigen vectors of the covariance matrix, which describes

the variation of the shape from the mean. In the presence of limited training data,

the shape model can be over constrained and can introduce bias towards generating

instances of shapes that will closely match the training data.

In order to improve up on this, we utilize the concept of Gaussian processes

to expand the flexibility of the model. The Karhunen-Loève expansion of a Gaussian

process makes it similar to the representation of PCA model. We utilize this to

expand the covariance kernel learned from the data by defining a zero-mean Gaussian

process over the PCA model and adding a smooth covariance kernel based on a

Gaussian function. The scale and the bandwidth of the function control the variation

of individual points and hence the shape. The bandwidth of the kernel controls

how many points in a neighborhood are correlated. This controls the smoothness

of the deformations. Larger values of the bandwidth parameter will allow for more

global deformations as mode points are correlated where as a smaller value will model

smaller, local changes. The scale factor controls the amplitude of the variation i.e.

how much distance will the points move from their original (mean) location. The
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value of scale and bandwidth were chosen arbitrarily based on our application. The

model is then assessed for compactness, generalization and specificity metrics.

We then created a work flow to extract shape data from kidney phantoms

using tracked ultrasound and to compute the volume of the scanned phantoms. For

this we manufactured kidney shaped phantoms from platinum cured silicone rubber

and embedded them in gelatin hydro-gel. The phantoms were then scanned using the

tracked ultrasound system and volume was reconstructed. On these reconstructed

volumes, participants were asked to segment the kidney shape in the axial plane.

In every image, there was a part of the phantom that was occluded due to limited

angles for scanning. These parts were approximated based on anatomical knowledge

to complete the segmentation masks. A spherical mesh was then deformed and fit to

the segmentation masks and eventually the shape model was fit to obtain an closest

anatomical instance to the scanned kidney. The volume was then calculated on this

instance. It was observed that the volume was approximated correctly with up to

a 10% error from the gold standard volume of each phantom, which was measured

by the water displacement method. In addition we also saw that the method could

differentiate between volumes with an error of up to 25% for 91 mL difference and

an error of upto 27% for a difference of 66 mL between phantoms. This is a positive

indication that small changes in volume can be identified, but the results need to be

treated with caution as more tests are required.

Future work can investigate the construction of statistical shape model of a

polycystic kidney. Polycystic kidneys are large and highly irregular in shape. The

heterogeneity of the organ shape is challenging aspect that needs to be modeled.

This can potentially be done using a multi-scale kernel approach using Gaussian

processes. Deformations on multiple scales can be modeled using a linear combination

of kernels. This combination includes kernels with larger bandwidth which model
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global, smoother deformations where as kernels with decreasing scales and bandwidths

focus on more local changes that capture details.

Another aspect that needs to be investigated is to build active appearance

models in addition to shape knowledge to help in semi-automatic segmentation of

the organ. This can be done by manufacturing more realistic phantoms that mimic

echogenicity of the kidney. Materials such as poly vinyl alcohol cryogel (PVA-C) have

shown to have excellent echogenicity and could be used to manufacture phantoms that

will allow for the extraction of appearance related information. In addition, models

can be developed on kidney data directly taken from the patients.
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Appendix A Using curvelet transform for edge de-

tection and segmentation of tissue

A.1 Introduction

Supraspinatus, along with the Infraspinatus, the Subscapularis, and the Teres-

minor form the major muscles of the rotator cuff. Of these, supraspinatus tendon

disorders rank as the third most commonly occurring musculoskeletal pathology, pri-

marily caused by inflammation, partial, or full thickness tears. It results in severe

discomfort and reduced mobility of the shoulder accompanied by acute or chronic

pain. The chronic tear of the rotator cuff can develop slowly over an extended period

of time and is usually not detected at the initial stages because symptoms (such as

pain, weakness accompanied by stiffness, and loss of motion) worsen slowly over time.

This makes detection, management, and staging of the disease critically important.

This is especially true in high-risk groups such as athletes that are involved in activ-

ities warranting overuse of the shoulder. Towards this end, in our previous work, we

have developed novel real-time techniques to biomechanically assess the condition of

the rotator cuff in order to manage the disease and to guide therapy[46, 32, 58]. Our

technology is based on the Musculoskeletal Ultrasound (MSK-US), which is seeing

widespread use in the assessment of soft tissue orthopedic disorders. Ultrasound has

been shown to have a higher degree of sensitivity in diagnosing tears when compared

with the gold standard MRI. In order to do ex-vivo assessment using our techniques,

there is a need for good segmentation and classification approaches to identify the

tissue in question. However, segmentation of a region of interest automatically from

ultrasound remains a long studied and challenging area of research due to poor con-

trast, intrinsic noise, and operator variability.
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In this work, we propose a novel approach to the possibility of using curvelet

transforms for automatic edge and feature extraction. Curvelets have shown to

present an optimal multi-scale representation of edges in images. They are designed

to efficiently represent edges and singularities along the curves in images[10]. The

curvelet coefficient values depend on how well they align with an edge and, subse-

quently, the curve. The best alignment is represented by the highest coefficient value,

with the values of unaligned curvelets tending to zero (Figure 1). This gives us the

ability to identify edges as well as the direction of the curve efficiently. This property

of curvelet transform makes it a very attractive proposition for use in selectively ex-

tracting edges in US images, specifically for a tissue such as supraspinatus which has

a highly directional appearance.

Figure 1: Edge fragment is represented by multi-scale curvelets. Unaligned coeffi-

cients are tending towards zero[10].
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Most medical images generated contain curve singularities or line-like edges

that often represent clinically valuable information required for diagnosis, manage-

ment and to monitor progression of disease as well as efficacy of treatment. For any

application that involves quantitative and qualitative assessment of imaging infor-

mation beyond visual inspection, there is a need for the extraction and analysis of

features such as, but not limited to, organ or tissue boundaries, vascularization, tu-

mor margins, etc. Delineating such features of interest in ultrasound images, for the

purpose of segmentation, is an especially challenging task without the expert super-

vision of an experienced operator. Noble et al. provide an in-depth review of the

techniques used[43]. Curvelet transform was introduced by Cands et al. as a new

multiresolution decomposition approach that has proved to be much more efficient at

representation of edges along the curve, as compared to traditional wavelets[11]. An

in-depth appreciation of the mechanics of curvelet transform is beyond the scope of

this paper. For more information, refer to the detailed works of Cands, Donoho and

Starck.

In the realm of medical imaging, curvelets have seen some specific uses. Appli-

cations ranging from retinal image analysis[38], MR-CT image fusion[2], mammogram

classification for detection of breast cancer[20], image denoising and segmentation and

classification in CT[3, 18] are some of the standout uses. Towards its use in the ul-

trasound segmentation problem for rotator cuff, Gupta et al., present a promising

approach towards automatic segmentation of the supraspinatus[27]. But so far in

our review of pertinent literature, we have not yet seen an approach similar to ours

applied to this particular problem. In an attempt to address this, in the following

sections we present our novel algorithmic method as well as the results on selected

datasets to prove our proof-of-concept.
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A.2 Methods

An algorithmic overview of the method we apply is shown in Figure 2. Al-

though our ultimate goal is to synthesize a fully automatic segmentation and classi-

fication method, it is a two-step process. In this work, the scope of our methods is

limited to the segmentation of relevant features using minimal user input. The first

step involves the selection of a region of interest (ROI) which will best capture the

features most relevant to our application. Apart from this, in its current implemen-

tation, the user is asked to locate two seed points. The supraspinatus is compressed

between the bursae at the top and the humerus in the bottom. Both of these ap-

pear hyperechoic in the ultrasound image. The seed points are placed, one each,

approximately on the left extremities of both of these components as they appear in

the image. No further input is required from the user. We then utilize the curvelet

transform in its discrete implementation in the form of the Fast Discrete Curvelet

Transform (FDCT)[8, 9].
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Figure 2: Algorithmic representation of ultrasound segmentation scheme.

The extracted ROI is subjected to FDCT where the image is decomposed at

multiple resolutions (scales) and number of angles (orientations) at each resolution.

76



This generates a bank of sub bands at different scales done by spatial band pass

filtering. Curvelet coefficients at scale j and angle l are represented by a matrix Cjl,

and scale j is from finest to coarsest scale. For an image f(x, y), 1 ≤ t1 ≤ N1, 1 ≤

t2 ≤ N2 , where N1 ,N2 is the size of the original image, the number of scales is

calculated by

Nscales = ceil(log2(min(N1, N2))− 3) (1)

The number of angles at scales j = 2, 3, · · · , (Nscales − 1)is calculated by

lj = 16× 2ceil(
Nscales−1

2
) (2)

For scale j = 2, 3, · · · , (Nscales − 1), the curvelets are divided into quadrants

and are further subdivided into angular panels. For simplicity purposes, the number

of angle at scale 4 is 32, at scale 3 is 32, and at scale 2 is 16. After curvelet decompo-

sition, the low-frequency components from the image are assigned to the coarse level,

the high-frequency to the fine level, and the middle frequencies contain the detail

information.

The curvelet coefficients are then subjected to thresholding in order to elim-

inate the high frequency data which is typically associated with small scale features

and noise. This is represented by smaller curvelet coefficients. We perform a hard

thresholding adapting to the scale. At finer scale we eliminate more coefficients.

Once the curvelet coefficients are reduced, we then extract the directions for

the highest coefficients at every scale by following the methods described by Gebck et

al[23]. This describes the large scale features that are of importance and is influenced

by the scale levels selected. Each curvelet Cjl is associated with a direction (angle)

indexed by l. From (1) and (2) it is clear that the number of angles vary with the

individual scale levels and hence the coefficients on the coarser level need to be mapped
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to the coefficients on the finer level that they overlap. The fields are only computed

for angles l up to L/2, where L is the total number of angles for a given scale. This is

so because the other half of the angles represent the same direction. Every selected

scale level has a grid of curvelet coefficients, the size of which is determined by the

curvelet transform and is smaller than the size of the image. The directional fields are

only computed at this grid and do not correspond to individual image pixels (Figure

3).

Figure 3: Directional fields along the feature. In top image the field exhibits a high

degree of alignment along the edge as opposed to the curvelets away from the edge

in the bottom image.

Once the directional fields are obtained, we then map them to the original
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image by interpolation. This now gives us directional fields corresponding to every

pixel in the image. The scale for interpolation is obtained as the ratio of the perimeters

of the original image and the directional field grid. Following the interpolation step,

the seed points obtained from the user during ROI selection are used as the starting

point for the evolution of the curve tracing the edge. The propagation of this curve

is guided by a combined intensity-direction profile based approach. The direction

fields align themselves along an edge by the virtue of the mechanics of the curvelet

transform. At the same time, edges are representing as an abrupt change in intensity

values in the spatial domain.

Figure 4: Illustration of combined intensity-direction profile.

The goal of the intensity-direction profile is to select the next pixel for the

propagation of the curve tracing the edge. In order to do this, the average direction

is first calculated over a grid of size g such that our seed pixel is at the center as
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illustrated in Figure 4. Once the direction of propagation is arrived at, the next

seed pixel is selected based on intensity value by comparison to its adjacent pixel.

Controlling the grid size g gives finer control so as to capture smaller changes in

direction of the edge. The number of iterations control the edge length traced and

this can be set arbitrarily for best results.

Figure 5: Segmented edge over laid on original image (top). Magnified view of the

edge showing control points that can be used for various curve fitting methods (bot-

tom).
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A.3 Results and Discussion

Figure 6: The left column shows the set of input images (a), (c), (e), and (g) and the

right column shows the segmented edge shapes over laid on the original images (b),

(d), (f), and (h).
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In this paper, we have attempted to address step one of a two part problem

of segmentation and classification of the supraspinatus in ultrasound imaging. This

is a crucial step towards the goal of automatic classification and subsequent com-

putation of the biomechanical properties of the supraspinatus using the ultrasound

elastography techniques we have developed. The elegance of this approach lies in

its simplicity when compared to the results we have demonstrated in the preceding

section. Supraspinatus shows variation in terms of length, thickness and the radius

of curvature among the population; however, the convex hull of the tissue remains an

invariant feature. In addition to this, the tissue striations are highly directional. In

our algorithm, we take advantage of these salient features and employ the curvelet

transform for analysis in an area that it excels. The highly directional field we obtain

from multiresolution decomposition is very sensitive to changes in the feature profile

as seen in Figure 5. We supplement this information with intensity profile in the

direction of the field to devise a method that is responsive to even subtle changes in

the edge direction. This is demonstrated in Figure 6 (g) and (h). On close observa-

tion, one can notice the small changes in edge direction along the cortical bone of the

humerus (g). These changes are captured very well in the curve, tracing the edge as

detected by our algorithm (h). Figure 6 (e) and (f), demonstrates the ability of our

algorithm to handle the smoother changes in curvature.

It is important to note that prior to running the algorithm on the images,

they were not subject to any preprocessing. And although the ROI selection can

be viewed as a preprocessing step, it is worthy to observe that our method is quite

immune to noise in the image. This is another inherent key feature of the curvelet

transform. The process of thresholding the coefficients is the crux of image denoising

algorithms that are implemented using curvelets. In the current implementation,

we use hard thresholding approach and believe we could only improve this step by
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employing more advanced techniques; one such technique used in wavelet denoising

is the Total Variation (TV) thresholding.

In the introduction section, we underlined that our final goal is to develop a

fully automatic segmentation technique. But having developed the ability to reliably

extract edge information, we can now perform comparative studies to quantitatively

measure the efficacy of segmentation as compared to an experienced clinical operator.

This will allow us to build confidence in acquiring data to establish ground truth

which is required to implement probabilistic and heuristic techniques for automatic

segmentation. One such example is the possible use of Statistical Shape Modeling

(SSM) to predict the shape of the tissue in an ultrasound image. It is also noteworthy

that although in this current implementation we require user input, in the framework

of a clinical workflow for the current application, the time taken to perform this task

is insignificant.

The current implementation in Matlab, although quick, may not be suitable

for a real time application. However with the C++ implementation of the curvelet

transform made available[9], it would be beneficial to implement a computationally

optimized form of this algorithm so that it can be utilized for real time applications.
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[37] Marcel Lüthi, Christoph Jud, and Thomas Vetter. A unified approach to shape
model fitting and non-rigid registration. In Machine learning in medical imaging,
pages 66–73. Springer, 2013.

[38] Mohammad Saleh Miri and Ali Mahloojifar. Retinal image analysis using curvelet
transform and multistructure elements morphology by reconstruction. Biomedi-
cal Engineering, IEEE Transactions on, 58(5):1183–1192, 2011.

87



[39] Thida M Myint, Gopi K Rangan, and Angela C Webster. Treatments to slow
progression of autosomal dominant polycystic kidney disease: systematic review
and meta-analysis of randomized trials. Nephrology, 19(4):217–226, 2014.

[40] Andriy Myronenko and Xubo Song. Point set registration: Coherent point drift.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 32(12):2262–
2275, 2010.

[41] Andriy Myronenko, Xubo Song, Miguel A Carreira-Perpinán, et al. Non-rigid
point set registration: Coherent point drift. Advances in Neural Information
Processing Systems, 19:1009, 2007.

[42] Surya M Nauli, Francis J Alenghat, Ying Luo, Eric Williams, Peter Vassilev,
Xiaogang Li, Andrew E H Elia, Weining Lu, Edward M Brown, Stephen J Quinn,
and Others. Polycystins 1 and 2 mediate mechanosensation in the primary cilium
of kidney cells. Nature genetics, 33(2):129–137, 2003.

[43] J Alison Noble and Djamal Boukerroui. Ultrasound image segmentation: a
survey. Medical Imaging, IEEE Transactions on, 25(8):987–1010, 2006.

[44] W Charles O’Neill, Michelle L Robbin, Kyongtae T Bae, Jared J Grantham,
Arlene B Chapman, Lisa M Guay-Woodford, Vicente E Torres, Bernard F King,
Louis H Wetzel, Paul A Thompson, and Others. Sonographic assessment of the
severity and progression of autosomal dominant polycystic kidney disease: the
Consortium of Renal Imaging Studies in Polycystic Kidney Disease (CRISP).
American journal of kidney diseases, 46(6):1058–1064, 2005.

[45] R D Perrone, J F Marier, M S Mouksassi, F Czerwiec, K Romero, E Dennis,
D Miskulin, A Chapman, B Gitomer, and V Torres. Qualification of total kidney
volume as a prognostic biomarker for use in clinical trials evaluating patients
with autosomal dominant polycystic kidney disease. In AMERICAN JOUR-
NAL OF KIDNEY DISEASES, volume 63, pages A119—-A119. WB SAUN-
DERS CO-ELSEVIER INC 1600 JOHN F KENNEDY BOULEVARD, STE
1800, PHILADELPHIA, PA 19103-2899 USA, 2014.

[46] Anup Pillai, Brittany N Hall, Charles A Thigpen, and David M Kwartowitz.
Improved apparatus for predictive diagnosis of rotator cuff disease. In SPIE
Medical Imaging, page 904005. International Society for Optics and Photonics,
2014.

[47] Richard W Prager, Andrew H Gee, Graham M Treece, Charlotte JC Cash, and
Laurence H Berman. Sensorless freehand 3-d ultrasound using regression of the
echo intensity. Ultrasound in medicine & biology, 29(3):437–446, 2003.

88



[48] Qi Qian, Airong Li, Bernard F King, Patrick S Kamath, Donna J Lager, John
Huston, Clarence Shub, Sonia Davila, Stefan Somlo, and Vicente E Torres. Clini-
cal profile of autosomal dominant polycystic liver disease. Hepatology, 37(1):164–
171, 2003.

[49] Berenice Reed, Kim McFann, William J Kimberling, York Pei, Patricia A Gabow,
Karen Christopher, Eric Petersen, Catherine Kelleher, Pamela R Fain, Ann John-
son, et al. Presence of de novo mutations in autosomal dominant polycystic
kidney disease patients without family history. American Journal of Kidney
Diseases, 52(6):1042–1050, 2008.

[50] Scott Reule, Donal J Sexton, Craig A Solid, Shu-Cheng Chen, Allan J Collins,
and Robert N Foley. ESRD from autosomal dominant polycystic kidney dis-
ease in the United States, 2001-2010. American Journal of Kidney Diseases,
64(4):592–599, 2014.

[51] Robert Rohling, Wilson Fung, and Pedram Lajevardi. PUPIL: Programmable ul-
trasound platform and interface library. In International Conference on Medical
Image Computing and Computer-Assisted Intervention, pages 424–431. Springer,
2003.

[52] Matthew Tan, Hiromi I Wettersten, Kristy Chu, David L Huso, Terry Watnick,
Sharon Friedlander, Yosef Landesman, and Robert H Weiss. Novel inhibitors of
nuclear transport cause cell cycle arrest and decrease cyst growth in ADPKD
associated with decreased CDK4 levels. American Journal of Physiology-Renal
Physiology, 307(11):F1179—-F1186, 2014.

[53] Vicente E Torres, Arlene B Chapman, Olivier Devuyst, Ron T Gansevoort,
Jared J Grantham, Eiji Higashihara, Ronald D Perrone, Holly B Krasa, John
Ouyang, and Frank S Czerwiec. Tolvaptan in patients with autosomal dominant
polycystic kidney disease. New England Journal of Medicine, 367(25):2407–2418,
2012.

[54] Vicente E Torres, Peter C Harris, and Yves Pirson. Autosomal dominant poly-
cystic kidney disease. The Lancet, 369(9569):1287–1301, 2007.

[55] Vicente E Torres, Bernard F King, Arlene B Chapman, Marijn E Brummer,
Kyongtae T Bae, James F Glockner, Kraisthith Arya, Dana Risk, Joel P Felmlee,
Jared J Grantham, and Others. Magnetic resonance measurements of renal blood
flow and disease progression in autosomal dominant polycystic kidney disease.
Clinical Journal of the American Society of Nephrology, 2(1):112–120, 2007.

[56] VICENTE E TORRES, DAVID M WILSON, JOHN C BURNETT, CHRISTO-
PHER M JOHNSON, and KENNETH P OFFORD. Effect of inhibition of con-
verting enzyme on renal hemodynamics and sodium management in polycystic

89



kidney disease. In Mayo Clinic Proceedings, volume 66, pages 1010–1017. Else-
vier, 1991.

[57] VICENTE E TORRES, DAVID M WILSON, KENNETH P OFFORD, JOHN C
BURNETT, and JUAN C ROMERO. Natriuretic response to volume expansion
in polycystic kidney disease. In Mayo Clinic Proceedings, volume 64, pages 509–
515. Elsevier, 1989.

[58] Erika A Trent, Lane Bailey, Fuad N Mefleh, Vipul P Raikar, Ellen Shanley,
Charles A Thigpen, Delphine Dean, and David M Kwartowitz. Assessment and
characterization of in situ rotator cuff biomechanics. In Proc. SPIE, volume 8672,
pages 86721M—-86721M. International Society for Optics and Photonics, 2013.
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