4 research outputs found

    Advances in Concurrent Motion and Field-Inhomogeneity Correction in Functional MRI.

    Full text link
    Head motion and static magnetic field (B0) inhomogeneity are two important sources of image intensity variability in functional MRI (fMRI). Ideally, in MRI, any deviation in B0 homogeneity in an object occurs only by design. However, due to imperfections in the main magnet and gradient coils, and, magnetic susceptibility differences in the object, undesired B0 deviations may occur. This causes geometric distortion in Cartesian EPI images. In addition to spatial shifts and rotations of images, head motion during an fMRI experiment may induce time-varying field-inhomogeneity changes in the brain. As a result, correcting for motion and field-inhomogeneity effects independently of each other with a static field map may be insufficient, especially in the presence of large out-of-plane rotations. Our primary concern is the correction of the combined effects of motion and field-inhomogeneity induced geometric distortion in Cartesian EPI fMRI images. We formulate a concurrent field-inhomogeneity with map-slice-to-volume motion correction, and develop a motion-robust dual-echo bipolar gradient echo static field map estimation method. We also propose and evaluate a penalized weighted least squares approach to dynamic field map estimation using the susceptibility voxel convolution method. This technique accounts for field changes due to out-of-plane rotations, and estimates dynamic field maps from a high resolution static field map without requiring accurate image segmentation, or the use of literature susceptibility values. Experiments with simulated data suggest that the technique is promising, and the method will be applied to real data in future work. In a separate clinical fMRI project, which is independent of the above work, we also formulate a current density weighted index to quantify correspondence between electrocortical stimulation and fMRI maps for brain presurgical planning. The proposed index is formulated with the broader goal of defining safe limits for lesion resection, and is characterized extensively with simulated data. The index is also computed for real human datasets.Ph.D.Electrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/60787/1/tbyeo_1.pd

    Issues in the processing and analysis of functional NIRS imaging and a contrast with fMRI findings in a study of sensorimotor deactivation and connectivity

    Get PDF
    Includes abstract.~Includes bibliographical references.The first part of this thesis examines issues in the processing and analysis of continuous wave functional linear infrared spectroscopy (fNIRS) of the brain usung the DYNOT system. In the second part, the same sensorimotor experiment is carried out using functional magnetic resonance imaging (fMRI) and near infrared spectroscopy in eleven of the same subjects, to establish whether similar results can be obtained at the group level with each modality. Various techniques for motion artefact removal in fNIRS are compared. Imaging channels with negligible distance between source and detector are used to detect subject motion, and in data sets containing deliberate motion artefacts, independent component analysis and multiple-channel regression are found to improve the signal-to-noise ratio

    Image Based Biomarkers from Magnetic Resonance Modalities: Blending Multiple Modalities, Dimensions and Scales.

    Get PDF
    The successful analysis and processing of medical imaging data is a multidisciplinary work that requires the application and combination of knowledge from diverse fields, such as medical engineering, medicine, computer science and pattern classification. Imaging biomarkers are biologic features detectable by imaging modalities and their use offer the prospect of more efficient clinical studies and improvement in both diagnosis and therapy assessment. The use of Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) and its application to the diagnosis and therapy has been extensively validated, nevertheless the issue of an appropriate or optimal processing of data that helps to extract relevant biomarkers to highlight the difference between heterogeneous tissue still remains. Together with DCE-MRI, the data extracted from Diffusion MRI (DWI-MR and DTI-MR) represents a promising and complementary tool. This project initially proposes the exploration of diverse techniques and methodologies for the characterization of tissue, following an analysis and classification of voxel-level time-intensity curves from DCE-MRI data mainly through the exploration of dissimilarity based representations and models. We will explore metrics and representations to correlate the multidimensional data acquired through diverse imaging modalities, a work which starts with the appropriate elastic registration methodology between DCE-MRI and DWI- MR on the breast and its corresponding validation. It has been shown that the combination of multi-modal MRI images improve the discrimination of diseased tissue. However the fusion of dissimilar imaging data for classification and segmentation purposes is not a trivial task, there is an inherent difference in information domains, dimensionality and scales. This work also proposes a multi-view consensus clustering methodology for the integration of multi-modal MR images into a unified segmentation of tumoral lesions for heterogeneity assessment. Using a variety of metrics and distance functions this multi-view imaging approach calculates multiple vectorial dissimilarity-spaces for each one of the MRI modalities and makes use of the concepts behind cluster ensembles to combine a set of base unsupervised segmentations into an unified partition of the voxel-based data. The methodology is specially designed for combining DCE-MRI and DTI-MR, for which a manifold learning step is implemented in order to account for the geometric constrains of the high dimensional diffusion information.The successful analysis and processing of medical imaging data is a multidisciplinary work that requires the application and combination of knowledge from diverse fields, such as medical engineering, medicine, computer science and pattern classification. Imaging biomarkers are biologic features detectable by imaging modalities and their use offer the prospect of more efficient clinical studies and improvement in both diagnosis and therapy assessment. The use of Dynamic Contrast Enhanced Magnetic Resonance Imaging (DCE-MRI) and its application to the diagnosis and therapy has been extensively validated, nevertheless the issue of an appropriate or optimal processing of data that helps to extract relevant biomarkers to highlight the difference between heterogeneous tissue still remains. Together with DCE-MRI, the data extracted from Diffusion MRI (DWI-MR and DTI-MR) represents a promising and complementary tool. This project initially proposes the exploration of diverse techniques and methodologies for the characterization of tissue, following an analysis and classification of voxel-level time-intensity curves from DCE-MRI data mainly through the exploration of dissimilarity based representations and models. We will explore metrics and representations to correlate the multidimensional data acquired through diverse imaging modalities, a work which starts with the appropriate elastic registration methodology between DCE-MRI and DWI- MR on the breast and its corresponding validation. It has been shown that the combination of multi-modal MRI images improve the discrimination of diseased tissue. However the fusion of dissimilar imaging data for classification and segmentation purposes is not a trivial task, there is an inherent difference in information domains, dimensionality and scales. This work also proposes a multi-view consensus clustering methodology for the integration of multi-modal MR images into a unified segmentation of tumoral lesions for heterogeneity assessment. Using a variety of metrics and distance functions this multi-view imaging approach calculates multiple vectorial dissimilarity-spaces for each one of the MRI modalities and makes use of the concepts behind cluster ensembles to combine a set of base unsupervised segmentations into an unified partition of the voxel-based data. The methodology is specially designed for combining DCE-MRI and DTI-MR, for which a manifold learning step is implemented in order to account for the geometric constrains of the high dimensional diffusion information
    corecore