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1

Introduction

Medical imaging is arguably one of the most impacting technologies in modern so-
ciety. Its mostly noninvasive nature has substantially contributed to improve the
quality of experience in disease prevention and treatment [65]. Medical Imaging
gives support to the medical diagnosis, medical treatment or follow-up as well as
to medical and biological research. Currently, it is a solid part of electronic medical
systems and it is pervasive across medical institutions including health services,
hospitals, universities and research centres. Medical imaging has contributed to
improve illness diagnosis and treatment across a wide range of conditions. With
the advent of MRI and CT technology, which involve digital computing and ad-
vanced electronics, a quantum leap in medical imaging technology was made and
a new branch in science was born: digital medical imaging. It embraces several ar-
eas of science and technology including, conventional medicine, electronics, digital
image and signal processing. The latter is fundamental in modern medical imaging
since it contributes to the automatic enhancement of sensed information and more
critically to its understanding. Different tasks have been automated with differ-
ent degrees of success. Several techniques have been applied to these automated
tasks, which cover some domains including signal processing, statistics, pattern
recognition and machine learning. One of the main advantages of machine learning
methods is that they are able to automatically find non-obvious, complex relation-
ships between data that, otherwise, are usually found by an extensive knowledge
of the problem. Generalization models can then be much more easily inferred from
these relationships [65]. The successful analysis and processing of medical imaging
data is a multidisciplinary work that requires the application and combination of
knowledge from diverse fields, such as medical engineering, medicine, computer
science and pattern recognition and classification.

In this framework the overall objective of this thesis is to investigate non-
supervised processing techniques for classification of image based biomarkers, with
special emphasis on clinical application for diagnosis and therapy assessment, par-
ticularly related to cancerous tissue.

The word biomarker can be defined as any detectable biological feature or
parameters that provides information about its source. More specifically it is used
to denote anatomic, physiologic, biochemical, or molecular parameters detectable
with imaging methods used to establish the presence or severity of disease. By this
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definition, much of imaging can be thought of as a biomarker, and certainly MR
methods fall in to this definition. However, the utility of an imaging biomarker,
especially in decision making about cancer and its treatment, requires more than
detection; it requires understanding of the methods strengths and weaknesses.

The development and use of biomarkers offer the prospect of more efficient
clinical studies and improvement in both diagnosis and therapy assessment [168].
As a general term, it applies to all detection modalities. An imaging biomarker is a
biological feature detectable by imaging modalities. In the medical context it refers
to a feature of an image that represents a particular aspect of the patient under
the imaging procedure. Successful use of biomarkers is most likely when [158]:
(a) the presence of an imaging marker is closely linked with the presence of a
target disease; (b) detection and/or measurement of the biomarker is accurate,
reproducible, and feasible over time; and (c) measured changes are closely linked
to success or failure of the therapy being evaluated.

Imaging biomarkers are often based on the morphology, physiology or metabolism
and can include examples such as the following:

• Morphology: tumor diameter, volume, lesion number, tumor burden, infiltra-
tion, texture (e.g. solid, necrotic).

• Physiology: tissue vascularity/perfusion, microvascular permeability (angio-
genic activity), diffusivity.

• Metabolism: bone scintigraphy, PET/SPECT, MR spectroscopy, biochemical
markers.

With respect to cancer research and therapy, the most important imaging
biomarkers are related to angiogenesis, the process by which tumors develop a
circulatory blood supply, which results in the development of vascular networks
that are both structurally and functionally abnormal. Despite it’s growing ac-
ceptance and support, the various analysis methods employed have considerable
influence on the interpretation of derived parameters and their value as potential
biomarkers.

1.1 Objectives

Among the different possible scenarios, this thesis will focus on Magnetic Reso-
nance Imaging (MRI) modalities, with particular emphasis on Dynamic Contrast-
Enhanced MRI (DCE-MRI) and Diffusion MRI. The overall objective consists in
(i) to propose new processing methodologies for the integration of different MRI
modalities, (ii) to identify, extract and characterize features and metrics allowing a
good data representation of the multi-parametric MRI volumes, (iii) to implement
unsupervised pattern recognitions tools enabling the classification/characterization
of tissues, and (iv) to validate the results from both the technical and clinical per-
spective.

The main approach to be investigated in this work is the the classification
through similarity/dissimilarity representations, a novel approach to pattern recog-
nition in which objects are characterized by relations to other objects instead of
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by using features. This dissimilarity representation may be well suited for medi-
cal imaging and able to represent the relationship among the (multidimensional,
multimodal) data at hand. The application of these pattern recognition techniques
to the field of medical imaging follows the idea of getting close to the subjective
way a human medical expert explicitly recognize characteristics and classify new
images judging similarities from an ideal prototype.

It is worth mentioning that our data cover a wide spectrum of types such as
scalars, tensors and temporal series. The project will mostly deal with brain and
breast, even though other data could also be considered.

The thesis is organized as follows:

Chapter 2 Background on relevant MRI modalties. Due to the central role
played by diffusion imaging in this thesis, in this chapter the dif-
ferent acquisition techniques and their potential applications are
briefly illustrated. Furthermore, an introduction to DCE-MRI is
presented, as well as details on the information processing models.

Chapter 3 In this chapter the relevant information of unsupervised classifica-
tion is described. We start focusing on the important issue of data
representation, followed by unsupervised classification and cluster
ensembles. The chapter ends with the issue of validation in unsu-
pervised classification.

Chapter 4 Here the principal approaches for multi-modal MRI data combina-
tion are reviewed. At the end of the chapter we make an overview
of the proposed methodologies that will be detailed in the next
chapters.

Chapter 5 This chapter proposes two strategies for the clinical assessment of
heterogeneity inside tumoral lesions. As a case study we present
results obtained with real clinical datasets of breast ductal car-
cinoma, evaluated both by comparison to a typical feature-based
approach as well as by their clinical significance assessed by med-
ical experts.

Chapter 6 In the last methodological chapter we present a multi-view ap-
proach to multi-modal MRI combination. This method is described
and analyzed with synthetic datasets.

Chapter 7 Conclusions and future perspectives.
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1.2 Summary of main contributions

The main contributions of this thesis are the following:

• A protocol for the multi-modal integration of the information provided by
multi-modal MRI using a combined dissimilarity vectorial space. This protocol
was shown and validated for DCE-MRI and DWI-MR for evaluating tumor
heterogeneity.

• The use of the dissimilarity-based representation paradigm to overcome the
limitations imposed by the dissimilar nature of multi-modal MRI.

• A study with clinical datasets of breast ductal carcinoma, assessed from the
methodological point of view as well as by medical experts.

• The extension of the multi-view notion, which served to formulate a novel
approach for multi-modal MRI fusion for unsupervised classification, shown
with DTI-MR and DCE-MRI.

• The integration of manifold learning techniques to account for the complex
high-dimensional geometric structure of the Diffusion Tensor Imaging data.

• The use of Cluster Ensembles as an alternative to the problem of multi-modal
data fusion.
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Principles of MRI and imaging applications

2.1 Overview

In order to better expose the contribution of our work we provide in this chapter
the theoretical basics of the principal MRI modalities we will use in subsequent
chapters; Diffusion MRI and Dynamic Contrast-Enhanced MRI. Furthermore, we
discuss the application of these concepts to the acquisition of MR images, high-
lighting the potentialities as well as the limits of the different techniques.

This Chapter is essentially subdivided into 3 parts. In the first sections we
overview the physics of diffusion and the mathematical aspects behind the ac-
quisition of diffusion MR images. In the second part we concentrate more on the
applicability of diffusion MRI to medical investigations, by highlighting its im-
portance and impact in the clinical practice. In this part we also highlight the
limitation of the current clinically used methods, i.e. Diffusion Weighted (DWI)
and Diffusion Tensor Imaging (DTI), by investigating the problems first from the
practical point of view and then by going back to the mathematical framework
with the formal description of the solutions proposed in literature to overcome
these limitations. We conclude the Chapter with a section dedicated to Dynamic
Contrast-Enhanced MRI in which we detail its utility and the challenges derived
from the different processing techniques. We make emphasis on the two main ap-
proaches; pharmacokinetic modelling and semi-quantitative voxel-wise analysis.

2.2 Diffusion MRI

2.2.1 Basis of the Diffusion phenomenon

Diffusion is an essential physical process for the normal functioning of living sys-
tems. For example, the transport of metabolites into cells is facilitated by diffusion.
This phenomenon, omnipresent in the water in living tissue, has the potential,
through diffusion-weighted magnetic resonance imaging, to provide insights into
cell physiology, cell structure and potentially the connections of the living human
brain.

Diffusion is a mass transport process arising in nature, which results in molec-
ular or particle mixing without requiring bulk motion. Diffusion should not be
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confused with convection or dispersion, which are different transport mechanisms
that require bulk motion to carry particles from one place to another. Imagine
carefully introducing a drop of colored fluorescent dye into a jar of water. Initially,
the dye appears to remain concentrated at the point of release, but over time it
spreads radially, in a spherically symmetric profile. This mixing process takes place
without stirring or other bulk fluid motion.

2.2.2 Fick’s Law

The physical law that explains this phenomenon is called Ficks first law, which
relates the diffusive flux to any concentration. Given a local concentration of par-
ticles n(r, t), Fick suggested that the flux of particles J may be written

J = −D∇n(r, t) (2.1)

where the constant of proportionality, D, is called the “diffusion coefficient”.
Total particle number number conservation requires that the time rate of change
of n(r, t) is simply related to the local flux divergence, − ∂

∂nJ = ∂n
∂t , leading to

∂n

∂t
= D∇2n (2.2)

Equations 2.1 and 2.2 are known respectively as Fick’s first and second laws.
As illustrated in Figure 2.1, Ficks first law embodies the notion that particles

flow from regions of high concentration to low concentration (thus the minus sign
in equation 2.1) in an entirely analogous way that heat flows from regions of
high temperature to low temperature, as described in the earlier Fouriers law of
heating on which Ficks law was based. In the case of diffusion, the rate of the flux
is proportional to the concentration gradient as well as to the diffusion coefficient.
Unlike the flux vector or the concentration, the diffusion coefficient is an intrinsic
property of the medium, and its value is determined by the size of the diffusing
molecules and the temperature and microstructural features of the environment.
The sensitivity of the diffusion coefficient on the local microstructure enables its
use as a probe of physical properties of biological tissue. On a molecular level
diffusive mixing results solely from collisions between atoms or molecules in the
liquid or gas state. Another interesting feature of diffusion is that it occurs even
in thermodynamic equilibrium, for example in a jar of water kept at a constant
temperature and pressure. This is quite remarkable because the classical picture of
diffusion, as expressed above in Ficks first law, implies that when the temperature
or concentration gradients vanish, there is no net flux. There were many who held
that diffusive mixing or energy transfer stopped at this point. We now know that
although the net flux vanishes, microscopic motions of molecule still persist; it is
just that on average, there is no net molecular flux in equilibrium.

2.2.3 The propagator description

There are two ways to begin with, in order to describe basic diffusion [67]: either a
phenomenological approach starting with Ficks laws and their mathematical solu-
tions, as we have described above, or a physical and atomistic one, by considering
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Fig. 2.1: According to Ficks first law, when the specimen contains different regions
with different concentrations of molecules, the particles will, on average, tend to
move from high concentration regions to low concentration regions leading to a
net flux (J).

the “random walk” of the diffusing particles. While this last approach was rather
straightforward in gases thanks to Maxwells kinetic theory of gases, the first one
follows the historical development of diffusion studies in solid materials under a
gradient of chemical potential. People began to be concerned with an atomic scale
approach first of all with the electrical conductivity of ionic crystals, and later
with the Kirkendall effect which was observed in several inter-diffusion systems.
As diffusion processes depend on atom (ion) jumps whose occurrence is dictated
by atomic defects (vacancies or interstitials), a description based on atom move-
ments became compulsory. The never-ending movement of particles in suspension
in a fluid was discovered by a Scottish botanist, Robert Brown, who was observing
with his microscope the “swarming” motion in the fluid of small particles extracted
from living pollen grains. He noticed that this motion was quite general in fresh
pollen grains, as well as in dried ones. Browns experiments revealed such motion
to be a general property of matter in this state. The name “Brownian motion” has
been coined in honor of Brown to qualify the random walk of microscopic particles
in suspension in a fluid.
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The mathematical form of Brownian motion was derived a little bit later (in
1905) by Albert Einstein. He was the first to understand, contrarily to many sci-
entists of his time, that the basic quantity was not the average velocity of the
particles, but their mean square displacement in a given time. Trajectories are
such that velocity is meaningless. Einstein, who was unaware of Browns observa-
tion and seeking evidence that would undoubtedly imply the existence of atoms,
came to the conclusion that “bodies of microscopically visible size suspended in
a liquid will perform movements of such magnitude that they can be easily ob-
served in a microscope” [45] . Einstein used a probabilistic framework to describe
the motion of an ensemble of particles undergoing diffusion, which led to a co-
herent description of diffusion, reconciling the Fickian and Brownian pictures. He
introduced the “displacement distribution” for this purpose, which quantifies the
fraction of particles that will traverse a certain distance within a particular time-
frame, or equivalently, the likelihood that a single given particle will undergo that
displacement. In this sense, he rewrote Fick’s laws for the diffusion of molecules
in a concentration gradient, in terms of diffusion under probability gradients. This
step enabled a description of Brownian motion as a stochastic process, but one
in which the probability densities obeyed differential equations. The key tool in
this description is the conditional probability P (r|r′, t) that a particle starting at
r at time zero will move to r′ after a time t. Combined with the local particle
concentration n(r, t) one may write

n(r′, t) =

∫
n(r, 0)P (r|r′, t)dr. (2.3)

Since n(r′, t) obeys the Fick’s law diffusion equation for arbitrary initial condi-
tion n(r, 0), the conditional probability also obeys the partial differential equation

∂

∂t
P (r|r′, t) = D∇2P (r|r′, t), (2.4)

where ∇ is taken to operate on the primed spatial coordinates. Given the initial
condition where molecules start at r, P (r|r′, 0) = δ(r′−r), the solution to Equation
2.4 is the Gaussian

P (r|r′, t) = (4πDt)−3/2 exp

(
− (r′ − r)2

4Dt

)
. (2.5)

At this point we introduce the idea of an ensamble, the set of all replicas of the
system (for example, the molecule under consideration) representing each of the
accessible states. Hence, we may define the ensemble average, < A >, of some
property A, as

< A >=
∑
s

P (s)A(s) (2.6)

where s represents a possible state of the system in the ensemble and P (s) is
the probability of that state. The Gaussian nature of the conditional probabilty
for self-diffusion, represented by Equation 2.4, leads to the important result

< (r′ − r)2 >= 6Dt (2.7)
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that in one dimension becomes < (x′ − x)2 >= 2Dt. This is known as the
Einstein equation for diffusion.

It is to be noted that Equation (2.4) is true only for an isotropic medium,
where the diffusion is indeed a simple scalar property. In anisotropic media, it is
necessary to define a diffusion tensor and rewrite the differential equation

∂

∂t
P (r|r′, t) = ∇ · [D∇P (r|′, t)] . (2.8)

where D is known as the diffusion tensor. This diffusion tensor is a 3 × 3
symmetric positive definite matrix that characterizes diffusion in 3D, it describes
how the particle flux in any direction is related to the directional probability
gradients.

2.2.4 Adding Diffusion Weighting to a pulse sequence

MRI exploits the fact that the human body is mainly constituted by water
molecules, and each molecule has two hydrogen protons. When the scanner ap-
plies a powerful magnetic field, the magnetic moments of some of these protons
change, aligning with the direction of the magnetic field. A radio frequency is then
briefly applied, producing an electromagnetic field, causing the flip of the spin of
the aligned protons in the body. After the field is turned off, the protons decay to
the original state and the difference in energy between the two states is released
as a radio frequency photon. These photons produce the electromagnetic field de-
tected by the scanner. Additional magnetic fields are applied in order to make the
field strength depend on the position within the scanned subject, thus making the
frequency of the released photons dependent on the position. An image can be
constructed since the protons in different tissues return to their equilibrium state
at different rates [137].

Almost any MRI impulse sequence can be modified to become sensitive to
diffusion. The basics for diffusion weighted were introduced by Stejskal and Tanner
[173]. After excitation and before signal sampling, application of a bipolar gradient
adds to each spin’s precession a positive phase proportional to its average position
(along the direction of the gradient) during the first gradient lobe, and a negative
phase proportional to its average position during the second lobe. The sum of this
phases is related to the difference between these two positions. As shown in Fig.
2.2, the bipolar gradient has no net effect on spins which do not move, i.e. low
diffusion regions; they are completely “in phase” after its application.

As shown in Fig. 2.2, if there is spin displacement as a result of Brownian mo-
tion, i.e. we are in a high diffusion region, the signal A is attenuated exponentially
by the product of the diffusion coefficient D and a factor b which is a function of
the diffusion weighting gradients [107], i.e. for rectangular gradients

A =
Sg
S0

= exp(−bD), (2.9)

where
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Fig. 2.2: Illustration of the effect of a bipolar gradient on spin phase. After excita-
tion, spins are in-phase. With the application of a positive gradient, the spins ex-
perience a stronger magnetic field (blue) to the (e.g.) right, and a weaker magnetic
field (shown in orange) to the (e.g.) left. This creates an increase in precessional
frequencies of spins on the right compared to that of spins on the left, and spins
accrue a phase proportional to their left-right position. When the positive gradi-
ent is turned off, all spins precess at the same frequency, but retain their relative
phases. The net magnetization is negligible at this time due to phase incoher-
ence of spins. A negative gradient reverses the direction of the spins precessional
frequency change, resulting in an equal but opposite phase proportional to their
left-right position. In the absence of displacement, i.e. in low diffusion regions,
between the first and second gradient lobes, there is no net effect on spin phase,
net magnetization, or pixel brightness. In high diffusion regions, when the second
gradient is applied, it removes much of the dephasing, but magnetization recovery
is incomplete due to diffusion-induced displacement during the bipolar gradient
application. Spins in regions with high diffusion have greater phase incoherence
and signal loss than spins in regions with low diffusion, as shown in the central
bars.
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b = (γG∆)2(∆− δ/3), (2.10)

S0 is the signal intensity without the diffusion weighting b = 0, Sg is the signal
with the gradient g, λ is the gyromagnetic ratio, G is the strenght of the gradient
pulse, δ is the duration of the pulse and ∆ is the time between the two diffusion-
weighting pulses.

2.2.5 Anisotropic diffusion

As we have briefly introduced earlier in this Chapter, while diffusion is a three
dimensional process, the molecular mobility may not be the same in all directions.
This anisotropy may be due to the physical arrangement of the medium or to the
presence of obstacles that impede diffusion in some directions. The result is that
diffusion appears different when gradients are put in different directions.

The proper way to address anisotropic diffusion is to consider the diffusion
tensor. Diffusion is no longer characterized by a single scalar coefficient but by a
symmetric tensor, D, a 3× 3 symmetric positive definite matrix, which describes
molecular mobility along each axis and correlation between displacements along
these axes:

D =

Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 (2.11)

The motivations behind the symmetry of the diffusion tensor are related to the
fact that in the virtual reference frame {x′, y′, z′} that coincides with the principal
or main directions of diffusivity, the off-diagonal terms do not exist and the tensor
is reduced only to its diagonal terms, Dx′x′ , Dy′y′ , Dz′z′ , which represent molecular
mobility along virtual axes x′, y′, and z′, respectively. The signal attenuation A
then becomes:

A = exp(−bx′x′Dx′x′ − by′y′Dy′y′ − bz′z′Dz′z′) (2.12)

where bij are the elements of matrix b (which now replaces the b − value)
expressed in the coordinates of this reference frame.

In practice, however, measurements are made in the reference frame [x, y, z] of
the gradients, which usually does not coincide with that of the tissue. Therefore,
one must must also consider the coupling of non-diagonal terms, Dij , (i 6= j), of
the diffusion tensor (now expressed in the gradient frame), which reflect correla-
tion between molecular displacements in perpendicular directions [13]. Therefore
Equation (2.12) becomes:

A = exp(−
∑

i=x,y,z

∑
j=x,y,z

bijDij) (2.13)

2.2.6 Geometric representation of the diffusion tensor

An intuitive way to understand the meaning of D is to perform various thought
experiments in which we follow the Brownian motion for an ensemble of “tagged”
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water molecules released from the center of a voxel. If we imagine performing this
experiments in a jar of water, the rate of diffusive transport will be the same in
all directions. Diffusion is then said to be isotropic and is completely specified by
a single scalar diffusion constant, D. This, diffusion isotropy describes the case in
which the molecular diffusivity is independent of the medium’s orientation. For a
diffusion time, ∆, the translational displacement distribution is spherically sym-
metric, and surfaces of constant probability or water concentration are concentric
spheres. When considering the Einstein equation 2.7, we can construct a sphere
whose radius equals the root-mean-squared (rms) displacement of water molecules
after diffusion time ∆, a graphical representation of which can be found in the
first gliph of Fig. 2.3.

If we now perform the same experiment in a liquid crystalline medium or a sys-
tem with microscopically aligned rods, the rate of diffusive transport will no longer
be the same in all directions. Diffusion anisotropy implies that the translational
displacement probability of the diffusing species is now biased, depending on the
medium orientation. In homogeneous, i.e. spatially uniform, anisotropic media, the
voxel-averaged displacement distribution is given by:

P (r|r′, t) = (4π|D|t)−3/2 exp

(
−
[
(r′ − r)2

]T
D−1(r′ − r)2

4t

)
(2.14)

where (r′ − r) is the displacement, and |D| is the determinant of D. The
covariance matrix characterizes the shape of the displacement distribution.

In order for Equation (2.14) to tend to zero for large displacements, all
quadratic forms of the diffusion tensor have to be positive, i.e. D has to be a
positive definite matrix. Then this equation describes a three-dimensional ellip-
soid in displacement space, call the “diffusion ellipsoid” [11], whose size, shape,
and orientation embody important features of anisotropic gaussian diffusion. The
shape of diffusion can be easily visualized with these ellipsoidal glyphs (squished
or stretched spheres). Figure 2.3 illustrates diffusion as anisotropic (cigar shaped),
as a planar shaped and isotropic, visualized as a sphere.

The DT can be decomposed, by eigenanalysis, into eigenvalues λ1 ≥ λ2 ≥
λ3 ≥ 0 and corresponding eigenvectors ε1, ε2, ε3. The first vector gives the prin-
cipal direction of diffusion, the other two span an orthogonal plane to it and the
eigenvalues quantify the diffusivity in these directions. When λ1 � λ2, ε1 is aligned
with the preferred diffusion direction of the water molecules in that voxel, and λ1
is its diffusivity (Fig. 2.4).

If the diffusion coefficient of water at body temperature is a constant, then
how can we use it to garner information about tissue microstructure? The answer
lies in Einstein equation (2.7), which says that the mean squared displacement
is directly proportional to the observation time. We do not measure a diffusion
coefficient directly with diffusion MRI. Rather, we infer the diffusion coefficient
from observations of the displacements over a given time period. If the diffusing
water molecules encounter any hindrances along their random walk, such as cell
membranes and macromolecules, the mean squared displacement per unit time
will be lower than when observed in “free” water. Thus, when we apply Einstein
equation to compute the diffusion coefficient, it will appear that the diffusion
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Fig. 2.3: The three stereotypes of Gaussian diffusion in 3D, visualized with ellip-
soidal isoprobability surface glyphs with a) isotropic, b) linear or c) planar shape.
In DTI, all diffusion shapes are spanned by an interpolation between these three
types [137].

Fig. 2.4: The three stereotypes of Gaussian diffusion in 3D, visualized with ellip-
soidal isoprobability surface glyphs with a) isotropic, b) linear or c) planar shape.
In DTI, all diffusion shapes are spanned by an interpolation between these three
types [137].

coefficient is lower [186]. Thus, we refer to the apparent diffusion coefficient, most
frequently abbreviated to “ADC” [19]. The effect of such hindrance in tissue is
to make the average apparent diffusion coefficient about four times smaller than
in free water. For what concerns the acquisition of this kind of images, diffusion-
weighted MR sequences are made sensitive to diffusion by the addition of magnetic
field gradients, i.e. the magnetic field is made to vary in a linear manner over the
volume of interest.

2.2.7 The set of positive definite matrices as a Riemannian manifold

Positive definite matrices are symmetric matrices with the restriction that their
eigenvalues have to be positive. This restriction can be translated into constraints
on the values that the entries of the matrix can take. For illustration, let

X =

(
a c
c b

)
(2.15)
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be a 2× 2 symmetric matrix. X is positive definite if and only if the diagonal
elements are positive (a > 0, b > 0) and the determinant is positive (ab− c2 > 0).
The set of triplets (a, b, c) that result in positive definite matrices is an open subset
of R3 and has the shape of a cone. This is illustrated in Figure 2.5. Valid triplets
(a, b, c) lay inside the cone. For example, the matrices X1 = diag(1, 0.1) and X2 =
diag(0.1, 1) are represented by the triplets (0.9, 0.1, 0) and (0.1, 0.9, 0) respectively.
Notice that the cone is convex, so interpolation between any two points of the
cone is permitted. This implies averages of positive definite matrices are positive
definite, as illustrated by the midpoint point X = diag(0.5, 0.5). Extrapolation,
however, might result in matrices that are not positive definite: in Figure 2.5, the
straight line connecting X1 and X2 extends beyond the boundaries of the cone.

By means of log transformations taking into account the Riemmanian geometry
and constrains [163], a straight line can be traced in the log-space and then taking
the matrix exponential results in the hyperbola connecting X1 and X2. This
hyperbola is entirely inside the cone by definition. The midpoint of this line is
X̆ = diag(0.3, 0.3). For positive numbers, the exponential of the average of the
logs of two numbers is the same as the geometric mean. Analogously, X̆ can be
thought of as a geometric mean of X1 and X2.

Both the pure straight line and the hyperbola are “straight lines”, depending
on whether it is traced directly or on the log-space. In fact, both lines are geodesics
corresponding to two different geometries defined on the cone. A thorough geomet-
ric review of the properties of Diffusion Tensors is presented by Schwartzman [163]
and Fletcher [52].

2.3 Applications: diffusion in neural tissue

MRI is a powerful tool for diagnosis of brain disorders and for neuroscience research
because of the variety of water properties that can be used to create unique image
contrast. In most cases, the contrast due to variable water properties (e.g. T1,
T2, magnetization transfer, etc.) that result from interactions of the water with
the surrounding macromolecular environment yields an indirect or nonspecific in-
dicator that there is something different about a given tissue (e.g. pathological
versus normal, white matter versus grey matter, etc.). One such molecular prop-
erty amenable to MRI measurement and quantification is diffusion, which refers
to the random, thermally induced “mobility” or Brownian motion of a molecule
over time. The diffusing water molecule samples and interacts with the local en-
vironment, and thus, by measuring the degree and direction of water motion, the
structure can be inferred. For example, if the water encounters highly ordered bar-
riers such that the distance traveled in one direction is greater than that in another
direction in the same amount of time, the diffusion is said to be anisotropic. This
fundamental property of anisotropic water diffusion is the physical basis behind
the utility of diffusion tensor imaging (DTI) in the brain. Although DTI have led
to numerous findings of diffusion parameter differences in distinct brain regions
of patient populations versus control subjects, often in regions where conventional
MRI is not different, the physical interpretation of the diffusion changes is not
straightforward. This is particularly true in most clinical studies where there is no
access to pathological specimen comparison.
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Fig. 2.5: The cone of 2× 2 positive definite matrices [163].

2.3.1 Water mobility as a probe of tissue microstructure

Aa early mentioned in this Chapter, molecules can either diffuse equally in all
directions, known as isotropic diffusion, or they can diffuse preferentially along
a particular direction or axis, known as anisotropic diffusion. Isotropic diffusion
occurs if there a re no barriers to diffusion (e.g. in pure liquid) or if the barriers are
randomly oriented, whereas anisotropic diffusion occurs when there are barriers
that impede diffusion in certain directions while favoring movement of water along
others. Thus the directionality, or lack thereof, of water diffusion can be used as
an indirect marker of the status (“integrity”) of the tissue microstructure.

A key concept of this physical phenomenon is that there is enough time for
the diffusing molecules to sample the environment. We have to recall that the
Einstein equation 2.7 relates the root mean squared displacement of the molecules
with both the diffusion coefficient and the time given for diffusion. At the limit
time of very short diffusion times, the molecules do not have time to experience
any barriers, hence measurement of their diffusion does not give any indication of
their environment. In this case, the mobility of the molecules is a function of the
intrinsic diffusion coefficient of the molecule in that solution and the temperature
(i.e. energy source for diffusion) (Fig. 2.6). On the other hand, if there is sufficient
time for the water molecules to interact with their surroundings, such as the cel-
lular components in tissue that reduce the distance traveled, then the structure
can be inferred by measuring the molecular displacement in multiple directions
(Fig. 2.6). In this case, MRI measures the apparent diffusion coefficient (ADC)
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- apparent because the intrinsic molecular mobility is reduced by these further
interactions with the tissue microstructure. At some point, the molecular mean
squared displacement may not increase even when using longer diffusion times
since the structure does not permit the molecules to travel further (Fig. 2.6).

This “diffusion time” is readily controlled in MRI measurements by the time
between the two diffusion-sensitizing gradients; however, the smallest achievable
diffusion time for a requisite b-value reflecting the diffusion sensitivity of the pulse
sequence is limited by the maximum gradient strength (see Equation 2.10). In most
clinical MRI scanner diffusion experiments, the diffusion time is on the order of 40
ms, which corresponds to an root mean squared monodimensional displacement of
∼ 8µm for water diffusion in the brain, assuming ann ADC of 0.8x10−3mm2/s.
Free water at 37◦C diffuses ∼ 15µm in 40 ms. As most microstructure within the
brain are smaller than these dimensions (e.g. axons are on the order of several µm
in diameter), it is clear that MRI (at least in human scans) cannot measure the
intrinsic diffusion of water in the brain; on the other hand, as mentioned earlier,
this inability is useful because then water diffusion becomes an indicator of the
tissue microenvironment.

In order to measure the degree of anisotropy in a well-aligned neural fiber,
one must measure the ADC parallel and perpendicular to its length, either by
lining up the neural fibers with the gradient axes or by using the tensor model.
For cases in which the fibers can be aligned with the magnetic field gradients of
the MRI scanner, only two measurements are required (this, in fact, was the case
for many early anisotropy studies on excised tissue such as nerve or spinal cord).
However, this simplified and time efficient measurement protocol is not possible
in more complex situations, such as the intact brain, where not all the fibers
can be aligned with the gradient axes. Thus, a minimum of six acquisitions with
sensitizing gradients applied (and a non-diffusion-weighted image, the so-called b0)
must be used to measure the diffusion tensor [11].

The causes or biophysical basis of diffusion anisotropy have not been fully
elucidated, although most investigators ascribe it to ordered, heterogeneous struc-
tures, such as large oriented extracellular and intracellular macromolecules, su-
permacromolecular structures, organelles, and membranes. Clearly, in the central
nervous system (CNS), diffusion anisotropy in white matter is not simply caused
by myelin, since several studies have shown that even before myelin is deposited,
diffusion anisotropy can be measured using MRI [15]. Thus, despite the fact that
increases in myelin are temporally correlated with increases in diffusion anisotropy,
structures other than the myelin sheet must significantly contribute to diffusion
anisotropy. This is important because the degree of diffusion anisotropy is not a
quantitative measure or “stain” of myelin content.

In what follows we briefly overview the clinical applications of the acquisition
method we have described so far, i.e. Diffusion Weighted Imaging (DWI) and
Diffusion Tensor Imaging (DTI), in order to describe their impact in the clinical
practice, but also pointing out their limits and critical aspects. This final conclusion
will lead to the final part of this Chapter, with the description of the emerging
techniques in the field of diffusion imaging.
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Fig. 2.6: (a) The displacements of the water molecules increase equally in all di-
rections in an unhindered environment when more time is permitted for diffusion.
If sufficient time is allowed for the diffusing molecules to be impeded by barri-
ers such as the edges of the sphere (b) and the cylinder (c), then the molecular
displacements give an indication of the shape (and orientation) of the structure.
At some point, the molecular displacements no longer increase with diffusion time
because they are physically restricted from going any further.
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2.3.2 Diffusion Weighted Imaging

When the probability density function of displacement of water molecules is Gaus-
sian, we have from the Stejskal and Tanner equation (Eq. 2.9) the following ex-
pression

Sg
S0

= exp(−b ·ADC) (2.16)

where b is a parameter proportional to the intensity and the duration of the
gradients applied (Eq. 2.10), S0 and S0 are the signal intensities measured with
the lower and higher b-values, respectively, and ADC is the apparent diffusion
coefficient. In other words, there is a single exponential relationship between the
signal and the apparent diffusion coefficient, the coupling factor being the b-factor.
It is important to point out at this stage that this is only true for Gaussian
diffusion.

When this technique, first developed in NMR spectroscopy, is combined with
imaging gradients, the effect is to quantify the apparent diffusion coefficient within
each voxel of the imaged volume. As such, it is possible to obtain quantitative maps
of the apparent diffusion coefficient. In Fig. 2.7 the results of a diffusion weighted
experiments is shown, with the acquisition of the baseline b0 image (a) and a
diffusion weighted image with b = 1000s/mm2 (b). In Fig. 2.7 (c) it is represented
the ADC map obtained by solving, for each pixel, Equation 2.16. Areas of restricted
diffusion in highly cellular areas show low ADC values compared with less cellular
areas that return higher ADC values. It is important to recall that although areas
of restricted diffusion will appear to be higher in signal intensity on the directional
or index DW images, these areas will appear as low-signal intensity areas (opposite
to DW images) on the ADC map.

DWI has greatly improved the evaluation of patients with acute neurologic
deficits. It provides unique information on the physiologic state of the brain. To
date, it has been extremely valuable in detecting acute ischemic infarction at
very early time points and in differentiating acute stroke from a wide variety
of disease processes that resemble acute stroke. It has greatly affected patient
management and may assist in selecting patients for thrombolysis and in evaluating
new neuroprotective agents. It may also prove valuable in a wide variety of other
disease processes [28,66,114,120,162].

Besides its extensive use in neurological applications, from oncology to strokes
and hemorrhages, in the last few years diffusion weighted images are increasingly
acquired not only for the brain but also for other anatomical districts, such as the
breast and the prostate.

2.3.3 Diffusion Tensor Imaging

Microstructure fundamentally affects the apparent diffusion properties of water
and so non-invasive quantification of diffusion acts as a sensitive probe to any
changes in cellular structures that alter the displacement per unit time. Thus, the
introduction of diffusion-weighted imaging was met with great enthusiasm as a non-
invasive method of gaining new contrast within the brain. The most useful clinical
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Fig. 2.7: ADC map reconstruction of diffusion weighted MRI of the head: (a) b = 0,
(b) b = 1000s/mm2, and (c) ADC map calculated as in 2.16

application to date is the use of the diffusion-weighted scan in acute ischemia in
which there is a reduction in the voxel-averaged displacement of water molecules
per unit time, hence a reduction in the apparent diffusion coefficient, therefore less
signal attenuation - and the lesion appears hyperintense [128], even when “con-
ventional” scans (T1-weighted, T2-weighted, FLAIR) are normal. About the same
time as the finding that the ADC was reduced in ischemia, it was observed that, in
certain parts of the cat brain, the ADC that was measured depended strongly on
the direction in which it was measured (i.e. the direction of the applied diffusion
encoding gradient) [129]. These findings confirmed previous ex vivo measurements
in muscle and brain tissue made almost two decades earlier by Hansen [70]. Shortly
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after Moseleys observation in the cat brain, the directional dependence of the ADC
was reported in human white matter [37]. As these observations were initially made
within white matter of the mature adult brain, it was understandably first con-
cluded that diffusion anisotropy is the result of myelin, acting as a hydrophobic
barrier to diffusion [181]. However things are not so straightforward and in fact
anisotropy can be observed when myelin is absent [16].

When the shape of the tissue cells under investigation is not isotropic in our
imaged volume, we can no longer characterize the behavior of the water molecules
adequately with a single apparent diffusion coefficient. The ADC we measure will
depend on the direction in which we measure it. The more constrained along a
preferred direction are the tissue components within the sample, the more the
ADC will depend on the measurement direction. Therefore, we have to look to a
more complex model to characterize diffusion. In this context we can assume the
diffusion tensor to characterize Gaussian diffusion in which the displacements per
unit time are not the same in all directions.

In the white matter, diffusion MRI has already shown its potential in diseases
such as multiple sclerosis [134]. However, DTI offers more through the separation
of mean diffusivity indices, such as the trace of the diffusion tensor, which reflects
overall water content, and anisotropy indices, which point toward fiber integrity. It
has been shown that the degree of diffusion anisotropy in white matter increases
during the myelination process [8], and diffusion MRI could be used to assess
brain maturation in children [207], newborns, or premature babies [76]. Abnormal
connectivity in white matter based on DTI MRI data has also been reported in
frontal regions in schizophrenic patients [167] and in left temporo-parietal regions
in dyslexic patients [24]. The potential of diffusion MRI has also been studied in
brain tumor grading [81], trauma [164] and AIDS [180].

In what follows we overview the methodologies that have been developed in
order to make the most of the information provided by DTI, from scalar indexes
and diffusion tensor fields to fiber tracking and brain connectivity.

Scalar Indexes

Prior to the introduction of the tensor model into diffusion MRI, several indices
for anisotropy of diffusivity were proposed, such as the ratio of ADCs obtained in
two orthogonal directions.

The limitation of such indices can be understood by referring to Fig. 2.8. For the
fibers oriented at 45 degrees to the x− and y−axes, the ratio ADCy/ADCx is equal
to unity, for the fibers oriented along the y−axis, the ratio ADCy/ADCx takes its
maximal value, and for the fibers oriented along the x−axis, the ratio takes its
minimal value. This is, therefore, another example of a measure that is rotationally
variant. Anisotropy indices formed from the eigenvalues of the tensor will, by
definition, be rotationally invariant. The simplest anisotropy index, analogous to
the ratio ADCy/ADCx would be the ratio of the largest to the smallest eigenvalue
(i.e. λ1/λ3). However, it has been shown that sorting the eigenvalues according
to their magnitude introduces a bias in the measurements at low SNRs [146].
To circumvent this problem, indices that do not require sorting [145] have been
proposed and have been shown to be less sensitive to the SNR. A natural choice
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Fig. 2.8: The difference between Dxy, the off-diagonal element of the diffusion
tensor and the ADCxy, the ADC in the xy direction. In (a), the anisotropic
medium is oriented at 45 degrees to both the x- and y-axes. The diffusivity in the
x direction is equal to the diffusivity in the y direction, and displacements along
the two axes are perfectly correlated (reflected by Dxy taking its maximal value).
In (b), with the anisotropic medium aligned with the y-axis, displacements along
the x- and y-axes are no longer correlated and Dxy equals zero. However, the ADC
in the direction [x, y] is not zero. Further, while Dxy can take negative values, the
ADC in the direction [x, y] can, by definition, never take negative values. [89].

is the variance of the three eigenvalues about their mean. As mentioned in the
previous sections, this embodies information from all three eigenvalues, yet does
not require any to be labeled as the largest or smallest. The variance, however,
needs to be normalized to account for regional differences in the overall magnitude
of diffusivity.

The two most popular indices based on this concept are the fractional anisotropy
(FA) and relative anisotropy (RA) [12]:

FA =
3

2

√
(λ1− < λ >)2 + (λ2− < λ >)2 + (λ3− < λ >)2√

λ21 + λ22 + λ23
(2.17)

and

RA =
1

3

√
(λ1− < λ >)2 + (λ2− < λ >)2 + (λ3− < λ >)2

< λ >
(2.18)

where < λ > is one third of the trace of the tensor, which is equivalent to an-
other important measure, the Mean Diffusivity (MD). Conceptually MD is equiv-
alent to the Apparent Diffusion Coefficient (ADC) in DWI-MR. MD is low within
the white matter, whereas, for example in the ventricles, it is high due to the
unrestricted diffusion of the water molecules.

MD =< λ >=
λ1 + λ2 + λ3

3
=
Trace(D)

3
(2.19)
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The FA index normalizes the variance by the magnitude of the tensor as a
whole. The FA index is appropriately normalized so that it takes values from zero
(when diffusion is isotropic) to one (when diffusion is constrained along one axis
only).

Fig. 2.9: Brain fractional anisotropy data collected in axial, coronal, and sagittal
section. The intensity of the image is directly proportional to anisotropy. The CSF
filled regions (sulci and ventricles) and gray matter have low intensity as the self-
diffusion of water is isotropic at the voxel resolution. In the white matter, where
diffusion is more anisotropic, the image appears bright.

The denominator of the RA index is the mean diffusivity. This index is math-
ematically identical to a coefficient of variation, i.e. standard deviation divided by
the mean. To ensure that this index scales from zero to one, an additional scaling
factor of

√
1/2 is needed in front of the expression given above for RA. The most

commonly used anisotropy index in the literature is the FA. Example images show-
ing FA for the brain in axial, coronal, and sagittal planes are presented in Fig. 2.9.
However, it’s worth mentioning that even though measures such as FA and RA are
less sensitive to noise than measures such as λ1/λ3, they are nevertheless sensitive
to noise. As the SNR is lowered, the anisotropy indices become increasingly over-
estimated [145]. In consequence, comparisons of anisotropy indices obtained from
different studies in which different imaging parameters have been used should be
treated with caution.

This measure of overall diffusion rate can be used to delineate the area affected
by a stroke, as demonstrated by Van Gelderen [134]

Diffusion Tensor Fields

In each voxel within an imaging volume we can consider making maps or images
of all of the quantitative parameters described earlier in this chapter. In general,
with this new spatial information, we are now able to characterize fields of diffu-
sion ellipsoid and other tensor-derived quantities within an imaging volume. Some
features involve the spatial rate of change of tensor-derived quantities within the
imaging volume, such as the gradient of < D >. Imaging methods that apply
this idea include direction field mapping, in which the local fiber direction is dis-
played as a vector in each voxel, and fiber tract color mapping, in which a color,
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assigned to a voxel containing anisotropic tissue, is used to signify the local fiber
tract direction [20]. An important achievement of color mapping has been the abil-
ity to identify unambiguously all major commissural, association and projection
pathways in the human brain.

Tractography

Diffusion MR data contains a high quantity of information that has to be pro-
cessed in order to provide maps of fiber tracts. This essential step towards maps
of brain connectivity is called tractography. DTI fiber tractography is a natural
extension of diffusion ellipsoid imaging. In brain regions where the ellipsoid are
prolate, indicative of well ordered white matter fascicles in which the purported
fiber direction is slowly changing from voxel to voxel, we can imagine to connect
the ends of these discrete ellipsoids into an extended object, like a link-sausage or
natural-pearl necklace, depicting the trajectory of a large fiber tract. This process
results in lines or trajectories capturing coherent orientations of maximal diffusion
that are likely to represent real axonal trajectories. The main bottleneck of this
method is that by comparison with invasive techniques, tractography measure-
ments are indirect, difficult to interpret quantitatively, and error prone. In fact
we have to keep in mind that there are several orders of magnitude between the
resolution of the MR acquisitions and the diameter of the axons. Therefore, trac-
tography is only able to map large axonal bundles, and a single fiber produced by
any algorithm is in fact representative of a huge coherent set of real anatomical
trajectories. However, their non-invasive nature and ease of measurement mean
that tractography studies can address scientific and clinical questions that cannot
be answered by any other means.

When going through specialized literature, it is striking to see the huge quantity
of tractography algorithms that have been proposed, demonstrating (i) the great
interest it has raised in the scientific community and (ii) the variety of strategies
proposed to optimally extract information from the diffusion MR images.

All diffusion tractography techniques rely on one fundamental assumption:
when a number of axons align themselves along a common axis, the diffusion
of water molecules will be hindered to a greater extent across his axis than along
it. Since its introduction, several different schemes have been proposed to follow
fiber tracts. The earliest methods proposed for fiber-tract following were determin-
istic. In this so-called streamline approaches, fiber tract trajectories are generated
from the local fiber-tract direction field much in the same way fluid streamlines
are generated from a fluid velocity field. Starting from a “seed point”, fibers are
launched in both directions until some stopping or “termination” criteria are sat-
isfied, such as the FA dropping below its level in background noise. A fiber tract is
the name given to all points along such a continuous trajectory. One disadvantage
of this computational strategy is that errors can accumulate during the tracking
process. In general, it cannot be assured that the trajectories represent actual or
even probable pathways of nerve fibers. This is an important issue that limits the
validation of the whole diffusion MRI analysis and therefore prevents the wide
exploitability in the clinical practice.

The second strategy is the probabilistic one [31]. A seed point is assumed to
be connected to all points within the imaging volume, but the most probable con-
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nections are those that minimize some cost function. This approach holds great
promise in that many paths are explored, but on,y those that are frequently tra-
versed are assigned high likelihood. Of course, a disadvantage of this approach is
that we do not know what physical constraints nature uses to construct nerve path-
ways. The development of probabilistic approaches that do not rely on functional
minimization appear to be quite promising, although further validation studies
still should be performed.

It is important to note that a number of well- documented artifacts in DTI
fiber tractography arise as discrete, coarsely sampled, noisy, voxel-averaged direc-
tion field data [108]. These artifacts can produce “phantom” connections between
different brain regions that do not exist anatomically (a “false positive”), or they
can result in missing anatomical connections that do exist (a “false negative”).
There are usually a number of thresholds and free parameters that can be set in
existing tractography codes whose adjustment can alter one’s findings. Therefore
great care must be exercised in obtaining “anatomical” connectivity with fiber
tractography [106]. Especially clinical users show skepticism when interpreting
such data - less in the coherent primary pathways, but increasingly in finer and
more complex white matter structures.

Structural Connectivity

Structural connectivity refers to the a set of physical or structural (anatomical)
connections linking neural elements. The physical pattern of these anatomical con-
nections may be thought as relatively static at shorter time scales (seconds to
minutes) but may be plastic or dynamic at longer time scales (hours to days) - for
example during development or in the course of learning and synaptic remodeling.
Even if the function of the brain cannot be reduced to its wiring diagram, brain
networks shape patterns of spontaneous and evoked neural activity. Therefore, in
order to better understand how brain networks function, one must first know how
their elements are connected. A principle goal of a comprehensive description of
the structural network of the human brain, the so-called connectome [171], is the
representation of structural brain networks in the form of graphs, collections of
nodes and edges, which allow the quantitative analysis of brain connectivity with
the mathematical tools of network science. The connectome is an approach to
reveal structural principles of brain networks that illuminate brain function, not
merely a database of “what connects to what”. In this direction, the signal gen-
erated by diffusion imaging can provide information about the direction of fiber
tracts within individual voxels of the brain. The spatial resolution of the signal is
limited by the voxel size and could be improved by imaging at higher field strength.
However there are more challenging issues that limit the validation of connectivity
results and limit their use in the clinical practice:

• A more fundamental limitation encountered in DTI is that the diffusion tensor
captures only a single diffusion direction per voxel, which does not account for
crossing fibers.

• Another issue comes from the fact that diffusion MRI and tractography data
are often difficult to validate against more “classical” invasive anatomical tech-
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niques, such as tract tracing [138], and the comparison of the different methods
is still limited to few studies on animals, leaving the validation problem still
open.

• Moreover, in the field of diffusion-based connectivity analysis, a direct compar-
ison of the results obtained in the different studies is made difficult because
of the adoption of different grey-matter parcellation schemes (which define the
network nodes and hence their connections as well) and acquisition methods.

To conclude DTI has brought new possibilities and methods to better un-
derstand the structure of the brain. However proceeding in the analysis of brain
anatomy from the DTI perspective is also showing the limits of this methodolo-
gies, while facing more complex problems and scenarios. In order to face this issues,
especially connected to the regions of the brain characterized by fiber crossings,
several methods have been recently developed. In what follows we briefly describe
the problem of fiber crossing and then we overview the state-of-the-art solutions,
by mainly focusing on Diffusion Spectrum Imaging.

2.4 Dynamic Contrast-Enhanced MRI

Pathological conditions frequently involve the microvasculature and associated
blood flow of the affected tissues. Angiogenesis is a prominent example from cancer
models, for without the development of new blood vessels, tumors are incapable
of growth beyond the diffusion range of oxygen (1), which is a few tenths of a mil-
limeter (11). The growth and decay of the tumor vasculature can therefore provide
information about the response of tumors to therapy, and the use of non-invasive
imaging modalities to probe the microvascular characteristics of tissue is critical to
biomedical research (2). This may be achieved by exploiting the fact that vessels
produced by tumors are often malformed and leaky, resulting in hyperpermeability
to small molecules, such as contrast agents (12), producing signal changes which
may be observed using advanced imaging techniques [151].

Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) is a MRI
methodology using 2D or 3D T1-weighted MR sequences to record the uptake of
Gd-based contrast agents(CA) during and after intravenous administration. It is
achieved by exploiting the T1-shortening effects of contrast agents, while a focus
on the T2*-shortening effects is the basis for Dynamical Susceptibility Contrast
(DSC-MRI). DCE-MRI highlights the dynamic response of the tissue to the inflow
of the agent, which are reflected in a change of contrast in the resulting imaging
volumes. This feature can be missed with a conventional contrast enhanced (CE)
MR image, which is acquired after most of the distribution has been accomplished
and some of the contrast has already been washed out [105].

DCE-MRI with its capability of revealing microvasculature and perfusion in
soft tissues, has been well established as an important non-invasive tool in various
tumor entities [30, 78, 98, 151]. various methods have been proposed to describe
and evaluate the time-intensity curves of contrast agent enhancement, including
qualitative descriptions [98, 104] and pharmacokinetic compartment model-based
quantitative parameters [22,183,184].
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Because of signal intensity enhancing characteristics in the tumor regions and
the capability to noninvasively assess the tumor vascular characteristics, it has
been considered as a potential candidate for an imaging biomarker in the diagnosis
and detection of the tumors. The use of DCE-MRI has been advocated by an
increasing number of investigators studying physiological processes that involve
neoangiogenesis, such as cancer and inflammatory processes. DCE-MRI has been
considered for monitoring the therapy response of the tumors during a variety
of treatment planning including chemotherapy, radiotherapy or anti-angiogenesis
inhibitors treatment [78].

2.4.1 Contrast agents in MRI

MR contrast agents are the chemical compounds introduced to the anatomical or
functional region being imaged in MR, towards the aim of increasing the signal
intensity differences between the different tissues [17, 18]. The most important
requirements of MRI contrast agents include: relaxivity, tissue specificity, exc-
retability and lack of toxicity [19].

MRI contrast agents are not directly visible. The modification of contrast is due
to their effects of shortening the relaxation time T1 or T2 of the hydrogen nuclei
located in their vicinity. The enhanced relaxivities by the metal complex-based
contrast agent must be sufficient to increase the relaxivity of the target tissue.
The dose of complex-based contrast agent should be nontoxic to the patient, and
the contrast agent should increase the relaxation rate at least 10 − 20% to be
detectable by MRI.

Contrast in the MR images depends mainly on the proton spin density and the
T1 (longitudinal) and T2 or T*2 (transverse) relaxation times. These character-
istics contribute to the weighting components that generate the T1-weighted and
T2-weighted images in MR. If the contrast agent reduces time T1 , we observe an
increase in the T1 signal. On the other hand, if it shortens T2 , there will be a
reduction in the T 2 and T*2 signal. The effectiveness of the contrast agent mainly
depends on its capacity to modify relaxation times. Due to these basic principles
of modification of T1 and T2 relaxation times, two main classes of contrast agents
can be distinguished.

MRI contrast agents can be defined of as biotracers or magnetic dyes and
must be biocompatible pharmaceutical and magnetization relaxation probes. The
complexbased contrast agent, if possible, should only localize the targeted tissue
and its compartments in preference to nontargeted regions for better delineation
and diagnosis of the tissues.

Metal-based MR contrast agents should be used in a chelated form to prevent
the accumulation of toxic metals in the body, and they must be safely excreted
within hours of administration. Biodistribution of the contrast agents should be
initially intra-vascular with a rapid passage to the interstitial sector and should
not pass the healthy blood-brain barrier [110].
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2.4.2 Analysis of DCE-MRI

2.4.3 Pharmacokinetic Modeling

Dynamic contrast enhancement patterns can be affected by a wide range of phys-
iological factors which include vessel density, blood flow, endothelial permeabil-
ity and the size of the extravascular extracellular space in which contrast is dis-
tributed [72, 103, 178]. A quantitative analysis aims to directly measure physio-
logical parameters such as tissue blood flow, blood volume, interstitial volume or
permeability-surface area. The goal of such kind of model is to approach the true
(absolute) values underlying the patophysiologic processes that are being measured
and they are specially useful in therapy assessment.

Extraction of hemodynamic parameters from DCE-MRI data requires the cal-
culation of contrast medium concentration as a function of time C(t) either in
each image voxel or in regions of interest (ROI). C(t) is analyzed based on various
pharmacokinetic models from which hemodynamic parameters, such as perfusion
rate, blood volume and capillary permeability, are extracted. However, the accu-
racy of such parameters depends on an appropriate theoretical model and related
assumptions used to interpret data [49].

The main perfusion parameters are the tissue plasma flow (ml/100g/min),
which measures the volume of plasma flowing through the capillaries of a given
amount of tissue per unit of time; and the tissue plasma volume (ml/100g), which
measures the volume of plasma in the capillary bed of 100g of tissue. The main
permeability parameters are the extravascular, extracellular volume (ml/100 g),
and the permeability-surface area product PS (ml/100 g/min), which measures the
volume of plasma flowing across the capillary wall of 100g of tissue per unit of
time [170].

These hemodynamic parameters are linked to the measured DCE-MRI signal
through tracer-kinetic theory, which relates the hemodynamic parameters to the
time-concentration curves in the tissue and through MRI signal theory, which
relates those concentrations to changes in MR signals. [170]

The form of the tracer concentration-time curves C(t) in the tissue are de-
termined by the hemodynamic parameters, the concentration CA(t) in the blood
plasma of an arterial vessel feeding the tissue which form the arterial input func-
tion (AIF ). The theory of linear and stationary systems is valid for tracer-kinetic
analysis as long as the response of the tissue to an injection of tracer at any given
time is proportional to the injected dose and independent of the time of injection,
that is, complies with linearity and stationarity. C(t) and CA(t) are related by
convolution with a residue function R(t):

C = FPCA ⊗R (2.20)

Here FP is the tissue plasma flow, and R(t) is the fraction of contrast agent
concentration left in the tissue at time t for the case of an ideal instantaneous
dose injected at time t = 0. The residue function is a tissue characteristic that
fully defines the kinetics of a particular tracer. It is always a positive, decreasing
function which satisfies R(0) = 1. Eq.(2.20) is valid only if AIF is measured at the
inlet to the tissue. From a measurement perspective, the main complication for a
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quantification is the need to accurately measure the concentration in the lumen of a
major feeding artery, usually CA(t) is measured at a more upstream location. Also,
additional post-processing steps are required: MRI signal analysis to calculate or
approximate the tracer concentrations from the MRI signals, and tracer-kinetic
analysis to determine quantitative parameters from the concentrations [170,183].

Tracer-kinetic models provide a representation of the residue function in terms
of the hemodynamic parameters. In most tissue types, tracers distribute over two
different spaces: the blood plasma P and the extravascular, extracellular space
E. The two compartment model is defined by the assumption that P and E are
compartments, E does not exchange tracer directly with the environment, the
clearance for the outlets connecting P and E are equal and the clearance for the
outlet of P to the environment equals the plasma flow [21,170]. A two compartment
model can be reduced to a single compartment in the following situations: when
one of the spaces has a negligible volume, if the tracer extravasates slowly, so that
the concentration in the extravascular space is negligible within the acquisition
time, and if the tracer extravasates rapidly, so the system behaves as a single well
mixed space. In these cases the residue function becomes monoexponential, but
the precise interpretation of the parameters differs [170,183].

Tofts et al. [183, 184] defined the parameters which now serve as the golden
standard for quantitative parameter extraction in the frame of a pharmacokinetic
model. The Tofts model is a one-compartment representation of the physiologic
quantities that determine the dynamic behavior of contrast agent. In the Tofts
model the transfer constant Ktrans is a combined measure of blood flow and cap-
illary permeability and ve the extravascular extracellular space (EES) fractional
volume. Eq.(2.21) represents the standard Tofts model whereas the modified model
includes the term vpCA(t) to account for the tracer in the vasculature Eq.(2.22).

C(t) = Ktrans

∫ t

0

e−
Ktrans

ve
(t)CA(t) (2.21)

C(t) = Ktrans

∫ t

0

e−
Ktrans

ve
(t)CA(t) + vpCA(t) (2.22)

Comparisons between different pharmacokinetic models can be found in the lit-
erature [58,113,172]. The choice of a model is not only determined by the state of
the tissue, but also by the quality of the data [73,116]. In particular, the injection
protocol, temporal resolution, acquisition time and noise level play an important
role. For instance, if the injection rate is too slow, intra and extravascular spaces
are in constant equilibrium, and the monoexponential Tofts model must be ap-
plied (2.21). Conversely, a more rapid injection rate may create strong intra and
extravascular concentration differences in the first pass, so that only a full biex-
ponential model provides a good fit. This implies that ambiguities in the choice of
a model may be resolved by appropriate optimization of the measurement proto-
col [170,183].

From a statistical point of view, quantitative methods are based on the theory
of nonlinear regression. Nonlinear models are typically difficult to estimate due to
convergence issues and consistency problems by specifying starting values for the
optimization [159].
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Wang et al. [190] proposed a quantitative method for estimating the input
function and the kinetic parameters. Their model is on the pixel domain, whose
parameters are initialized using a sub-space based algorithm and refined by an
iterative maximum likelihood estimation procedure.

Schmid et al. [159] proposed a statistical method for estimating parameters in
pharmacokinetic models using nonlinear regression not only within a traditional
(likelihood) framework, but also with a Bayesian inference. To obtain an improved
distribution of kinetic parameter estimates across the image, contextual informa-
tion from neighboring voxels are combined by incorporating a Gaussian Markov
random field (GMRF) prior on the kinetic parameters into the model. Kinetic
parameter estimations using neighboring voxels reduce the observed variability in
local tumor regions while preserving sharp transitions between heterogeneous tis-
sue boundaries. The proposed model is described in three stages: the data model,
the process model, and the prior parameters. For the process model it is assumed
that functions or, more precisely the pharmacokinetic parameters in neighboring
voxels are similar. As voxel borders are arbitrary and do not correspond the bor-
ders between tissue types, this is a reasonable assumption. Each voxel is assumed
to be a mixture of different tissue types and an unique parameter is assigned for
each neighboring voxel-to-voxel combination.

In 2009, the same group of Schmid et al. [160] proposed another model for quan-
titative analysis; a semi-parametric penalized spline smoothing approach, where
the arterial input function (AIF), which is approximated mathematically, is con-
volved with a set of B-splines to produce a design matrix using locally adaptive
smoothing parameters based on Bayesian penalized spline models (P-splines). It
has been shown that kinetic parameter estimation can be obtained from the result-
ing deconvolved response function. Their model captures the upslope of the time
series accurately, which is important for the accurate fit of the concentration time
curves and proper calculation of Ktrans. The proposed technique also intrinsicly
allows for quantification of estimation errors both in fitting the observed data and
in estimating kinetic parameters.

These semi-parametric, statistical and analytic approaches provide more flexi-
bility and consistency since they can incorporate contextual information to reduce
estimation errors and bias [160].

2.4.4 Qualitative and Semi-Quantitative Analysis

Generally speaking, data can be analysed by visual assessment, descriptive pa-
rameters, or quantitative parameters. Many quantitative or semi-quantitative ap-
proaches for the classification of enhancement curve shapes have been described
and are now in relatively common use in clinical settings. Descriptive parame-
ters are indices that characterize the shape and structure of the curves, such as
the time to peak enhancement, bolus arrival time, maximum upslope, maximum
downslope, area under the curve, or maximum enhancement. Deriving descriptive
parameters is straightforward, but the link to physiology is not always clear, and
they are only reproducible when an identical measurement protocol is used [170].

Although the quantification of DCE MRI data by means of pharmacokinetic
models is well suited to longitudinal studies as well as to comparison between
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studies, it also suffers from large output variability, which is a consequence of the
large variety of models used [23].

As described by Lavini [104], an alternative halfway analysis methods between
the pharmacologic quantitative analysis and the mainly qualitative methods has
been targeted by some authors who have investigated uptake curve shape (or
pattern) and who tried to relate them to pathological findings. This approach is
based on the observation of the timeintensity curve (TIC) generated from an ROI
chosen in the lesion by the radiologist.

Although not quantitative, this approach is less sensitive to variations in the
MRI protocol (although still dependent on the duration of the scan and on the
injection procedure), making it more suitable for a comparative (meta-) analysis.
Furthermore, as shown in the simulations in Tofts et al. [184], curve shapes rep-
resent a mirror of those physiological parameters (e.g., the capillary permeability)
that can be extracted by means of the abovementioned analysis using compartmen-
tal models. In fact, increased tumor angiogenesis has often been associated with a
specific TIC pattern with rapid wash-in and washout [72], which is described by
a large ktrans in these compartmental models. TIC analysis has, therefore, been
often used as a surrogate for quantitative analysis [100].

Quantitative or descriptive parameters can be calculated on the level of voxels,
or of regions of interest (ROI). The classic evaluation of the enhancement kinetics
is carried out by the analysis of time-intensity curves using ROI analysis. A region
is outlined manually and the time-intensity curves of all voxels in the ROI are av-
eraged to produce one single curve. The post-processing protocol is then applied to
this curve. For qualitative evaluation, the curve’s shape is classified into different
morphological categories such as: steady, plateau and washout. For the evaluation
of washout curves, the ROI should be manually selected based on the (postcon-
trast) anatomical scan. It is placed in the area of a tumor with the most rapid and
intense enhancement, an area that can, in principle, contain pixels with different
enhancement patterns. In many cases, the suspicious tumor is very heterogeneous
and the most appropriate part of the tumor cannot be determined easily. To avoid
the distortion of the average time-intensity curve, the ROI should be very small
and must not include dead tumor cells (necrosis) or surrounding tissue.

The use of ROIs include several disadvantages; the heterogeneity of tumor vas-
cularization, the close neighborhood of necrotic and vital tumor tissue, and the
subjectiveness of ROI placement. The combination of these factors harden the
interpretation of the kinetics and may even result in unrevealed malignant tis-
sue. However, the main disadvantage is an intrinsic part of the technique; the
averaging of information. This is specially detrimental when a ROI covers malig-
nant and benign tissue, with an average curve shape indicating a false benignity.
In Fig.(2.10), an example for ROI placement is provided. If the radiologist has
detected a possibly malignant tumor, core needle biopsy must be carried out to
confirm or reject his hypothesis due to the moderate specificity of DCE-MRI. Only
if the histopathologic report of the removed tissue confirms the radiologist’s re-
port, further treatment, e.g. surgery, will be carried out. Since the application of
core needle biopsy to a benign part of a malignant tumor results in a false re-
port, it is not only important to determine the most malignant part of the tumor,
but also the extent and the localization of this part. Although it is important to
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Fig. 2.10: Evaluation of the enhancement kinetics in a tumor. In (a), a slice of
a breast DCE-MRI dataset with a breast tumor (see brighter area and arrow) is
depicted at the first time point after the early postcontrast phase. For diagnosis of
the enhancement kinetics, the radiologist places regions of interest (ROI) (see black
and dashed black ellipses) and evaluates the relative intensity increase, depicted
in(b). The black ROI is characterized by a suspicious curve with a fast washin and
a moderate washout. In contrast, the dashed black ROI covers benign tumor tissue
as well as surrounding tissue and the corresponding curve is not suspicious [62].

preserve sensitivity,for clinical practice it is as vital to prevent an unduly high
rate of false-positive biopsy calls. Accordingly, specificity is a major issue in breast
MRI [62,99,100,130].

For a voxel-based analysis, a curve is extracted for each voxel. The post-
processing protocol is applied to each voxel-curve individually [42]. A common
technique is to produce an image or map for each calculated parameter from phar-
macokinetic models; such as Ktrans, maximum enhancement or area under the
time-intensity curve (not to confuse with the maps obtained through classifica-
tion after feature extraction [104] ). In contrast with the ROI based approach, the
main advantage of a voxel-based analysis is that it produces information on the
heterogeneity of perfusion or permeability within the organ or tissue [35].

From a signal processing point of view, being ns the number of acquired vol-
umes, the ns signal values at voxel p = (x,y, z) are interpreted as a point x in a
ns-dimensional space, that is also often referred to as a feature vector x ∈ Rns .

Moate et al. [125] created a logistic model with a modified logistic equation
that describes the signal enhancement in DCE-MRI, defined in Eq.(2.23).

SI =
P1 + (P5 · t)

{1 + exp(−P4 · (t− P3))}
+ P1 (2.23)

Where SI(t) is the signal intensity at time t, P1 approximates the baseline
signal intensity, P2 is the amplitude of the plateau above the baseline, P3(s) is the
time at which the maximum slope occurs and P4(s−1) is the maximum slope. The
inclusion of (P5 · t)provides the flexibility to describe signal intensity curves with
either increasing or decreasing terminal slope.





3

Relevant elements of Unsupervised Classification

3.1 Overview

In this chapter the relevant background of unsupervised classification is described.
We start focusin on the important issue of data representation and the specific
paradigm on which our medical imaging methodology relies, that is, dissimilarity
representations. Later the basic clustering problem is described, followed by clus-
ter ensembles. The chapter finalizes with the issue of validation in unsupervised
classification.

3.2 Introduction

We are living in a world full of data. Every day, people encounter a large amount of
information and store or represent it as data for further analysis and management.
Pattern recognition is an intrinsic human ability that starts in infancy. It takes
however a long development time before we can accurately describe how we do
this, and perhaps sometimes we are not able to outline it.

As one of the most primitive activities of human beings, classification plays
an important and indispensable role in the long history of human development.
In order to learn a new object or understand a new phenomenon, people always
try to seek the features that can describe it, and further compare it with other
known objects or phenomena, based on the similarity or dissimilarity, generalized
as proximity, according to some certain standards or rules. Basically, classification
systems are either supervised or unsupervised, depending on whether they assign
new inputs to one of a finite number of discrete supervised classes or unsupervised
categories, respectively [194].

In supervised classification, the mapping from a set of input data vectors
( x ∈ Rd, where d is the input space dimensionality), to a finite set of dis-
crete class labels ( y ∈ 1, . . . , C , where C is the total number of class types),
is modeled in terms of some mathematical function y = y(x,w) , where w is a
vector of adjustable parameters. The values of these parameters are determined
(optimized) by an inductive learning algorithm (also termed inducer), whose aim
is to minimize an empirical risk functional (related to an inductive principle) on
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a finite data set of input - output examples, (xi, yi), i = 1, . . . , N , where N is the
finite cardinality of the available representative data set.

In this chapter we will focus on the second category, unsupervised classification,
the process of grouping objects into clusters such that objects from the same cluster
are similar and objects from different clusters are dissimilar.

The ability to form meaningful associations between objects starts with the
important question of how the data should be formally represented to create a
discriminating methodology.

3.3 Data Representation

In theories of information processing, the importance of choosing the right repre-
sentation for a given computational problem is widely acknowledged.

Following Cummins [33], an important question arises in the problem of rep-
resentation: how, in principle, can an internal state of a system refer to anything
at all in the external world. The philosopher John Locke suggested that an idea
represents a thing in the world if it is naturally and predictably evoked by that
thing, and not necessarily, as the Aristotelians would have it, if the idea resembles
the thing in any sense [44]. This undertaking, putting Representation on a princi-
pled basis that does not presuppose reconstruction, is a challenging philosophical
and computational problem.

Let us consider a situation in which an observer recalls a previously encountered
scene that contained a cat. If the representational story is at all true, the observer
harbors an internal representation of the cat (or, as it may be, of the class of
cat-like objects). The first question that suggests itself in this context is, what
can it be about the internal state of the observer recalling a cat that makes it
refer to the shape of the cat? The question is abstract, as it deals with a possible
mode of representation, and not with representational means actually used by any
particular system. Very few people these days believe that a representation of a
cat in an observer’s brain is cat-shaped, striped, or fluffy. Instead of little pictures
in the head, a representation is seen as a set of measurements which collectively
encode the geometry and other visual qualities of its target. Typically, it is assumed
that structural or metric information stored in the brain reflects corresponding
properties of shapes in the world, on a one to one basis. Edelman refers to this
approach as “first-order structural isomorphism” between the representation and
its target object [44].

The main challenge in devising a representation suitable for supporting cate-
gorization is the need for abstraction. Theories of representation that treat catego-
rization as a sui generis problem and not as an appendix to identification, usually
start from the notion of prototype: the most typical member of a class of previ-
ously encountered stimuli, or perhaps an abstraction that serves as a surrogate
member and is charged with representing a specific class [44].

As a relevant example, even experts such as cardiologists have difficulties in
defining accurately how a particular ECG signal is consciously recognized as evi-
dence of a heart disease. In this as with many other cases, even though the human
expert is aware of different pattern classes, he finds himself in trouble when asked
to put forward a description of the perceived class in terms of explicit observations.
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A common approach is to rely on descriptions based on the structure of the
objects, that is, the relations between internal parts when complicated elements
need to be described. This is common in cases where there is an inability to depend
on a straightforward set of directly measurable observations such as color, weight
or size. In this way, characteristics are not only expressed in measurable quantities,
but also in a discursive description of the structure. If we want to incorporate this
approach to represent data in way that is useful for a classification or clustering
system, both, a set of sensors as well as a structural model may be necessary [41].

It is difficult for an expert to define exactly how sensor outputs have to be com-
bined to accurately describe a pattern class or category. Generallyt this works well
for objects represented in vector spaces by measurements or by features derived
from measurements. In supervised classification, the lack of structural knowledge
or the lack of its representation may hereby be partially compensated by statistical
properties derived from a (large) set of examples. On the contrary, it is much more
difficult to apply such procedures in order to optimize decision functions based on
structural models. In order to build automatic machines that mimic human recog-
nition, the expert is forced to become gradually more and more aware of his own
decision making, while he tries to make his recognition process explicit. In this
process he becomes more conscious of his own internal recognition procedure. The
result is a description in terms of both observations and models.

The fact that human experts, when tasked to explicitly decscribe their dis-
criminating faculties, experience a consciuous division of their knowledge into ob-
servations and structural models may lead to clear and computerizable represen-
tations, but has also severe drawbacks. Observations originated from structural
relations may be represented by vectors related to sensors or sensor samples. This
representation is poor as dependencies are not included. They may be partially
reconstructed from a statistical analysis of a large set of observations, such as it is
done when learning from examples in supervised classification. Structural models,
on the other hand, may preserve dependencies and relations, but it is difficult to
enrich such a knowledge-based description by new observations [41].

This dichotomy of methodological approaches led decades ago to a separation
between research areas in machine learning and pattern recognition: structural
and statistical [41].

Both approaches use features to describe objects, but these features are defined
differently (Table 3.1). The statistical, decision-theoretical approach is usually met-
ric and quantitative, while the structural approach is qualitative [131, 142]. This
means that in the statistical approach, features are encoded as purely numerical
variables, in which an object is represented by the results of measurement of its
various properties. A measurement result is called a feature in pattern recognition
or a variable in statistics. The concatenation of all the features of a single object
forms the feature vector. By arranging the feature vectors of different objects in
different rows, we get a pattern matrix (also called data matrix) of size n by d,
where n is the total number of objects and d is the number of features. This
representation is very popular because it converts different kinds of objects into a
standard representation. This constitute a feature vector space, usually Euclidean,
in which each object is represented as a point of feature values. In this case clas-
sification is then inherently restricted to the mathematical methods that one can
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apply in a vector space, equipped with additional algebraic structures of an inner
product, norm and the distance.

In any structural decomposition model, an object is described in terms of rel-
atively few primitives, fundamental structural elements, like strokes, corners or
other morphological elements. The primitives are encoded as syntactic units from
which objects are constructed and joined by relationships that are chosen from an
equally small fixed set. As a result, objects are represented by a set of primitives
with specified syntactic operations. For instance, if the operation of concatenation
is used, objects are described by strings of (concatenated) primitives. A crucial
characteristic of the structural approach is the standardization of the primitives
(the parts and their relationships), which allows novel objects to be treated on par
with familiar ones, as required, for example, in categorization tasks [41,44].

The strength of the statistical approach relies on well-developed concepts and
learning techniques, while in the structural approach, it is much easier to encode
existing knowledge on the objects.

As we have mentioned, representations in Euclidean vector spaces, defined by
a set of features, are well suited for generalization. These should ideally charac-
terize the patterns well and also be relevant for class differences at the same time.
Such features have to be defined by experts exploiting their knowledge of the ap-
plication. A drawback of the use of features is that different objects may have
the same representation as they differ by properties that were not expressed in
the chosen feature set. This results in class overlap: in some areas in the feature
space objects of different classes are represented by the same feature vectors. Con-
sequently, they cannot be distinguished, which leads to an intrinsic classification
error, usually called the Bayes error. In the next Section we make an overview of
a different paradigm proposed by Pekalska and Duin which intends to bridge the
structural and statistical approaches, avoinding at the same time overlaps in the
representation of diverse objects.

3.4 Dissimilarity-Based Representation

Pekalska and Duin, inspired by early work of Goldfarb [64], initiated a research to
bridge the structural and statistical approaches to pattern recognition by replacing
the traditional feature representation with a distance representation that could be
applied to structural models. They called it the dissimilarity representation as it
allows various non-metric, indefinite or even asymmetric proximity measures.

The notion of similarity plays a pivotal role in class formation, since it might
be seen as a natural link between observations on objects on the one hand and a
judgment on their shared properties on the other. In essence, similar objects can
be grouped together to form a class, and consequently a class is a set of similar
objects. However, there is no such thing as a general object similarity that can be
universally measured or applied .

A comparison of two objects is always with respect to a frame of reference, i.e.
a particular point of view, a context, basic characteristics, a type of domain, or
attributes considered [142].

An inspiration for this approach was also the observation that a human ob-
server is primary triggered by object differences and that the description in terms
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Table 3.1: Basic differences between statistical and structural Pattern Recognition
[131]. Distances are a common factor used for discrimination in both approaches
[142].

Properties Statistical Structural

Foundation Well-developed mathematical
theory of vector spaces

Intuitively appealing: human
cognition or perception

Approach Quantitative Qualitative: structural / syntac-
tic

Descriptors Numerical features: vectors of a
fixed length

Morphological primitives of a
variable size

Syntax Element position in a vector Encoding process of primitives

Noise Easily encoded Needs regular structures

Learning Vector-based methods Graphs, decisions trees, gram-
mars

Dissimilarity Metric, often Euclidean Defined in a matching process

Discrimination Relies on distances or inner
products in a vector space

Grammars recognize valid ob-
jects; distances often used

Class overlap Due to improper features and
probabilistic models

Due to improper primitives
leading to ambiguity in the de-
scription

of features and models comes second. We consciously observe differences, while
similarity is a usually assumed context in which comparisons take place.

The emphasis of the renewed interest in dissimilarities in pattern recognition,
however, was in the construction of vector spaces that are suitable for classifica-
tion using the extensive theory and toolboxes available in multivariate statistics,
machine learning and pattern recognition.

An alternative to the use of features is the dissimilarity representation based
on direct pairwise object comparisons. If the entire objects are taken into account
in the comparison, then only identical objects will have a dissimilarity zero. For
such a representation class overlap does not exist if the objects can be unambigu-
ously labelled: there are no real world objects in the application that belong to
more than one class. Only identical objects have a zero-distance and they should
have the same label as they are identical. Another advantage of the dissimilarity
representation is that it uses the expert knowledge in a different way. Instead of
features, a dissimilarity measure has to be supplied.
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Fig. 3.1: The difference with respect to the geometry between the traditional
feature-based (absolute) representations and dissimilarity-based (relative) repre-
sentations [142].

In general, the suitability of a measure depends on the problem at hand and
should rely on additional knowledge one has about this particular problem. Prox-
imity underpins the description of a class as a group of objects possessing similar
characteristics. This implies that the notion of proximity is more fundamental than
the notion of a feature or of a class. Thereby, it should play a crucial role in class
constitution. This proximity should be possibly modeled such that a class has an
efficient and compact description [143].

The representation is derived from pairwise object comparisons, where the
shared degree of commonality between two objects is captured by a dissimilar-
ity value. There are many ways of comparing two objects, and hence there are
many dissimilarity measures. In general, the suitability of a measure depends on
the problem at hand and should rely on additional knowledge one has about this
particular problem. Which to choose depends on expert knowledge or problem
characteristics. If there is no clear preference for one measure over the other, a
number of measures can be studied and combined. This may be beneficial, espe-
cially when different measures focus on different aspects of patterns.

There are two essential ways of constructing a vector space from a dissimilarity
representation [140, 142]: Euclidean or Pseudo-Euclidean embedding and the so-
called dissimilarity space.
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The first one is based on an extension of linear multi-dimensional scaling, an
attempt is made to embed the dissimilarity matrix in a Euclidean vector space
such that the distances between the objects in this space are equal to the given
dissimilarities.

Especially, an intriguing issue was the topic of embedding the given non-
Euclidean dissimilarities into a vector space such that the obtained distances are
sufficiently accurate in comparison to the original dissimilarities. This can only
be realized error free, of course, if the original set of dissimilarities are Euclidean
themselves. If this is not the case, either an approximate procedure has to be
followed or the objects should be embedded into a non-Euclidean vector space.

The second way of handling the dissimilarity representation, the postulation
of the dissimilarity space, raises less problems and is of high interest for practical
applications. It can, without problems, be used for almost any kind of dissimilarity
measure. Moreover, it has good asymptotic properties and offers the possibility of
an adjustable computational complexity.

The complete dissimilarity representation yields a square matrix with the dis-
similarities between all pairs of objects. Formally, a dissimilarity space is con-
structed as a square matrix. This matrix consists of a set of row vectors, one for
each voxel. These vectors represent the voxels in a vector space constructed by the
dissimilarities to each other object. Usually, such a space can be safely treated as
an Euclidean space equipped with the standard inner product definition.

Let X = {x1, . . . , xn} be a dataset. Given a dissimilarity function, a data-
dependent mapping D is defined as D(·, X) : X → Dn linking X to a dissimilarity
space [142]. The complete dissimilarity representation yields a square matrix con-
sisting of the dissimilarities between all pairs of objects. In this matrix every object
is described by an n-dimensional vector of distances between the object x and all
the elements of X, such that D(x,X) = [d(x, x1) . . . d(x, xn)]T .

A set of elements representative to the problem may be used instead of the
complete dataset X. This set is called the representation or prototype set and it
may be a subset of X. Using a k-element set of prototypes R = {r1, r2, . . . , rk} ,
the dissimilarity representation is calculated between X and R, D(X,R), defined
as D(·, R) : X → Rk.

One of the advantages of this representation is that every classifier defined for
feature spaces can be used in the dissimilarity space.

The dissimilarity space in fact interprets the dissimilarities as features. Their
characteristics of dissimilarities are not used when a general classifier is applied.
The dissimilarity space can be used for any dissimilarity representation, including
ones that are negative or asymmetric [142].

The performance of this representation depends on the choices of the dissimi-
larity measure or features and thereby on the ability of the analyst or application
expert to express his knowledge on the problem in a particular way. Thereby, the
preference for one representation or the other depends on the application as well
as on the expert [41].
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Fig. 3.2: Diversity of clusters. The seven clusters in (a) (denoted by seven different
colors in (b)) differ in shape, size, and density. Although these clusters are apparent
to a data analyst, they are not easily indentificable by any clustering algorithms.
Clustering at a coarse level produces four major clusters, while a finer clustering
leads to a greater number [85].

3.5 Unsupervised Classification

The ability to form meaningful groups of objects is one of the most fundamental
modes of intelligence. Humans perform this task with remarkable ease. In early
childhood one learns to distinguish, for example, between cats and dogs or ap-
ples and oranges. However, enabling the computer to do this task of grouping
automatically is a difficult and often ill-posed problem [174].

According to Jain [84], cluster analysis is the organization of a collection of
patterns (usually represented as a vector of measurements, or a point in a multidi-
mensional space) into groups based on similarity . Clustering algorithms partition
data objects (patterns, entities, instances, observances, units) into a certain num-
ber of clusters (groups, subsets, or categories). However, there is no universally
agreed upon and precise definition of the term cluster. Everitt et al. [48] indicate
that a formal definition (of cluster) is not only difficult but may even be misplaced.
Intuitively, patterns within a valid cluster are more similar to each other than they
are to a pattern belonging to a different cluster.

An operational definition of clustering can be stated as follows: Given a repre-
sentation of n objects, find K groups based on a measure of similarity such that
the similarities between objects in the same group are high while the similarities
between objects in different groups are low. The presence of noise in the data
makes the detection of the clusters even more difficult. An ideal cluster can be
defined as a set of points that is compact and isolated. In reality, a cluster is a
subjective entity that is in the eye of the beholder and whose significance and
interpretation requires domain knowledge. But, while humans are excellent clus-
ter seekers in two and possibly three dimensions, we need automatic algorithms
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for high-dimensional data. It is this challenge along with the unknown number of
clusters for the given data that has resulted in thousands of clustering algorithms
that have been published and that continue to appear [83,86,193].

It is important to understand the difference between clustering (unsupervised
classification) and discriminant analysis (supervised classification) [84]. In super-
vised classification, we are provided with a collection of labeled (pre-classified)
patterns; the problem is to label a newly encountered, yet unlabeled, pattern.
Typically, the given labeled (training) patterns are used to learn the descriptions
of classes which in turn are used to label a new pattern. Unlike classification, clus-
tering does not require assumptions about category labels that tag objects with
prior identifiers. The problem is to group a given collection of unlabeled patterns
into meaningful clusters. In a sense, labels are associated with clusters also, but
these category labels are data driven; that is, they are obtained solely from the
data.

Clustering is useful in several exploratory pattern-analysis, grouping, decision-
making, and machine-learning situations, including data mining, document re-
trieval, image segmentation, and pattern classification. However, in many such
problems, there is little prior information (e.g., statistical models) available about
the data, and the decision-maker must make as few assumptions about the data
as possible. It is under these restrictions that clustering methodology is particu-
larly appropriate for the exploration of interrelationships among the data points to
make an assessment (perhaps preliminary) of their structure. The term clustering
is diversely used in several research communities to describe methods for grouping
of unlabeled data [84].

The importance of data representation in clustering cannot be understated.
A good pattern representation can often yield a simple and easily understood
clustering; a poor pattern representation may yield a complex clustering whose
true structure is difficult or impossible to discern [83].

3.5.1 Clustering Definition

A cluster in these definitions is described in terms of internal homogeneity and
external separation, i.e., data objects in the same cluster should be similar to
each other, while data objects in different clusters should be dissimilar from one
another. Both the similarity and the dissimilarity should be elucidated in a clear
and meaningful way. Here, we give some simple mathematical descriptions of two
types of clustering, known as partitional and hierarchical clustering [193].

Given a set of input patterns X = {x1, . . . , xj , . . . , xN}, where xj = (xj1, xj2,
. . . , xjd) ∈ Rd, where each measure xji is a feature (attribute, dimension, or vari-
able):

Hard partitional clustering attempts to seek a K-partition of X, C = {C1, . . . ,
CK} (K ≤ N), such that

• Ci 6= φ, i = 1, . . . ,K;
• ∪Ki=1Ci = X;
• Ci ∩ Cj = φ, i, j = 1, . . . ,K and i 6= j.
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Hierarchical clustering algorithms produce a nested series of partitions based
on a criterion for merging or splitting clusters based on similarity. They attempt to
construct a tree-like, nested structure partition of X,H = {H1, . . . ,HQ} (Q ≤ N),
such that Ci ∈ Hm , Cj ∈ Hl, and m > l imply Ci ∈ Cj or Ci ∩ Cj = φ for all
i, j 6= i , m, l = 1, . . . , Q .

For hard partitional clustering, each data object is exclusively associated with
a single cluster. It may also be possible that an object is allowed to belong to all K
clusters with a degree of membership, uij ∈ [0, 1], which represents the membership
coefficient of the jth object in the ith cluster as introduced in fuzzy set theory by
Zadeh [205].

3.5.2 Clustering Procedure

Figure 3.3 depicts the procedure of cluster analysis with the following four basic
steps:

1. Feature selection or extraction. In statistical pattern recognition, feature
selection chooses distinguishing features from a set of candidates, while feature
extraction utilizes some transformations to generate useful and novel features
from the original ones. Clearly, feature extraction is potentially capable of pro-
ducing features that could be of better use in uncovering the data structure.
However, feature extraction may generate features that are not physically in-
terpretable, while feature selection assures the retention of the original physical
meaning of the selected features. In the literature, these two terms sometimes
are used interchangeably without further identifying the difference [193]. Both
feature selection and feature extraction are very important to the effectiveness
of clustering applications. Elegant selection or generation of salient features
can greatly decrease the storage requirement and measurement cost, simplify
the subsequent design process, and facilitate the understanding of the data.
Generally, ideal features should be of use in distinguishing patterns belonging
to different clusters, immune to noise, and easy to obtain and interpret [40,84].

2. Clustering algorithm design or selection. This step usually consists of
determining an appropriate proximity measure and constructing a criterion
function. Intuitively, data objects are grouped into different clusters according
to whether they resemble one another or not. Almost all clustering algorithms
are explicitly or implicitly connected to some particular definition of proximity
measure. The subjectivity of cluster analysis is thus inescapable. Clustering
is ubiquitous, and a wealth of clustering algorithms has been developed to
solve different problems from a wide variety of fields. However, there is no
universal clustering algorithm to solve all problems. Clustering algorithms that
are developed to solve a particular problem in a specialized field usually make
assumptions in favor of the application of interest.

3. Cluster validation. Given a data set, each clustering algorithm can always
produce a partition whether or not there really exists a relevant structure in
the data. Moreover, different clustering approaches usually lead to different
clusters of data, and even for the same algorithm, the selection of a param-
eter or the presentation order of input patterns may affect the final results.
Therefore, effective evaluation standards and criteria are critically important
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Fig. 3.3: Clustering procedure. The basic process of cluster analysis consists of
four steps with a feedback pathway. These steps are closely related to each other
and determine the derived clusters [193].

to provide users with a degree of confidence for the clustering results. Little in
the way of gold standards exist in clustering except in some specific subdomains
where well-known contextual information define the validation procedure and
benchmarks [83]. The validation assessment should be objective and have no
preferences to any algorithm. Generally, there are three categories of testing
criteria: external indices, internal indices, and relative indices. External in-
dices are based on some prespecified structure, which is the reflection of prior
information on the data and is used as a standard to validate the clustering
solutions. Internal tests are not dependent on external information, instead,
they examine the clustering structure directly from the original data. Relative
criteria emphasize the comparison of different clustering structures in order to



44 3 Relevant elements of Unsupervised Classification

provide a reference to decide which one may best reveal the characteristics of
the objects [86].

4. Result interpretation. The ultimate goal of clustering is to provide users
with meaningful insights from the original data so that they can develop a
clear understanding of the data and therefore effectively solve the problems
encountered [193]. Experts in the relevant fields are encouraged to interpret
the data partition, integrating other experimental evidence and domain in-
formation without restricting their observations and analyses to any specific
clustering result. Consequently, further analyses and experiments may be re-
quired.

It is interesting to observe that the flow chart in Fig. 3.3 also includes a feed-
back pathway. Cluster analysis is not a one-shot process. In many circumstances,
clustering requires a series of trials and repetitions. Moreover, there are no uni-
versally effective criteria to guide the selection of features and clustering schemes.
Validation criteria provide some insights into the quality of clustering solutions,
but even choosing an appropriate criterion is a demanding problem.

3.6 Relevant clustering algorithms

In this section we present three different clustering algorithms, chosen because
of their properties and diverse origin. These algorithms are: the classic K-means
algorithm, Affinity Propagation and Support Vector Clustering. Each one of these
three clustering methods involve different assumptions and by consequence they
are diversely biased, a desirable characteristic that is exploited when we create an
ensemble of cluster solutions, explained in Chapter 6.

3.6.1 The K-means algorithm

Let X = {xi}, i = 1, . . . , n be the set of n-dimensional points to be clustered into a
set of K clusters C = {ck, k = 1, . . . ,K}. The K-means algorithm finds a partition
such that the squared error between the empirical mean of a cluster and the points
in the cluster in minimized. Let µk be the mean of cluster ck. The squared error
between µk and the points in cluster ck is defined as

J(ck) =
∑
xi∈ck

‖xi − µk‖2 (3.1)

The goal of K-means is to minimize the sum of the squared error over all K
clusters,

J(C) =

K∑
k=1

∑
xi∈ck

‖xi − µk‖2 (3.2)

Minimizing this objective function is known to be an NP-hard problem (even
for K=2). Thus K-means, which is a greedy algorithm, can only converge to a
local minimum, even though recent study has shown with a large probability K-
means could converge to the global optimum when clusters are well separated [85].
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K-means starts with an initial partition with K clusters and assign patterns to
clusters so as to reduce the squared error. Since the squared error always decreases
with an increase in the number of clusters K (with J(C) = 0 when K = n), it
can be minimized only for a fixed number of clusters. The main steps of K-means
algorithm are as follows [86]:

1. Select an initial partition with K clusters; repeat steps 2 and 3 until cluster
membership stabilizes.

2. Generate a new partition by assigning each pattern to its closest cluster center.
3. Compute new cluster centers.

Fig. 3.4: Illustration of K-means algorithm. (a) Two-dimensional input data with
three clusters; (b) three seed points selected as cluster centers and initial assign-
ment of the data points to clusters; (c) and (d) intermediate iterations updating
cluster labels and their centers; (e) final clustering obtained by K-means algorithm
at convergence [83].

The K-means algorithm requires three user-specified parameters: number of
clusters K, cluster initialization, and distance metric. The most critical choice
is K. While no perfect mathematical criterion exists, a number of heuristics are
available for choosing K. Typically, K-means is run independently for different
values of K and the partition that appears the most meaningful to the domain
expert is selected. Different initializations can lead to different final clustering
because K-means only converges to local minima. One way to overcome the local
minima is to run the K-means algorithm, for a given K, with multiple different
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initial partitions and choose the partition with the smallest squared error. The
basic K-means algorithm has been extended in many different ways. Some of these
extensions deal with additional heuristics involving the minimum cluster size and
merging and splitting clusters [40, 179]. A further description of the variants can
be found in the following references [54,83,132,144].

3.6.2 Clustering by Affinity Propagation

Affinity Propagation (AP) is a recent clustering methodology first proposed by
Frey and Dueck in [56]. Fundamental to clustering by AP is the concept of exem-
plars. In AP an exemplar is a data point that represents a cluster. The exemplars
are analogous to the centers in commnon algorithms such as k-centers in which
the actual data set is used to learn a set of centers such that the sum of squared
errors between data points and their nearest centers are small.

AP simultaneously considers all data points as potential exemplars. Instead of
requiring that the number of clusters k be prespecified, AP requires a set of simi-
larities (also denoted as affinities) between pairs of data points, sij , and partitions
the data set into clusters such that each partition is associated with an exemplar
point that best describes that cluster. In AP each data point is associated with a
single exemplar. Thus, the objective of AP is to maximize the overall sum of sim-
ilarities between data points and their exemplars [56]. The self similarities s(i, i)
are called preferences, and describe to what extent a point is suitable for being an
exemplar. The number of identified exemplars, which in turn denotes the number
of partitions or clusters, is influenced by the values of the input preferences, but
also emerges from the message-passing procedure.

In order for the assignments of data points to exemplars to give sensible clus-
tering solutions, an exemplar must never be assigned to another exemplar, an
exemplar must always be assigned to itself. This is referred as the exemplar con-
sisteny constrain.

At a high level, the AP algorithm can be viewed as iteratively sending messages
between points. The messages are scalar values, and there are two types of messages
which are sent. First, each point sends to all other points a message indicating to
what degree each of the other points is suitable to be its exemplar. These messages,
denoted by ρij , are referred to as responsibilities.

ρij = sij −max
k 6=j

(sik + αik) (3.3)

Then, each point sends to all other points a message indicating to what degree
the point itself is suitable to serve as an exemplar. These messages, denoted by
αij , are referred to as availabilities (Eq. 3.4). The messages are sent iteratively
until the messages no longer change, at which point the algorithm is said to have
reached a fixed point, or converged.

αij =


∑
k 6=j

max(0, ρkj) i 6= j,

min
[
0, ρij +

∑
k/∈{i,j}max(0, ρkj)

]
i 6= j

(3.4)
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At convergence the set K = {k|αkk + ρkk > 0} is chosen as the set of ex-
emplars. Each non-exemplar point i is assigned to its most similar exemplar,
k = arg max

k∈K
sik.

3.6.3 Support Vector Clustering

Conceptually Support Vector Clustering (SVC), just as KPCA and other kernel
based methods, maps the data points from data space to a high dimensional feature
space using a Gaussian kernel. In feature space SVC looks for the smallest sphere
that encloses the image of the data. This sphere is mapped back to data space,
where it forms a set of disjoint contours which enclose the data points. These
contours are interpreted as cluster boundaries. Points enclosed by each separate
contour are associated with the same cluster. As the width parameter, σ, of the
Gaussian kernel is decreased, the number of disconnected contours in data space
increases, leading to an increasing number of clusters. Since the contours can be
interpreted as delineating the support of the underlying probability distribution,
SVC can be viewed as one identifying valleys in this probability distribution [18].

In its original formulation SVC can deal with outliers by employing a soft
margin constant that allows the sphere in feature space to leave outliers out, not
enclosing all points. For large values of this parameter, we can also deal with
overlapping clusters.

SVC starts with a classic formulation of a data set as a support vector descrip-
tion [161]. For a data set xi ∈ Rd, where i = 1, . . . , n, a non-linear mapping Φ is
used to transform the input space Rd to a high dimensional feature space H (Eq.
6.10). Subsequently SVC finds the smallest hypersphere in H that encloses the
projected image of the data set:

‖Φ(xi)− a‖2 ≤ R2 ∀i, (3.5)

where a is the center of the hypersphere and R the radius. Slack variables are
added to allow for soft boundaries in which some data points can be allowed to lie
outside the borders.

‖Φ(xi)− a‖2 ≤ R2 + ξi ∀i, (3.6)

where ξj > 0. Ben-Hur [18] solves the problem from Eq. 3.6 with the introduc-
tion of the Lagrangian and a regularization constant C in the penalty term,

M(R, a, αi, ξi) = R2 −
∑

i
(R2 + ξi − ‖Φ(xi)− a‖2)αi −

∑
ξiµi +C

∑
ξi (3.7)

where αi ≥ 0 and µi ≥ 0 are Lagrangian multipliers and C
∑
ξi is a penalty

term. The Karush-Kuhn-Tucker conditions [53] allows the problem to be rewritten
as

Maximize M =
∑

i
αiΦ(xi)

2 −
∑
i,j

αiαjΦ(xi)Φ(xj)

subject to 0 ≤ αi ≤ C,
∑

αi = 1, i = 1, . . . , n

(3.8)
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Following the Support Vector Machine (SVM) method [161], a kernel repre-
sentation is used in which k(xi, xj) = Φ(xi) · Φ(xj). Using a kernel function, the
Equation (3.8) can be rewritten as

M =
∑

i
αik(xi, xi)−

∑
i,j

αiαjk(xi, xj) (3.9)

The Lagrangian multipliers αi are obtained optimizing Equation (3.9). Only
the points with non-zero αi lie outside or on the boundary of the hypersphere.
These points are called Support Vectors (SVs). Points with αi = C have hit the
upper bound for the radius and lie outside the sphere. These points are called
Bounded Support Vectors (BSVs) and are treated as noise.

In conceptual terms, the SVs are those data points that lie closest to the hy-
perspheric decision surface. SVs are the most difficult points to assign in clustering
and novelty detection. s such, they have a direct bearing on the optimum location
of the decision surface, and they play a prominent role in the operation of this
class of learning machines [202].

For every point x, the distance to its image in feature space, Φ(x), from the
center, a, of the hypersphere is given by

R2(x) = ‖Φ(x)− a‖2 (3.10)

which, using a kernel function, can be equally expressed as

R2(x) = k(x, x)− 2
∑

i
αik(x, xi) +

∑
i,j
αiαjk(xi, xj) (3.11)

The radius of the hypersphere is

R = {R(xi) | xi is a support vector} (3.12)

As a basis for clustering the previous representation describes the data distri-
bution in terms of support information and it provides a straightforward modeling
prototype for SVC.

The main idea behind SVC is that the support vectors extracted for novelty
detection can be used to construct the boundaries of clusters in a data set. From
its SVM nature, the SVC is able to detect clusters with arbitrary shapes and
different density distributions. Besides being able to work with high dimensional
data it provides a way to deal with outliers. SVC is carried out in two main phases,
namely SVM training and cluster labeling.

The SVM training phase determines the general cluster structure of the data
and the boundaries that enclose the partitions. The SVC is a boundary-based
clustering method. When the hypersphere is mapped back to the original data
space, this method produces a set of disjoint contours that enclose the data points.
These contours can be interpreted as cluster boundaries, and linkages between each
pair of data items can be estimated [202]. An illustration of the Support Vector
Clustering method is shown in Figure 3.5.

Recalling Equations (3.11) and (3.12), cluster boundaries can be constructed
by a set of contours{x|R(x) = R} which, when mapped back to data space, enclose
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Fig. 3.5: The main steps of SVC can be appreciated in this illustration (published
by Hao et al. [71]). The data is projected from data space to a feature space using
kernel methods and the smallest hypersphere enclosing the data is found (a). The
hypersphere is mapped back to data space where it forms a set of disjoint contours
enclosing the data (b).

the data points. In this construction, SVs lie on the cluster boundaries, BSVs lie
outside, and all other points lie inside the clusters.

The number of SVs and BSVs (nSV and nBSV , respectively) affects the overall
cluster structure, which therefore can be controlled by the SVM training param-
eters q (Eq. 6.20) and C. As the width q of the Gaussian kernel increases, the
number of SVs increases. A higher number of SVs result in a boundary whose
shape is rougher and more complex, defined with more precision by the greater
number of SVs. This leads to a splitting tendency in the contours that define the
partitions.

On the other hand, the number of BSVs can be controlled by the parameter
C, more precisely by nBSV < 1/C. That is, if C = 1, there are no BSVs. To allow
for BSVs, one should set C < 1 Instead of using C, it is more natural to work
with the parameter p = 1/(nC), which represents an upper bound for the fraction
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of BSVs. The parameter q determines the scale or resolution at which the data is
probed, and p decides the softness of the boundaries [18].

The SVM training phase determines the structure of the data and the clus-
ter boundaries, however it does not differentiate between points that belong to
different clusters. The cluster labeling part checks the connectivity for each pair
of points based on the cut-off criteria obtained from the trained SVMs, typically
the radius R of the hypersphere. To do so Ben-Hur [18] defines an adjacency ma-
trix Aij based on a geometric approach. The approach is based on the observation
that every path that connects any given pair of data points that belong to different
partitions must intersect the boundaries of the hypersphere in data space.

The approach is based on the observation that, for every pair of data points
that belong to different partitions, any path that connects them in data space has,
as a corresponding projection in the feature space, a path that intersects with the
boundaries of the hypersphere. Therefore that path contains at lest a segment of
points y such that R(y) > R.

For a pair of points xi and xj whose image lie in or on the sphere, the binary
adjancency matrix Aij is defined as:

Aij =

{
1, if, for all y on the line segment connecting xi and xj , R(y) ≤ R
0, otherwise.

(3.13)
Clusters are now defined as the connected components of the graph induced

by A. Calculating Aij for points xi and xj is implemented by sampling a number
points on the line segment between these two points. In the original procedure by
Ben-Hur BSVs are unclassified by this procedure since their feature space images
lie outside the enclosing sphere. After all the points inside the hypersphere are
assigned to a cluster the BSVs may remain unclassified, therefore considered as
noise, or they may be assigned to the closest cluster. The time complexity of the
cluster labeling phase is O(n2m), where n is the number of data points and m is
the number of points sampled on the line segment joining two data points.

Yang proposed the use of proximity graphs to address improve the high compu-
tational costs of the cluster labeling phase in SVC [200,202]. The use of proximity
graphs start with the concept of the connectivity matrix M . Any particular clus-
tering solution of a data set X can be presented in the form of an n × n cluster
connectivity matrix defined by

Mij =

{
1, if, points xi and xj belong to the same cluster

0, otherwise.
(3.14)

Clusterings expressed in this matrix model can be mapped to a subgraph of
a proximity graph. In proximity graphs, vertices represent data points and edges
connect pairs of points to model their proximity and adjacency. The main principle
of proximity graph modeling is encoding proximity and topology between data
points. With a proximity graph, points are connected by edges if they are close
to each other according to some proximity measure. Points that are closer to each
other are naturally more likely to be in the same cluster than distant points. Thus,
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Yang argues, cluster labeling with a proximity graph strategy is a good strategy
to reduce the time of testing linkages [200].

The use of proximity graphs in SVC is originally based on the boundary-based
methods proposed in [46,47].

After the data is modeled in the SVM training phase, an appropriate proxim-
ity graph model is implemented. It should reflect the data distribution and incor-
porates proximity and topology information. Among the choices for neighboring
graphs are included Delaunay Diagrams (DD), Minimum Spanning Trees (MST)
and k-Nearest Neighbors (k-NN). They can be derived by considering different
aspects of proximity and topology. DD represents a “is-neighbo” relationship. The
MST is based on the local closeness of data points. It is a subgraph of DD, and
encodes less proximity information. k-NN is based on distance concepts.

The idea is to calculate coefficients of the adjacency matrix Aij only for pairs
of xi and xj , where xi and xj are linked by an edge eij in a proximity graph.
While estimating the edges of a proximity graph with a cut-off criteria (i.e., R),
the sampling strategy for computation of Aij is performed as Ben-Hur [18]. For
simplicity, all edges in the current proximity graph are called candidate edges. We
refer to an edge eij as active edge if Aij = 1, and as passive edge if Aij = 0. An
active path in the current proximity graph will be formed if every edge in the path
is an active edge. A connected component is equivalent to an active path.

This strategy avoids redundant checks in a complete graph and also avoids the
loss of neighborhood information as it can occur when only estimating adjacencies
to support vectors. The time complexity of this labeling strategy is O(mn log n).
Where n is the size of data set and m is the number of sampling points on the
edge.

Being of no interest, passive edges are removed from the proximity graph. Clus-
ters correspond to connected components of edges, which are active paths. After
the removal of the passive edges, the cluster assignment task lies in recognizing
all active paths formed. Once active edges have been determined the connected
components should be grouped. In this task is done with a classical algorithm such
as Depth-First-Search (DFS). BSVs can eventually be included as a members of
their respective closest cluster, or regarded as noise [202].

3.7 Cluster Ensembles

CE Definition

Although, a large number of clustering algorithms have been developed for sev-
eral application areas [84, 85], the famous no free lunch theorem by Wolpert and
Macready suggests there is no single clustering algorithm that performs best for
all datasets [69,102], i.e., unable to discover all types of cluster shapes and struc-
tures presented in data (Duda et al. 2000; Fred and Jain 2005; Xue et al.2009).
It is known that the current clustering methods may suggest very different struc-
tures in the same data, which are the result of the different clustering criteria
being optimized. There are no clear guidelines to choosing a clustering method
for a given data set and so the risk of picking an inappropriate clustering method
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is high. Choosing a single clustering algorithm for the problem at hand requires
both expertise and insight, and this choice might be crucial for the success of
the whole study. Selecting a clustering algorithm is more difficult than selecting a
classifier [102]. One of the common difficulties is the typical lack of ground truth
against which the result can be matched, therefore the benchmarks for validation
remain in a subjective realm.

Often, different clusterings of the same data can be obtained either from dif-
ferent experimental sources or from multiple runs of non-deterministic cluster-
ing algorithms [63]. Indeed, apparent structural differences may occur within the
same algorithm, given different parameters. Each clustering algorithm has its own
strengths and weaknesses. For any given dataset, it is usual for different algorithms
to provide distinct solutions. As a result, it is extremely difficult for users to de-
cide a priori which algorithm would be the the most appropriate for a given set of
data [79].

In the last decade the Cluster Ensemble approach has emerged as an effective
solution that is able to overcome these problems. Cluster ensembles (CE) address
the problem of combining multiple base clusterings of the same set of objects into a
single consolidated clustering. CE formalizes the idea that combining different base
clusterings into a single representative, or consensus, would emphasize the common
organization in the different data sets and reveal the significant differences between
them. The goal of CE is to find a consensus which would be representative of the
given clusterings of the same data set [63]. It has been found that such a practice
can improve robustness, as well as the quality of clustering results. It is widely
recognized that combining multiple classification or regression models typically
provides superior results compared to using a single, well-tuned model [174]. Thus,
the main objective of CE is to combine different decisions of various clustering
algorithms in such a way as to achieve a superior accuracy to those of individual
clusterings or to be more informative in regards to the structure of the data [79].
Furthermore, CE provide a more universal solution in that various structures and
shapes of clusters present in data may be discovered by the same ensemble method,
and the solution is less dependent upon the chosen ensemble type. In the classic
definition of CE, each base clustering refers to a grouping of the same set of objects
or its transformed version using a suitable clustering algorithm. The consolidated
clustering is often referred to as the consensus solution [59].

Multiple clusterings of the same data arise in many situations. Goder [63]
mentions two classes of instances. The first class is when different attributes or
features of large data sets yield different clusterings of the entities, such with the
many experiments performed on gene expression data. In addition to the individual
value of each experiment, combining the data across multiple experiments could
potentially reveal different aspects of the genomic system and its properties. In
this case one useful way of combining the data from different experiments is to
aggregate their clusterings into a consensus or representative clustering, using CE,
which may both increase the confidence in the common features in all the datasets
and also reveal the important differences among them [63]. The second class of
instances results from situations where multiple runs of the same non-deterministic
clustering or data mining algorithms yield multiple clusterings of the same entities.
Non-deterministic clustering algorithms, e.g. K-means, are sensitive to the choice
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of the initial seed clusters; running K-means with different seeds may yield very
different results. This is in fact desirable when the data is non-linearly separable,
as the multiple weak clusterings could then be combined into a stronger one. To
address this, it is becoming more and more common to analyze jointly the resulting
clusterings from a number of K-means runs, seeded with different initial centers.
One way to aggregate all those clusterings is to compute a consensus among them,
which would be more robust to the initial conditions [63].

At first glance, the CE problem sounds similar to the widely prevalent use
of combining multiple classifiers to solve difficult classification problems, using
techniques such as bagging, boosting, and output combining [7, 59, 95]. However,
combining multiple clusterings poses additional challenges. First, the number of
clusters produced may differ across the different base solutions. The appropriate
number of clusters in the CE consensus is also not known in advance and may
depend on the scale at which the data is inspected. Moreover, cluster labels are
symbolic and thus aligning cluster labels across different solutions requires solving
a potentially difficult correspondence problem. Also, the original data used to yield
the base solutions are not available to the consensus mechanism, which has only
access to the sets of cluster labels.

Advantages of Using CE

There are many reasons for using a cluster ensemble. In fact, the potential motiva-
tions and benefits are much broader than those for combining supervised classifiers.
As enumerated by Ghosh and Acharya [59], some of these reasons include:

1. Improved quality of solution. Just as ensemble learning has been proved
to be more useful compared to single model solutions for classification and
regression problems, one may expect that cluster ensembles will improve the
quality of results as compared to a single clustering solution. It has been shown
that using cluster ensembles leads to more accurate results on average as the
ensemble approach takes into account the biases of individual solutions [69,
102].

2. Robust clustering. It is well known that the popular clustering algorithms
often fail for certain datasets that do not match well with the modeling as-
sumptions. A cluster ensemble approach can provide a meta clustering model
that is much more robust in the sense of being able to provide good results
across a very wide range of datasets. As an example, by using an ensemble that
includes algorithms known to perform better on low-dimensional spaces as well
as clusterers designed for high-dimensional sparse spaces, one can perform well
across a wide range of data dimensionality [174].

3. Model selection. Cluster ensembles provide a novel approach to the model
selection problem by considering the match across the base solutions to deter-
mine the final number of clusters to be obtained.

4. Knowledge reuse. In certain applications, domain knowledge in the form of
a variety of clusterings of the objects under consideration may already exist
due to past projects. A consensus solution can integrate such information,
reusing it to obtain a more consolidated clustering. Strehl and Ghosh provide
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several examples in [174], where such scenarios formed the main motivation
for developing a consensus clustering methodology.

5. Multi-view clustering. Often the objects to be clustered have multiple as-
pects or views, and base clusterings may be built on distinct views that involve
nonidentical sets of features or subsets of data points. In marketing applica-
tions, for example, customers may be segmented based on their needs, psy-
chographic or demographic profiles, attitudes, etc. Different views can also
be obtained by considering qualitatively different distance measures, an as-
pect that has been exploited in clustering multifaceted proteins to multiple
functional groups. Consensus clustering can be effectively used to combine all
such clusterings into a single consolidated partition. Strehl and Ghosh [174]
illustrated empirically the utility of cluster ensembles in two orthogonal sce-
narios: (a) Feature distributed clustering (FDC): where different base clus-
terings are built by selecting different subsets of the features but utilizing all
the data points. (b) Object distributed clustering (ODC): base clusterings are
constructed by selecting different subsets of the data points but utilizing all
the features.
We should remember that these cases apply to the use of nonidentical features
or subsets of data points coming from a single dataset. In Chapter 6 we extend
the ’Multi-View’ notion to create a Consensus Clustering derived from two
spatially-alligned MRI volumes, both of different MRI modalities.

6. Distributed computing. In certain situations, data is inherently distributed
and it is not possible to first collect the entire data at a central site due to
privacy/ownership issues or computational, bandwidth and storage costs. An
ensemble can be used in situations where each clusterer has access only to a
subset of the features of each object, as well as where each clusterer has access
only to a subset of the objects.

It is important to remark that all these reasons described by Ghosh [59] refer
mainly to the classic data representation by feature descriptors in a vectorial space.
As we present in Chapter 6, the use of dissimilarity representations allow us to
formulate a different ’multi-view’ approach for multi-modality MRI acquisitions,
either by the use of established metrics or by the appropriate definition of new
distance functions.

3.7.1 The Cluster Ensemble Problem

To formulate the Cluster Ensemble problem we have decided to use the notation
presented by Iam-On et al. [79].

For a set X = x1, x2, . . . , xN of N data points let Π = π1, π2, . . . , πM be a set
of M base clustering results, forming what is called a cluster ensemble. Each base
clustering result is referred to as an ensemble member. It returns a set of clusters
πi = Ci1, C

i
2, . . . , C

i
ki

, such that
⋃ki
j=1 C

i
j = X, where ki is the number of clusters

in the i-th clustering. Each clustering is denoted by a collection of subsets of the
original dataset. For each x ∈ X, C(x) denotes the cluster label to which the data
point x belongs. In the i-th clustering, C(x) = j if x ∈ Cij .

The Cluster Ensemble problem is to find a new partition π∗ of a data set X
that summarizes the information from the cluster ensemble Π.
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The general methodology or framework of cluster ensembles is presented in
Fig. 3.6. In this typicalformulation, multiple base clusterings are obtained through
the independent application of diverse partitioning algorithms or procedures on the
dataset X. These base clusterings form the ensemble which is the result from the
first main stage of the procedure. The second stage has at its center a consensus
function which considers all the labels in the base elements of Π to produce a
unified solution. A consensus function Γ maps an ensemble Π = {π1, π2, . . . , πM}
composed of M base clusterings to a final unified partition π∗, Γ : Π 7→ π∗.

Fig. 3.6: Classic Cluster Ensemble methodology. Multiple base clusterings are
performed on a dataset X to obtain diverse partitions or base clusterings
π1, π2, . . . , πM , which together form the set known as cluster ensemble Π. These
base partitions are combined methodically by a consensus function which takes
into consideration all the base labelings in Π to determine the final clustering
result π∗.

3.7.2 Sources of Variation for Cluster Ensembles Generation

It has been shown, by Kittler et al. [95], that ensembles are most effective when
constructed from a set of clusterers whose errors are distinct [80]. This appears
to be analogous to the Central Limit Theorem in which multiple samples that
contain errors/randomness, when combined, reveal the true underlying distribu-
tion [80]. This observation leads to the accepted strategy of of ensuring diversity
via a suitable selection of algorithms or parameters to enhance the final result of
the ensemble procedure.

Diversity within an ensemble is of vital importance for its success. In such a
circumstance where all ensemble members agree on how a dataset should be parti-
tioned, a consensus solution formed from the aggregation of these base clusterings
will show no improvement over any of the constituent members [69].

Several approaches have been proposed to introduce artificial instabilities in
clustering algorithms, hence the diversity within a cluster ensemble. The follow-
ing ensemble generation methods yield different clusterings of the same data, by
exploiting different cluster models and different data partitions.
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Homogeneous ensembles: Base clusterings are created using the repeated runs
of a single clustering algorithm, each with a unique set of parameters. Following
this, the k-means agorithm has often been employed with a random initialization
of the seeding cluster centers. An ensemble of k-means is computational efficient as
its time complexity is O(kNM), where k, N and M denote the number of clusters,
the number of data points and the number of base clusterings, respectively. Other
non-deterministic clustering techniques, whose results obtained from multiple runs
are dissimilar, can also be used to form homogeneous ensembles.

Selection of K: For almost every clustering algorithm, the output is dependent
on the initial choice of the number of clusters k. The exception to this rule are the
algorithms that reach an optimal number of clusters solution according to their
particular optimization criteria, such as Support Vector Clustering. However, even
the result of those algorithms depends on a variety of input parameters or ini-
tializations beyond the simple dataset. To generate the ensemble diversity, base
clusterings are commonly created using randomly selected values of k from a pre-
specified interval or even the complete interval . Although there is not a clear rule
or consensus found in literature, some authors set k greater than the expected
number of clusters, using also as a common rule-of-thumb k =

√
N [55, 69]. This

generation scheme allows a large number of clustering algorithms, both partition-
ing and hierarchical, to be used as base clusterings. However, k-means is still often
employed for the efficiency reason [79].

Data subspacing/sampling: Cluster ensembles can also be created by applying
multiple subsets of initial data to base clusterings. It is assumed that each clus-
tering algorithm can provide different levels of performance for different partitions
of a dataset. Fern and Brodley [51] used random projections of high dimensional
data into subspaces to construct the base clusterings in a CE approach. The most
common approach is, however, to obtain the base clusterings choosing different
subsets of features [174], or a variety of data sampling schemes.

Heterogeneous ensembles: As an alternative to the homogeneous method, het-
erogeneous ensembles may be exploited, where the diversity is induced by allowing
each base clustering to be generated using a different clustering algorithms [6,69].

3.7.3 Consensus Methods

Having obtained the cluster ensemble, a variety of consensus functions have been
developed and made available for generating the ultimate data partition. In gen-
eral, consensus methods found in the literature can be categorized into: (i) pairwise
similarity, (ii) graph-based and (iii) feature-based approaches, respectively.

Pairwise Similarity

This category of cluster ensemble methods is based principally on the pairwise
similarity among data points. In particular, given a dataset X = {x1, x2, . . . , xN},
it first generates a cluster ensemble Π = {π1, π2, . . . , πM} by applying M base
clusterings to the dataset X.

Following that, the results of any hard clustering can be represented as a binary,
symmetric, N ×N similarity matrix, constructed for each ensemble member and
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denoted as Sm,m = 1 . . .M . Each entry in this matrix represents the relationship
between two data points. If they are assigned to the same cluster, the entry will
be 1, otherwise a similarity value of 0 will be assigned. Commonly this matrix is
called the coassociation matrix. Formally, the similarity between two data points
xi, xj ∈ X from the m-th ensemble member can be computed as follows:

Sm(xi, xj) =

{
1 if C(xi) = C(xj),

0 otherwise
(3.15)

An M number of similarity matrices are merged to form an ensemble coassoci-
ation matrix, denoted henceforth as CO matrix [55]. It is also known as consensus
matrix [126], similarity matrix [174], ensemble coassociation matrix [59], or agree-
ment matrix [177]. Each element in the CO matrix represents the similarity degree
between any two data points, which is a ratio of a number of ensemble members
in which these data points are assigned to the same cluster to the total number of
ensemble members. Formally, this similarity between xi, xj ∈ X is defined as

CO(xi, xj) =
1

M

M∑
m=1

Sm(xi, xj) (3.16)

Another variant is to use a weighted version of the CO matrix [59]:

wCO(xi, xj) =
1

M

M∑
m=1

wmSm(xi, xj) (3.17)

where wm specifies the weight assigned to the mth base clustering.
As Ghosh mentions [59], the CO matrix size is itself quadratic in the data size

n, which thus forms a lower bound on computational complexity as well as memory
requirements, inherently handicapping such a technique for applications to very
large datasets. However, it is independent of the dimensionality of the data.

Since the CO matrix is a similarity matrix, any similarity-based clustering
algorithm can be applied to this matrix to yield the final partition π∗. Among
several existing similarity-based methods, the most well-known technique to obtain
the final partition is agglomerative hierarchical clustering [80].

Graph-Based

A second type of methodology makes use of graphs representations to solve the
partitioning problem in cluster ensembles. The earliest and most well known graph
based ensemble methods were introduced by Strehl and Ghosh [174], with the
CSPA, HGPA and MCLA algorithms, and Fern and Brodley [50], with HBGF.

Regarding the graph-based proposal by Strehl and Ghosh, the cluster-based
similarity partitioning algorithm (CSPA) creates a similarity graph, where vertices
represent data points and the weight of the edges is determined by the similarity
scores obtained from the CO matrix (Eq. 3.16). Afterwards, a graph partition-
ing algorithm called METIS [92] is used to partition the similarity graph into
k clusters. METIS was chosen for its scalability and because it tries to enforce
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comparable sized clusters. Although this characteristic is desired in many appli-
cations, if the data is actually labeled with imbalanced classes, then it can lower
the match between cluster and class labels. In a similar fashion, the hyper-graph
partitioning algorithm (HGPA) poses the CE problem as a partitioning problem of
a suitably defined hypergraph where hyperedges represent clusters and objects are
represented by the vertices. The hypergraph partitioning algorithm HMETIS [91]
was applied to partition the underlying hypergraph into k clusters. As with CSPA,
employing a graph clustering algorithm adds a constraint that favors clusterings
of comparable size [59].

Finally, the meta-clustering algorithm (MCLA) forms a meta-graph with a
vertex for each base cluster. The edge weights of this graph are proportional to
the similarity between vertices. METIS is also employed to partition this meta-
level graph into k meta-clusters, where each data point has a specific association
degree to each meta-cluster. The final clustering is produced by assigning each
data point to the meta-cluster with which it has the highest association degree.

Feature-Based

The approach transforms the problem of cluster ensembles to clustering categorical
data. Specifically, each base clustering provides a cluster label as a new feature
describing each data point, which is utilized to formulate the ultimate solution.
The iterative voting consensus algorithm presented by Nguyen and Caruana [133]
It aims to obtain the consensus partition π∗ of data points X from the categorical
data induced by a cluster ensemble Π = {π1, π2, . . . , πM}.

This method utilizes the feature vector Y = {y1, y2, . . . , yN} , with N denoting
the number of data points and yi, i = 1 . . . N composed as yi = {π1(xi), . . . , πM (xi)},
where πg(xi) represents a specific cluster label in a given clustering πg, g =
1, . . . ,M . Each cluster in the target consensus clustering has a cluster center which
is also a M -dimensional vector. Each iteration of the algorithm involves two steps:
computing the cluster center of each cluster in the target consensus clustering, and
a second step of reassigning each data point to its closest cluster center [133].

Probabilistic methods

In a typical mixture model approach to clustering, such as fitting the data using
a mixture of Gaussians, there are k mixture components, one for each cluster. A
component-specific parametric distribution is used to model the distribution of
data attributed to a specific component. Such an approach can be applied to form
the consensus decision if the number of consensus clusters is specified. Topchy
[2] derives the consensus clustering from a solution of the maximum likelihood
problem for a finite mixture model of the ensemble of partitions. Ensemble is
modeled as a mixture of multivariate multinomial distributions in the space of
cluster labels. These probabilistic assumptions give rise to a simple maximum
log-likelihood problem that can be solved using the expectation maximization
algorithm. This model also takes care of the missing labels in a natural way.
Bayesian version of the multinomial mixture model described above can also be
formulated, one variant was proposed by Wang et al. [188].
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3.8 Validation in Unsupervised Classification

Evaluating the quality of a clustering is a nontrivial and ill-posed task [133]. In su-
pervised learning, model performance is assessed by comparing model predictions
to targets. In clustering we do not have targets and usually do not know a priori
what groupings of the data are best. This hinders discerning when one clustering
is better than another, or when one clustering algorithm outperforms another. In
general, there are two main approaches to evaluate consensus clusterings: consen-
sus criteria measure how the target consensus clustering is in agreement with all
the base clusterings that form the ensemble, and clustering criteria measure how
well the final partition obtained through the consensus clustering methodology re-
lates to the underlying features extracted from the dataset. Referring to clustering
in general, internal validity indices evaluate the goodness of a data partition us-
ing only quantities and features inherited from the dataset, the trie to determine
if the obtained structure is intrinsically appropriate for the data [84]. They are
usually employed in problems where true cluster labels are unknown. In contrast,
external validity measures exploit a priori information of the true data partition,
expressed by known labels of the data. This is similar to the cross-validation pro-
cess in supervised classification. Given a dataset whose correct clusters are known,
it is possible to assess how accurately a clustering method clusters the data rel-
ative to this correct clustering [80]. These validity criteria assess the degree of
agreement between two data partitions, where one of the partitions is obtained
from a clustering algorithm and the other is the known partition. Importantly,
the clustering algorithms at no time has access to the correct data labels or true
clustering structure; when it exists, this ground truth is only used to assess the
clustering performance.

3.8.1 Internal Validity Measures

Silhouette analysis

The silhouette analysis measures how close each point in one cluster is to points
in the same cluster and how far away it is to points in the neighboring clusters.
This is performed by quantitatively comparing the clusters by their tightness and
separation and its average width provides an evaluation of cluster validity [155].

For each element xi ∈ X, assigned to the cluster Ck, let a(xi) be the average
distance d(xi, Ck) from xi to all the other elements within the same cluster Ck.
a(xi) can be interpreted as a matching measure that quantifies how well suited xi
is to the cluster Ck, where a smaller average distance denotes a better matching.
The procedure is repeated with all the clusters to which xi is not assigned, d(xi, C),
where b(xi) = minC 6=Ck

d(xi, C), that is, the lowest average dissimilarity from xi to
every cluster. The cluster with this lowest average, b(xi), is called the neighboring
cluster of xi. Rousseuw [155] defines the related element s(xi) as

s(xi) =
b(xi)− a(xi)

max {a(xi), b(xi)}
(3.18)

Which can be rewritten as:
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s(xi) =


1− a(xi)/b(xi), if a(xi) < b(xi)

0, if a(xi) = b(xi)

b(xi)/a(xi)− 1, if a(xi) > b(xi)

(3.19)

where it can clearly be seen that −1 ≤ s(xi) ≤ 1. A value of s(xi) close to 1
requires a(xi)� b(xi). As a(xi) is a measure that denotes how dissimilar is xi to
the cluster it was assigned, a small value means the datapoint is well matched or
close to the rest of the elements of the cluster. Furthermore, a large value of b(xi)
would imply that xi is poorly matched to its neighboring cluster. Consequently
a value of s(xi) close to one means that the data point was well clustered, an
inference that arises from the fact that Xi would need to be close to the other
elements of the same clusters, denoting compactness, and well separated from the
remaining partitions. If s(xi) is close to −1, by the same logic can be concluded
that xi is improperly clustered and by this criteria it would be better suited to
the neighboring cluster, and a value of s(xi) around zero would denote a point in
the border of two partitions.

The average s(x) of a cluster Ck is a measure of how tightly grouped all the
data in the cluster are, compactness, and how well separated they are from the
neighboring partitions. Thus the average s(x) of the entire dataset is a measure of
how appropriately the data has been clustered [155].

Compactness

Compactness measures the average pairwise distances between points in the same
cluster [133], it uses only the information inherent to the dataset. Conmpactess is
defined as

CP (π∗) =
1

N

K∑
k=1

nk

(∑
xi,xj∈Ck

d(xi, xj)

nk(nk − 1)/2

)
(3.20)

where K denotes the number of clusters in the clustering result, nk is the num-
ber of data points belonging to the k-th cluster, d(xi, xj) is the distance between
data points xi and xj , and N is the total number of data points in the dataset.
Ideally, the members of each cluster should be as close to each other as possible.
Thus, a lower value in the Compactness index denotes a better, more condensed,
clustering result.

Davies Bouldin index

The Davies Bouldin index (DB) makes use of similarity measure Rij between the
clusters Ci and Cj , which is defined upon a measure of dispersion si of a cluster
Ci and a dissimilarity measure between two clusters dij . According to Davies and
Bouldin [34], Rij is formulated as

Rij =
si + sj
dij

(3.21)
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where dij and si can be estimated by the following equations. Note that vx
denotes the center of cluster Cx and |Cx| is the number of data points assigned to
cluster Cx

dij = d(vi, vj) (3.22)

si =
1

|Ci|
∑
∀x∈Ci

d(x, vi) (3.23)

Following that, the DB index is defined as

DB(π∗) =
1

k

k∑
i=1

Ri (3.24)

where Ri = max
j=1...k,i6=j

Rij . The DB index measures the average of similarity

between each cluster and its most similar one. As the clusters have to be compact
and separated, a lower DB index indicates better goodness of a data partition.

Dunn index

This validity index is introduced by Dunn [43]. Its purpose is to identify compact
and well-separated clusters. For a given number of clusters K, the definition of the
Dunn index is given by .

Dunn(π∗) = min
i=1...K

(
min

j=i+1...K

(
d(Ci, Cj)

maxk=1...K(diam(Ck))

))
(3.25)

where d(Ci, Cj) is the distance between two clusters Ci and Cj , which can be
defined as

d(Ci, Cj) = min
x∈Ci,y∈Cj

d(x, y) (3.26)

In addition, diam(Ci) is the diameter of a cluster Ci, which is defined as follows:

diam(Ci) = max
x,y∈Ci

d(x, y) (3.27)

In a dataset containing compact and well-separated clusters, the distances be-
tween the clusters are expected to be large and the diameters of the clusters are
expected to be small. Therefore, a large value of the Dunn index signifies compact
and well-separated clusters.

3.8.2 External Validity Measures

Classification Accuracy

It measures the number of correctly classified data points of a clustering solution
compared with known class labels. To compute the CA, the elements of a given
cluster are given the majority label, which corresponds to the known cluster label
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to which most of the data points in that specific obtained cluster belong. Then
the accuracy of the new labels is measured by counting the number of correctly
labeled data points in comparison to their known class labels, and dividing by the
total number of data in the dataset. Let mi be the number of data points with
the majority cluster label in cluster i, the CA can be regarded as the ratio of the
number of correctly classified data points to the total number of data points in
the dataset [133]. The CA is defined as

CA(π∗, Π ′) =

∑K
i=1(mi)

N
(3.28)

where N is the total number of data in the dataset. The CA ranges from 0 to
1. A value of CA close to 1 denotes a high correspondence between the ground
truth or true labels and the results obtained by the clustering procedure.

Rand Index

This validity measure takes into account the number of object pairs that exist in
the same and different clusters. More formally, the RI [152] is defined as

RI(π∗, Π ′) =
n11 + n00

n11 + n10 + n01 + n00
(3.29)

where n11 is the number of pairs of data points that are in the same clusters
in both partitions π∗ and Π ′, n00 denotes the number of pairs of data points that
are placed in the different clusters in both π∗ and Π ′, n10 is the number of pairs of
data points that belong to the same cluster in π∗ but are in the different clusters
in Π ′, and n01 indicates the number of pairs of data points that are put in the
different clusters in π∗ but are in the same cluster in Π ′. Intuitively, n11 and n00
can be interpreted as the quantity of agreements between two partitions, while n10
and n01 are the number of disagreements. The RI has a value between 0 and 1. It
takes the value of 1 when the two clusterings are identical, and 0 when no pair of
points appear either in the same cluster or in different clusters in both clusterings,
i.e. n00 = n11 = 0. This happens only when one clustering consists of a single
cluster while the other consists only of clusters containing single points. However
this scenario is not so common and lacks practical value. In fact, it is desirable for
the similarity index between two random partitions to take values close to zero,
or at least a constant value. Despite of its utility, a criticism against the Rand
index is that the expected value between two random partitions does not take a
constant value.

Adjusted Rand Index

To correct the main criticisms of the Rand index, that is, its expected value is not
zero when comparing random partitions, Hubert and Arabie [75] introduced the
adjusted Rand index (ARI). by taking the generalized hypergeometric distribution
as the model of randomness, i.e. the two partitions are picked at random subject
to having the original number of classes and objects in each, found the expected
value for n00 + n11. They proposed the following version of the Rand index
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ARI =
Index− Expected Index

Max Index− Expected Index
(3.30)

According to notation denoting the Rand index, the adjusted Rand index be-
tween partition π∗ and Π ′ is defined by Eq. 3.31.

ARI(π∗, Π ′) =
n11 − (n11+n10)(n11+n01)

n00
(n11+n10)+(n11+n01)

2 − (n11+n10)+(n11+n01)
n00

(3.31)

The higher the ARI value is, the greater the agreement becomes. The ARI is
bounded above by 1 and takes on the value 0 when the index equals its expected
value [75].
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Multi-modal MRI combination

4.1 Overview

In this Chapter we make an overview of the different proposed techniques for the
combination of multi-modal MRI images. The generalities of the strategies for
combining and representing the MRI data for classification are discussed, followed
by a general description of our proposed methods, which will be developed in
subsequent chapters.

4.2 Introduction

Computer-aided prognosis (CAP) and computer-aided diagnosis (CAD) involve
developing and applying computerized image analysis and multi-modal data fusion
algorithms to digitized patient data (e.g. imaging, tissue, genomic) for helping
physicians diagnose and predict disease outcome and patient survival. While a
number of data channels, ranging from the macro to the nano-scales are now being
routinely acquired for disease characterization, one of the challenges in diagnosing
and predicting patient outcome and treatment response has been in our inability
to quantitatively fuse these disparate, heterogeneous data sources [119].

Most researchers agree that cancer is a complex disease which we do not yet
fully understand. Predictive, preventive, and personalized medicine (PPP) has the
potential to transform clinical practice by decreasing morbidity due to diseases
such as cancer by integrating multi-scale, multi-modal, and heterogeneous data
to determine the probability of an individual contracting certain diseases and/or
responding to a specific treatment regimen. There is a consensus among clinicians
and researchers that a more quantitative approach, using computerized imaging
techniques to better understand tumor morphology, combined with the classifica-
tion of disease into more meaningful subtypes, will lead to better patient care and
more effective therapeutics. With the advent of digital pathology , multifunctional
imaging, the acquisition of multiple, orthogonal sources of genomic, proteomic,
multi-parametric radiological, and histological information for disease characteri-
zation is becoming routine at several institutions.
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Computerized image analysis and high dimensional data fusion methods will
likely constitute an important piece of the prognostic toolset to enable physicians
to predict which patients may be susceptible to a particular disease and also for
predicting disease outcome and survival.

Tools for automatic image analysis based on multi-modal imaging can provide
objective information about the tissue. These tools include supervised methods
that require prior knowledge, usually given as a training set in the form of manu-
ally labeled tissues, and unsupervised algorithms which are data-driven, providing
unidentified clusters that inherently differ, but whose significance must be further
defined.

Automatic tools have been previously used for volumetric measurements and
brain tissue segmentation in various brain pathologies including glioblastoma
(GB), and for creating recurrence probability maps. However, variability in scan-
ning protocols, acquisition parameters and patient movements, which are inherent
in clinical settings, result in variable and incomplete data sets (i.e. missing values)
that limit the use of such methods [111].

Recent research has shown that radiological evaluation of high-grade glial tu-
mors may be hampered by inaccurate subjective measurement and by limiting
treatment response assessment to evaluation of enhancing tissue. Automatic quan-
titative methods based on multi-modal data improve both efficiency and accuracy
of radiologic evaluation, and their role in routine clinical procedure should be
developed [111].

4.3 Strategies in fusion of imaging data

If multiple sensors or sources are used in the inference process, in principle, they
could be fused at one of 3 levels in the hierarchy [119,154];

1. Raw data-level fusion
2. Feature-level fusion
3. Decision-level fusion

Most of the methods found in literature deal with supervised classification,
and from them the majority only consider information fusion in the domain of
classifier outputs, referred also as the interpretation domain or decision-level (3).
From the point of view of unsupervised classification, the Cluster Ensemble prob-
lem (reviewed in Section 3.7) is a methodology belonging to this category, that
works directly on the labels at the decision-level and reaches a final unsupervised
partition by a defined combinational methodology.

If the multiple classifiers are generated using different instantiations of their
inputs, then we observe that information fusion is possible on the classifier inputs
or the data domain (1). Another fusion scheme, related to the last one in the data
domain is the fusion at the feature-level (2), in which descriptors are independently
obtained from every source and then combined in a suitable fashion. However, these
approaches are thwarted by challenges in (a) homogeneous representation of the
data channels, (b) fusing the attributes to construct an integrated feature vector,
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and (c) the choice of classification strategy in the space (or spaces) in which the
data is represented [182].

Typically the data domain (1 and 2) is a continuous space and the interpreta-
tion domain (3) is a discrete space, represented by a set of labels [154]. There are
many applications where we can choose between a combination of interpretations
and a combination of data as there is not a universal consensus and just as the
selection of classifiers, the efficacy of a method is always problem-dependent. An
illustreative diagram with the general principle of data fusion for classification is
illustrated in Fig. 4.1.

Working with a direct combination of imaging modalities, there have been sev-
eral attempts to combine diverse imaging data sources and modalities with the
reductionist approach of simply concatenating the individual image modality at-
tributes at each spatial location to form a single feature vector. This resulting
feature vector can be used as an input to a classifier in the same way as any other
feature vector, i.e. combine FMRI(c) and FCT (c) to create [FMRI(c), FCT (c)] for
every voxel location c. This approach assumes that the co-registration problem
has been effectively solved. In spite of the challenges, data fusion at the feature
level aims at retrieving the interesting characteristics of the phenomenon being
studied. However, when the individual modalities are heterogeneous (image and
non-image based) and of different dimensions, a naive concatenation will not pro-
vide a meaningful data fusion solution. This simplistic approach also overlooks
relationships and constrains that are particular to each modality. A clear example
(that is treated in Chapter 6) is that of the geometric constrains of the Diffusion
Tensors, which being 3 × 3 symmetric positive-definite matrices lie on a Riem-
manian submanifold in R6 and whose 6 independent elements cannot be treated
as a direct feature vector. A related challenge in the combination of multi-modal
data is to weight the relative contributions of the different channels. While one
could naively concatenate the original (or meta-space) based representations to
construct a fused attribute vector, different learning strategies could be leveraged
to optimally weight and then combine the individual data streams.

Several classifier ensemble or multiple classifier schemes have been previously
proposed to associate and correlate data at the decision-level [1724]; a much dif-
ferent task compared to data integration at the raw-data or feature level.

Traditional decision fusion based approaches have focused on combining ei-
ther binary decisions Yα(c) ∈ {+1,−1}, ranks, or probabilistic classifier out-
puts Pα(c) obtained via classification of each of the k individual data sources
Fα(c), α ∈ {1, 2, . . . , k}, via a Bayesian frameworks, fuzzy set theory, or via clas-
sical decision ensembles schemes, such as Adaboost, Support Vector Machines
(SVM), or Bagging [119].

Another possible solution to overcome the representational differences is to first
project the data streams into a space where the scale and dimensionality differ-
ences are removed; this space is also known as a meta-space [182]. For example,
imaging and non-imaging data can be homogeneously represented in the format
of eigenvectors in a PCA reduced meta-space [109,182].

Liberman et al. [111] proposed an automatic method based on a modification
of the k-Nearest-Neighbors (kNN) algorithm, applied to a multi-modal MRI data
with the aim of improving accuracy in assessment of therapy response to a spe-



68 4 Multi-modal MRI combination

Fig. 4.1: Illustration of principles of a combination of raw data approach (a),
against a combination of interpretations approach (b). In (a) the data from all
sources are first combined and then classified by a single classifier. In (b) the data
from each source are classified separately by the classifier C, and the outputs are
combined into a final interpretation. Note that the combination operators in (a)
and (b) typically work on different data types and are, therefore, usually different
operators [154].

cific anti-angiogenic therapy in patients with recurrent glioblastoma. This method
includes missing values in the kNN algorithm, arising from substandard acquisi-
tions or movements, and performs voxel-based classification based solely on MR
characteristics rather than spatial/morphologic properties.

Kernel-based formulations have been used in combining multiple related datasets
as well as for heterogeneous data fusion. However the selection and tuning of the
kernels used in multi-kernel learning (MKL) play an important role in the perfor-
mance of the approach. This selection proves to be non-trivial when considering
completely heterogeneous, multi-scale data. Additionally these methods typically
employ the same kernel or metric, across modalities, for estimating object similar-
ity. Thus while the Euclidean kernel might be appropriate for image intensities, it
might not be appropriate for all feature spaces [119]. Lee et al. [109] proposed the
Generalized Fusion Framework (GFF) for homogeneous data representation and
subsequent fusion in the meta-space using dimensionality reduction techniques.

4.4 Multi-Modal MRI Integration

As it has been explained, one of the major limitation in constructing unsupervised
classifying methodologies for diverse imaging data modalities is having to deal with
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different data domains, which commonly differ in both scale and dimensionality.
The main challenge presents itself when trying to devise an appropiate represen-
tation strategy, relevant and informative, which takes into account the differences
in data type and their own constrains. Thus, a significant challenge in integrating
heterogeneous imaging data has been the lack of a quantifiable knowledge rep-
resentation framework to reconcile cross-modal, cross-dimensional differences in
feature values. While no general theory yet exists for domain data fusion, most
researchers agree that heterogeneous data needs be represented in a way that will
allow for confrontation of the different channels, an important prerequisite to fu-
sion or classification [119].

As we have seen in Chapter 3, a representation strategy that bridges the struc-
tural and statistical approaches has many benefits. We have adoptated the dis-
similarity representation paradigm for our methodological proposals regarding the
combination of MRI modalities for unsupervised classification.

As an overview, in the first approach (Fig. 4.2)we makes use of a specific
dissimilarity function D that takes as input the different voxel-wise information of
two co-registered MRI modalities to calculate a vectorial meta-space (dissimilarity
space). Once this dissimilarity space is constructed, usupervised classification can
be performed as in a regular feature representation. As we have already explained
in Chapter 3, the definition of the appropriate dissimilarity function is crutial for
a correct representation of the multi-modal data.

In our second approach, taking into consideration the information coming from
a high-dimensional and geometrically complex modality such as Diffusion Tensor
Imaging, we relied on the theory behind cluster ensembles to create a multi-view
approach for the combination of MRI modalities (Fig. 4.3). This multi-view ap-
proach exploits the use of a diverse set of dissimilarity functions and already es-
tablished metrics to calculate a series of vectorial spaces for each modality. The
dissimilarity functions are chosen taking into account the specific information and
constrains in each modality, e.g., metrics in DTI-MR that use the full tensor infor-
mation and calculate the distance between two DT in their restricted Riemmanian
submanifold vs. specifically tuned metrics that calculate the distance between two
time-intensity curves derived from a DCE-MRI volume. Each one of these spaces
reflects certain aspect of the MRI-derived information, captured through the use
of distinct dissimilarity functions. Different clustering procedures are performed
independently in each one of these vectorial spaces, after which a cluster ensemble
is formed with the obtained labels and processed to reach an unifying solution.

In the following two chapters we describe these specific novel approaches to
multi-modal MRI combination for unsupervised classification, specially for het-
erogeneity assessment in tumoral lesions.
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Fig. 4.2: Schematic overview of the principal components forming the first proposed
approach for multi-modal MRI combination. A dissimilarity function is defined to
combine the information from two co-registered multi-parametric MRI volumes
in a voxel-wise manner. After the construction of a dissimilarity space diverse
clustering strategies are followed.
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Fig. 4.3: Diagram of the multi-view approach for combination of multi-parametric
MRI using cluster ensembles. The initial multi-modal volumes are spatially co-
registered and pre-processed, for each imaging volume a suitable assortment of
distance functions is chosen and used to derive a corresponding set of dissimilarity
vectorial spaces (D) using voxel-wise relationships. Afterwards, a set of different
clustering algorithms are applied to each dissimilarity space and an ensemble of
base clusterings is formed with the obtained labels and processed to reach an
unifying solution.
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Heterogeneity assessment in breast ductal
carcinoma

5.1 Overview

This chapter describes two proposed methodologies for the clinical assessment of
heterogeneity inside tumoral lesions by the combination of DCE-MRI and DWI-
MR acquisitions. The first one depends only on the DCE-MRI information, from
which a vectorial space is constructed with the pairwise relations between voxel-
wise time-intensity curves, and then clustered and compared with the respective
co-registered diffusion volume. The second methodology builds on the results of
the former one by actually using the information derived from both DCE-MRI and
DWI-MR modalities in the construction of a multi-modal dissimilarity vectorial
space which is later clustered and the results analyzed. We present results obtained
with real clinical datasets, evaluated both by comparison to a typical feature-based
approach as well as by their clinical significance assessed by medical experts.

5.2 Introduction

Responses to cancer treatment are increasingly differentiated not only based on
tumor type, but also on genetic and histochemical biomarkers. Exemplifying the
progress in this respect is breast cancer. Biopsy-derived histological biomarkers
offer high biological specificity and play an important role in determining the
choice of chemotherapeutic agent. As different parts of a tumor often show different
histological signatures, or have evolved to different stages of tumor progression
that may impact on their response to a given therapy, it is important to obtain a
complete coverage of the tumor. Biopsies, however, are difficult to localize within
the breast, are subject to sampling errors and can seldom be repeated. Thus, there
is growing clinical interest in the possible role of imaging to describe anatomical
and physiological heterogeneity of tumors [165,201].

Magnetic resonance imaging (MRI) methods such as dynamic contrast en-
hanced (DCE) and diffusion weighted (DW) MRI methods are amongst those of
interest as they provide non-invasive digital biomarkers with good spatial cover-
age, and repeatability [115]. DCE-MRI uses serial acquisition of images during
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and after the injection of intravenous contrast agent, and has been shown to re-
flect tumor vascularity [98] [175]. DWI on the other hand,generates images that are
sensitized to water displacement at the diffusion scale and can be used to calculate
a quantitative index reflecting the apparent freedom of diffusion (ADC, Apparent
Diffusion Coefficient). Preclinical and clinical data show that ADC reflects regional
cellularity [60] [121] [87].

DCE-MRI has a high sensitivity for breast cancer detection (89-100%), while
DWI has shown utility in predicting suitable therapies and monitoring response
[135]. A recognized weakness of DCE and DW-MRI is their lack of specificity be-
tween tumor types as overlap between the findings of benign and malignant lesions
results in variable specificity (37-86%) [135]. This is not entirely surprising given
that across cancer types the common features tends to include such processes as
cell proliferation, angiogenesis, and necrosis. The ability of DCE- and DW-MRI to
provide a spatial depiction of these anatomical and physiological conditions within
a tumor makes them natural tools for probing tumor heterogeneity. The report-
ing of MRI has long relied on visual assessment of several scans having different
contrasts, but in relation to breast cancer, few studies have exploited this inher-
ently multiparametric data in a unified manner [203], [88], [196]. Moreover, the
most recent works mainly address the problem of comparing and retrospectively
integrating the contributions from the different modalities, without exploiting the
conjunct information. Nevertheless, these works have highlighted the potential
of combining DCE-MRI and DWI to differentiate the core of the tumor from
peritumoral tissues and normal tissues, and thus provide an indication of lesion
heterogeneity [204].

In this chapter we propose the multi-modal integration of the information pro-
vided by DCE-MRI and DWI of breast cancer lesions for evaluating their het-
erogeneity, that is, to divide the lesion into zones that share certain similarity
when using combined information coming from different imaging domains. The
ultimate intention of this protocol is to to allow a more extensive, reproducible
characterization of heterogeneity in tumors that have been previously identified
by a clinician.

In all previous reports on breast lesion segmentation the representation of DCE
curves and ADC maps has been that of features in a vector space defined by the
image values [35,57,100,104].

In this work a different approach is followed exploiting dissimilarity based rep-
resentations (DBR) [141]. As it has been explained in Section 3.4, the concept
of dissimilarity based representation consists on focusing on the contrast, or dis-
tance, between objects and on measuring it by a suitable criterion. The term object
refers, in the present context, to the information represented by each particular
voxel. This information need not be of a single type, and in this case consists of
both signal intensities (i.e. the time-intensity enhancement curve for DCE-MRI)
and the ADC parameter value (derived from DW-MRI). A key concept in DBR
is that of a proximity relation between two objects, which does not need to be
explicitly represented in a feature space. Objects are characterized through pair-
wise dissimilarities; instead of using an absolute characterization of the objects
by a set of features, problem-centric knowledge is used to define a measure that
estimates the dissimilarity between objects. Here, both DCE-MRI and DWI-MR
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contribute to such a measure leading to a novel multi-modal approach to tissue
characterization.

5.3 Dissimilarity Spaces with Time-Intensity Curves

Dissimilarity based clustering was applied to the perfusion curves in a voxel-wise
manner.

From amongst the abundance of features that have been proposed as the basis
for classifying lesions from breast DCE-MRI, the raw time series were used in this
study.

Lavini et al. [104] proposed a general set of kinetic features for DCE-MRI data
where time-intensity curves are classified voxel by voxel according to their shape.
Kuhl et al. [100] showed that the use of curve shape descriptors based on the
three-time-points (3TP) method could distinguish malignant from benign lesions.
This method, first proposed in [35], is based on using high-spatial-resolution images
while scanning the images at the selected three time points (one pre-contrast and
two post-contrast time points). However, the 3TP method was criticized for not
considering enhancement patterns at full time points. Subsequent pattern recogni-
tion proposals for DCE-MRI data have mainly relied on the extraction of kinetic
features from the time-intensity curves or their combination with morphometric
features. Gal et al. [57] made a survey of the available methods in the literature
and proposed a set of features which includes morphological, textural and kinetic
descriptors, together with variations of existing ones.

In all the methods that can be found in literature, the representation of time-
intensity curves is performed by features defining a vectorial space. In this work a
different approach is followed exploiting dissimilarity based representations (DBR)
[141].

In this framework, following the dissimilarity representation paradigm de-
scribed in Chapter 3, the first step is to construct a dissimilarity matrix. As it
has been explained in Section 3.4, this matrix consists of a set of row vectors, one
for each object. These vectors represent the objects in a vector space constructed
by the dissimilarities to each other object.

Let X = {x1, . . . , xn} be a set of voxel based perfusion curves. Given a dis-
similarity function, a data-dependent mapping D is defined as D(·, X) : X → Dn
linking X to a dissimilarity vectorial space [142].

When using all the elements in the set X the complete dissimilarity represen-
tation yields a square matrix consisting of the dissimilarities between all pairs of
objects in X, such that every object is described by an n-dimensional dissimilarity
vector D(x,X) = [d(x, x1) . . . d(x, xn)]T .

To calculate the pairwise proximity between DCE-MRI perfusion curves we
have defined a distance function DDCE which is based on the adaptive dissimilarity
index first proposed in [29].

There are two main approaches to quantifiably compare two time-series: the
first one makes use of the distances between the absolute values of their elements,
such as the classic Euclidean distance or its generalization, the Mikowski distance.
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The second main approach focuses on the similarity of the time-series behavior
along time, computed in many applications with the Pearson correlation coeffi-
cient. Figure 5.1 illustrate the concepts related to both proximities between time-
intensity curves.

Unlike conventional time-series distance functions which are value-based, that
is, focus only on the closeness of the values observed at corresponding points in
time, ignoring the interdependence relationship between elements that characterize
the time-series behavior, the proposed distance function takes into account the
proximity with respect to values as well as the proximity with respect to their
behavior, computed with the temporal correlation.

Fig. 5.1: A graphic illustrating the different concepts of simmilarity between time-
intensity curves. Curves S1 and S2 have a high degree of similarity with respect to
their absolute intensity values, whereas curves S2 and S3 share a high similarity
with respect to their behavior along time.

For two voxel-derived perfusion curves S1 = (u1, . . . , up) and S2 = (v1, . . . , vp),
closeness with respect to behavior is defined as the combination of their monotonic-
ity, that is, if both curves increase or decrease simultaneously, and the closeness
of their growth rate over a determined period [29] . Both criteria are quantified by
the temporal correlation, present in the first term of the distance function DDCE ,
(Eq. 5.1). The complete distance function DDCE for DCE-MRI derived perfusion
curves is defined as follows:

DDCE(S1, S2) =
2

1 + exp(Cort(S1, S2))
dH(S1, S2) (5.1)

where S1 = (u1, . . . , up) and S2 = (v1, . . . , vp) are two voxel-derived perfusion
curves sampled at time instants (t1, . . . , tp) [29, 38]. Cort is the temporal corre-
lation (Eq. 5.2) and dH is the Hausdorff distance, defined in Eq. 5.3, which is
used to measure the value-based distance between the pair of voxel-wise perfusion
curves.
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Cort(S1, S2) =

∑p−1
i=1 (u(i+1) − ui)(v(i+1) − vi)√∑p−1

i=1 (u(i+1) − ui)2
√∑p−1

i=1 (v(i+1) − vi)2
(5.2)

dH(S1, S2) = max{max
u∈S1

min
v∈S2

‖u− v‖ ,max
v∈S2

min
u∈S1

‖v − u‖} (5.3)

Our decision to use the Hausdorff distance to compute the distance with respect
to the absolute values between two time-intensity curves instead of using other
options such as the widely know L2-norm obeys a comparison and analysis of its
properties. The Hausdorff distance and its modified varieties have proven to be
effective in the field of figure and curve template matching, specifically dealing
with a central problem in pattern recognition and computer vision, which is to
determine the extent to which one shape differs from another [17,39,77].

Following Eq. 5.3, for two generic curves or shapes A and B, the Hausdorff
distance can also be expressed as the maximum of h(A,B) and h(A,B), where
the function h(A,B) is called the directed Hausdorff distance from A to B, and is
expressed as

h(A,B) = max
a∈A

min
b∈B
‖a− b‖ (5.4)

thus, being the maximum of both directed distances, dH measures the degree
of mismatch by measuring the distance of the point of A that is farthest from any
point of B and, conversely, the point of B that is farthest from any point of A.
Intuitively, if the Hausdorff distance is d, every point of Amust be within a distance
d of some point of B and vice versa. Furthermore, dH fulfills the properties of a
metric over the set of all closed, bounded sets [77].

5.4 First approach: DCE-dependent methodology

In the current study, we propose the multi-modal integration of the information
provided by DCE-MRI and DWI of the breast cancer lesions. First, dissimilarity-
based clustering is performed on selected DCE-MRI images to identify the differ-
ent types of enhancement patterns inside the tumor. Then, the resulting regions
are mapped onto the corresponding ADC images, which are spatially registered
through the use of a multi-resolution elastic registration protocol. Statistical anal-
ysis revealed that the PDFs of the subregions corresponding to different clusters
are statistically independent, which indicates the self-consistency of the approach
and enables the integration of the information gathered from the two modalities
for a robust tissue classification.

The DCE-MRI data are first visually inspected to identify the images where
the lesion can be detected.

A region of interest (ROI) is delineated around the lesion, leaving space for the
segmentation of relevant surrounding tissue. Clustering is performed on a dissim-
ilarity space constructed with the voxel-wise relationships between time-intensity
perfusion curves.
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Fig. 5.2: First methodology for analysis and integration of Perfusion/Diffusion MRI
information. In this processing methodology the clustering is performed exclusively
on the time-intensity curves drived from the DCE-MRi volumes and the obtained
regions are projected on the spatially registered ADC maps for analysis.

A multi-modal registration protocol is implemented to spatially allign DWI
and DCE-MRI data, allowing a precise spatial mapping of the DCE clustered
regions to the DWI. Statistical analysis is performed on the DWI-derived ADC
maps to test the consistency of the information provided by this modality with
that extracted from the DCE-MRI, which can thus be profitably integrated for an
accurate tissue characterization.

5.5 Implementation on Clinical Data

5.5.1 Clinical MRI Data

Data were acquired from 17 patients (age 50±13.2). All the patients were affected
by primary ductal carcinoma, 15 having infiltrating and 2 lobular tumors.

DWI was acquired with a single-shot spin-echo (SE) echo planar imaging (EPI)
sequence in three orthogonal diffusion encoding directions (x, y and z) using 4 b
values (0, 250, 500 and 1000 s/mm2) with parallel imaging (acceleration factor 2).
Subjects were breathing freely, with no gating applied. The dataset consisted of
30 transverse slices (slice thickness 5 mm, no slice gap) and TR/TE 4800/71 ms,
matrix 90× 150 over the field of view (FOV) 184.5× 307.5 mm.

DCE-MRI was performed using a T1-weighted 3D FLASH sequence (TR/TE
7.4/4.7 ms) with a flip angle of 25 ◦ and an acquisition matrix of 384× 384× 128
and field of view (FOV) 340×340×166 mm. Each 120-slice set was collected in 90
s at 8 time points for approximately 12 min of scanning. A catheter placed within
an antecubital vein delivered 0.1 mmol/kg of the contrast agent, gadopentetate
dimeglumine, (Magnevist, Wayne, NJ, USA) over 20 s (followed by saline flush)
after the acquisition of one baseline dynamic scan.

5.5.2 Multi-Modal Registration

In order to perform voxel-wise dissimilarity based clustering that incorporates both
DCE-MRI and DWI data, it is necessary to first spatially align the two datasets.
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Given a fixed IF (x) and a moving image IM (x) of dimension d and defined on
their own spatial domain: ΩF ⊂ Rd and ΩM ⊂ Rd, the registration problem is the
process of finding the optimal transformation T (x) that brings the moving image
IM (x) into spatial alignment with the fixed image IF (x). The transformation is
defined as a mapping from the fixed image to the moving image, T : ΩF ⊂ Rd →
ΩM ⊂ Rd, where the alignment is measured according to a reference metric S.

A diagram of the classic general registration methodology and components is
shown in Fig. 5.3.

Fig. 5.3: Diagram with the classic components of a registration pipeline.

The problem of registering between DCE-MRI and DWI becomes an increas-
ingly difficult task in a highly compressible and elastic tissues like the breast,
with its inhomogeneous anisotropic soft tissue, inherent non-rigid behavior and
lack of solid landmarks to guide the registration as fixed references. A standard
registration protocol was used. Due to the highly distinct contrast and intensity
characteristics of the two modalities, as well as the low resolution of the DWI vol-
umes, the registration process was divided into two steps, each following a standard
multi-resolution strategy.

As a registration strategy, the multiresolution methodology is started with
fewer degrees of freedom for the transformation model. Specifically, the strategy
involves a rigid and affine transformation before the nonrigid registration. In the
first step, rigid and affine transformations were performed successively in order to
align and match the features of the fixed (DCE-MRI) and moving (DWI) images.
Part of this step is the iterative refinement of the segmentation using a multi-level
scale-space. It refers to a methodology for handling image structures at different
scales, in which the image is represented as a set of smoothed images, the scale-
space representation, parametrized by the size of the smoothing kernel used for
suppressing fine-scale structures. We use a 5 level Gaussian scale space, allowing at
each step the refinement of the segmentation as both the fixed and moving images
are iteratively matched by their more relevant features as they go from higher to
lower Gaussian smoothing.

In the second step a multi-resolution cubic B-spline transformation with a
regularization penalty was performed to elastically refine the alignment. B-splines
are used as a a parametrisation :
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Tµ(x) = x+
∑

xk∈Nx

pkβ
3

(
x− xk
σ

)
(5.5)

with xk the control points, β3(x) the cubic multidimensional B-spline poly-
nomial, pk the B-spline coefficient vectors or control point displacements, σ the
B-spline control point spacing, and Nx the set of all control points within the
compact support of the B-spline at x [156]. The control points xk are defined on
a regular grid, overlayed on the fixed image.

Lesion specific masks based on regions delineated by clinical experts were used
in order to assign a greater weight to the voxels in the lesion area [96].

Normalized mutual information (NMI) was used as registration metric. NMI
assumes a relation between the probability distributions of the intensities of the
fixed and the moving image and is well suited for multi-modal registration. NMI
is given by

NMI =
(H(IF ) +H(IM ))

H(IF , IM )
(5.6)

where HF and HM denotes the entropy of the fixed and moving images respec-
tively, and H(IF , IM ) represents the joint entropy, which in the case of images is
a measure of mutual dispersion [147].

In order to regularize the deformation, we used a bending energy penalty which
is based on the spatial derivatives of the transformation [156]. The methodology
used for registration was implemented in Elastix [96] and all the steps have been
widely validated in literature [68] [156].

For the implemented protocol the DCE-MRI was set as the fixed volume and
the DWI as the moving one. The DCE-MRI volume corresponding to the time
point where the best contrast could be detected for both the lesion and the sub-
regions was chosen, i.e. the one acquired two minutes after the contrast medium
injection, following [35]. From the DWI data, the non-diffusion weighted volume,
the so called b0, was used as the moving one since it is less subjected to gradient-
related artifacts and it is also the one providing the same amount of information
on all the structures under investigation.

The registration protocol was applied to the b0 images from the DWI dataset
and their transformation to the DCE-MRI space validated for each subject through
visual assessment by a clinical expert. The resulting transformation was applied
to the remaining b-values and the ADC was estimated on the transformed DWI
images.

5.5.3 Assessment

In each of the patients, a ROI was delineated by an expert around the lesion
in the motion-corrected DCE-MRI volumes. The time-intensity curves from the
voxels inside the ROI were treated as independent objects on a voxel by voxel
basis.

Using DDCE from Eq. 5.1, a dissimilarity matrix was derived on a slice-wise
basis for the pairwise dissimilarities of the elements from the corresponding ROI. In
such a space, each element was represented by a row vector whose dimensionality
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Fig. 5.4: A sample of the volumes involved in the multi-modal registration method-
ology. The original DCE and DWI volumes (a), the moving DWI volume after the
rigid registration stage (b), and the final registration outcome compared with the
fixed image in a checked pattern visualization (c).

was defined by the cardinality of the ROI. For an element x, belonging to the
n-element ROI set X, the vectorial representation within the dissimilarity space
is given by

DDCE(x,X) = [DDCE(x, x1), DDCE(x, x2), . . . DDCE(x, xn)]
T

(5.7)

Once the dissimilarity space was constructed, the K-means algorithm [194] was
used to group the voxels with similar perfusion patterns in the ROI into clusters.
The initial centroids were calculated automatically with a preliminary clustering
stage with a random 10% sample. K-means minimizes the sum over all clusters of
the within-cluster sums of point-to-cluster-centroid distances using, in this case,
the squared Euclidean distance. The K number of clusters was heuristically set to 5
taking into account the expected perfusion zones of the lesion and the surrounding
tissue.

The regions resulting from dissimilarity based clustering were rendered as semi-
transparent colored maps overlapping on the morphological images for each slice.
The resulting clusters were analyzed by the radiologists of our team who confirmed
and validated the segmentation of both the central and surrounding tumoral re-
gions.

Once the registration protocol was applied to the b0 images and validated for
each subject through visual inspection, the resulting transformation was applied
to the remaining b-values in order to calculate the transformed ADC. The clusters
obtained on the DCE were projected onto the spatially registered ADC maps to
perform the statistical analysis. Normality tests (Jarque-Bera) revealed that the
ADC value for the different clusters analyzed was not normally distributed. Ac-
cordingly, a non parametric test (Wilcoxon-signed-rank test) was used (p = 0.05)
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to evaluate whether the tumors subregions clustered on the DCE corresponded to
regions in the DWI whose PDFs were statistically different. In particular, separate
analysis for single slices (intra-slice) and the tumor as a whole (inter-slice) were
performed. In this we found that the distributions of the ADC values in the DCE-
MRI defined regions were statistically different, in each one of the two conditions,
in 15 out of 17 patients.

This results show that subregions corresponding to different clusters in the
DCE volume hold statistically different ADC characteristics, supporting the self-
consistency of the method and allowing for the integration of the information
obtained from the two modalities. In the following Section these results will justify
the extension of the method into an actual integration of the raw information from
both modalities through the use of a common dissimilarity space.

5.6 Integration of DCE ad DWI for Heterogeneity
Assessment

Following on the first methodology described in 5.4, this second work extends the
idea of dissimilarity spaces to an actual integration of the raw information of both
DCE-MRI and DWI-MR modalities into a single unfied vectorial space in which
it is feasible to follow a unique clustering procedure.

A diagram of the pipeline can be seen in Fig. 5.5. As in the previous method-
ology (Fig. 5.2), the DCE-MRI data are first visually inspected to identify a time-
point where the lesion has the higher contrast with respect to the surrounding
tissue. Multi-modal registration is carried out between DW-MRI and DCE-MRI
images, allowing a spatial mapping of both volumes. The informatioon of both
DCE and DWI modalities is integrated into a single vectorial space using a joint
dissimilarity function, after which clustering is performed in this space. Statistical
analysis, consisting on non-parametric tests, were applied on the ADC distribu-
tions defined by the obtained clusters. An assessment of the results was carried
out by clinical experts and an evaluation of the tightness and separation of the
clusters is also performed.

Fig. 5.5: Perfusion/Diffusion analysis and integration pipeline
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5.7 Multi-modal Dissimilarity Spaces

The creation of a dissimilarity space entirely dependent of the DCE information
was explained in section 5.4, here we extended the concepts behind the DCE-based
dissimilarity function DDCE (Eq. 5.1).

The integration of the diffusion information into the dissimilarity function is ac-
complished through the addition of an ADC dependent term DADC (Eq. 5.8). This
term is defined as a sigmoid function which makes use of the normalized difference
between the ADCs (ADCS1 and ADCS2) of the two voxels under consideration,
which ranges from 0 to 1.

DADC(S1, S2) =
1

1 + exp
(
−kADC

(∥∥∥ADCS1−ADCS2

max{ADCROI}

∥∥∥− 0.5
)) (5.8)

Fig. 5.6: Effects of varying the tuning parameter kADC from Eq. 5.8.

The tuning parameter kADC weights the contribution of DADC to the complete
dissimilarity measure D by modulating the shape of the sigmoid function. When
the value of the normalized difference between ADCs is low, denoting similar
ADC values between voxels, the dissimilarity function DADC approaches zero.
On the contrary, when the value of the normalized difference between ADCs is
high, denoting a large dissimilarity between ADC values between voxels, DADC

approaches one, making the overall dissimilarity measure approach the value of
DDCE . The impact of the different values of kADC is illustrated in Fig. 5.6.

The complete dissimilarity function D is then the product of DADC and DDCE

(Eq.5.9).
D = DADC ·DDCE (5.9)
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Using the complete form D is expressed as:

D(S1, S2) =
2 · dH(S1, S2)

1 + exp(Cort(S1, S2))

× 1

1 + exp
(
−kADC

(∥∥∥ADCS1−ADCS2

max{ADCROI}

∥∥∥− 0.5
)) (5.10)

This global measure enables the monitoring of the performance as a function
of the relative weight given to the ADC, as well as of different values of kADC .

5.8 Tests with Clinical Data

5.8.1 Clinical MRI Data

Data were acquired from 21 patients (age 50±13.8 years). All the patients had
been diagnosed to have primary ductal carcinoma.

The MRI clinical protocol was the same as in Section 5.5.1.
DWI was acquired with a single-shot spin-echo (SE) echo planar imaging (EPI)

sequence in three orthogonal diffusion encoding directions using 4 b values (0, 250,
500 and 1000 s/mm2) with parallel imaging. Subjects were breathing freely, with
no gating applied. The dataset consisted of 30 transverse slices (slice thickness 5
mm, no slice gap) and TR/TE 4800/71 ms, matrix 90× 150 over the field of view
(FOV) 184.5× 307.5 mm.

DCE-MRI was performed using a 3D T1-weighted FLASH sequence (TR/TE
7.4/4.7 ms) with a flip angle of 25 ◦ and an acquisition matrix of 384× 384× 128
and field of view (FOV) 340×340×166 mm. Each 120-slice set was collected in 90
s at 8 time points for approximately 12 min of scanning. A catheter placed within
an antecubital vein delivered 0.1 mmol/kg of the contrast agent, gadopentetate
dimeglumine, (Magnevist, Wayne, NJ, USA) over 20 s (followed by saline flush)
after the acquisition of one baseline dynamic scan. The DCE-MRI timeseries was
motion corrected using the scanner manufacturer’s in-line procedure.

5.8.2 Performance Assessment

In each of the patients, a ROI was delineated by an expert around the lesion in the
motion-corrected DCE-MRI volumes. Since unsupervised classification is sensitive
to the general structure and distribution of the data, the ROI was drawn just
exceeding the area of the enhancing lesion, allowing for a clear delineation of the
heterogeneity of the lesion inside the ROI. The time-intensity curves normalized
to the baseline at t = 0 and the corresponding ADC values from the voxels inside
the ROI were treated as independent objects on a voxel by voxel basis. Using D
from Eq. 5.10, a dissimilarity matrix was derived on a slice-wise basis from the
pairwise dissimilarities of the elements in the corresponding ROI. In such a space,
each element was represented by a row vector whose dimensionality was defined
by the cardinality of the ROI.
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Once the dissimilarity space was constructed, the K-means algorithm [194]
was used to group the voxels in the ROI into clusters. The initial centroids were
calculated automatically following a preliminary clustering step with a random
10% subsample, as a strategy to improve the algorithm initialization avoiding a
misplacement of the initial seeds. K-means minimizes the sum over all clusters of
the within-cluster sums of point-to-cluster-centroid distances using, in this case,
the squared Euclidean distance.

For selecting the K number of clusters the standard clinical assessment proto-
col has been taken into consideration. It considers only three classes (persistent,
plateau and wash-out). An additional has been included for the surrounding tissue
considering that the ROI exceeds the estimated limits of the enhancing lesion.

In order to perform a comparison with established methods the clustering pro-
cedure was also performed following a morphologic feature-based approach. This
method relies on descriptors derived from the voxel-wise time-intensity curves,
comprising mainly specific characteristics of the shape of such curve.

The features extracted from the DCE-MRI voxel-wise time-intensity curves are:
baseline, maximum signal difference, time to peak, area under curve, maximum
enhancement, wash-in rate, maximum slope of increase, wash-out rate and the
intercept of the line fitting the tail of the time-intensity curve with the axis t = 0.
A schematic of the features is shown in Fig. 5.7. More about the use and definition
of these morphologic features to describe the contrast agent intake can be found
in the related literature [104] [57] [27].

Furthermore, the clustering procedure was repeated incorporating the ADC of
each voxel as an additional feature to the morphologic descriptor vectors calculated
previously. The ADC and the morphologic features were standardized by subtract-
ing their mean and dividing by their standard deviation. The results of these two
procedures were compared with our method in order to assess the clustering and
data representation outcome.

5.8.3 Results

The regions resulting from dissimilarity based clustering were rendered as colored
overlays on the morphological images on each slice. The results from a represen-
tative patient are displayed in Fig. 5.8. After clustering was performed on the
normalized curves, the resulting clusters were assessed by the radiologists to val-
idate the segmentation of both the central tumoral and surrounding regions. Fig.
5.8(b) shows examples of the clusters obtained, while Fig. 5.8(c) and (d) represents
the plots of the average time-intensity perfusion curves calculated on the raw and
normalized data respectively. The plots show the impact that the normalization
step has in highlighting the inter-cluster differences. The central region exhibits
a characteristic pattern in the DCE-MRI of a high early enhancement followed
by a rapid wash-out, indicative of angiogenesis (Fig. 5.8(d), red line). Typically,
surrounding this central region lays a cluster featuring a pattern of rapid enhance-
ment followed by a signal plateau (Fig. 5.8(d), orange line). The outermost cluster
surrounding these two central regions features a slow enhancement behavior (Fig.
5.8(d), yellow line). The voxels corresponding to the each cluster were extracted
from the spatially registered 3D ADC maps in order to perform statistical anal-
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Fig. 5.7: Classic morphologic features derived from the DCE-MRI time-intensity
curves, used for comparison purposes: Signal baseline (BL), time to peak (TTP),
wash-in rate (WIR), maximum slope of increase (MSI), wash-out rate (WOR),
maximum signal difference (MSD), maximum enhancement (MSD/BL), area under
the curve, and the intercept of the line fitting the tail of the time-intensity curve
with the axis t = 0 (α).

Fig. 5.8: DCE-MRI image (a) and overlayed lesion clustering (b),comparison be-
tween the average raw (c) and normalized curves (d) calculated for each cluster.

ysis. The analysis was carried out in the whole 3D ROI, that is, taking into ac-
count the ADC values corresponding to all the clustered slices as a single volume.
Normality tests (Jarque-Bera) revealed that the ADC values for the different clus-
ters analyzed were not normally distributed. Accordingly, a non parametric test
(Wilcoxon-signed-rank test) was used (p = 0.05) to evaluate whether the tumor’s
subregions corresponded to regions in the ADC maps with statistically different
PDFs. In this way we found that the distributions of the ADC values in the DCE-
MRI defined regions were statistically different, in each one of the two conditions,
in 19 out of 21 patients.
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Fig. 5.9: Clustering results using different values for the tuning parameter kADC
(1, 3 and 5).

The radiologist reviewed the overlays in comparison to the DCE seen as a
dynamic loop, the DWI images and the ADC maps derived from them, as well as
T2 STIR images. Criteria for the review were whether or not any of the subregions
obtained by the method corresponded to a zone of necrosis based on the complete
set of images, and whether one or more regions that would be classified as either
benign or malignant have been subdivided.

Figure 5.9 illustrates a typical case setting kADC to 1, 3 and 5. From the
obtained results it was highlighted by the experts the usefulness of varying the
parameter kADC to emphasize different characteristics of the lesion. A high kADC
allows the discrimination between the core tumor and the surrounding regions by
giving a higher weight to the difference between ADCs. This is mainly due to the
fact that there is a progressive increase in ADC from the core of the tumor to
peritumor tissues to normal tissues, that leads to the possibility to use the ADC
for locoregional staging [9]. Lowering kADC allows the subdivision of the core based
on DCE-MRI dissimilarity and the evaluation of the heterogeneity of the tumor
thanks to the balanced contribution of DCE and DWI in the distance function D.

For the sake of cluster comparison and validation among different methods,
the silhouette analysis was used in all the clustering results. As it is explained in
Section 3.8.1 the silhouette analysis measures how close each point in one cluster
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is to points in the same cluster and how far away it is to points in the neighbor-
ing clusters. This is performed by quantitatively comparing the clusters by their
tightness and separation and its average width provides an evaluation of cluster
validity [155].

The silhouette analysis of our method highlighted an improved performance of
31% for the clustering performed using kADC = 1 with respect to the established
approach that employs morphologic features derived from the DCE-MRI time-
intensity curves, including the case where the Apparent Diffusion Coefficient was
incorporated as an additional feature (Table 5.1).

Table 5.1: Silhouette analysis scores describing cluster compactness and separation
for the whole ROI and for each relevant region for the Kinetic Features and the
Multi-Modal Lesion Assessment (MMLA) methods (the higher the better).

Method Mean Central 1 Central 2 Periferic

Morphologic Features 0.51 0.53 0.51 0.49

Morphologic Features+ADC 0.47 0.49 0.48 0.44

MMLA 0.62 0.57 0.65 0.61

MMLA+ADC, kADC = 1 0.62 0.57 0.64 0.62

MMLA+ADC, kADC = 3 0.58 0.54 0.59 0.60

MMLA+ADC, kADC = 5 0.57 0.56 0.58 0.58

5.9 Discussion

As a general strategy, we have demonstrated a dissimilarity clustering based on
multi-dimensional data derived from diffusion and perfusion MRI. Extension of
the algorithm to additional data is straightforward, though the computational
demand rises, and the similarity metric will likely need to incorporate further
context-specific knowledge. As examination of tumor heterogeneity is carried out
on a tumor by tumor basis, the data space can be restricted to areas containing
lesions already located, but not necessarily segmented. For the specific use of DCE
and DW-MRI, the lower resolution of the DWI data presents an issue of partial
volume effects that affects the clustering of small lesions, but this issue is not
specific to any one characterization strategy.

The two free parameters of the protocol; number of clusters (K), and relative
weighting of the diffusion data (kADC), warrant discussion as the present work
provides only a starting approximation to their choice, and the values may well
be pathology dependent. For an unsupervised classification as used herein, the
number of clusters should follow the actual structure and separation of the data
into natural groups.

For breast tumors such as ductal carcinoma, the reporting of DCE-MRI data
is currently based on a three-way division, while DWI is binary between normal
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and abnormal. The three DCE curve types (a rise and fall, a rise to a plateau,
and a steady rise) have established clinical utility in predicting tumor malignancy
[112]. This is not to say however, that only three subgroups are possible, nor
that these subgroupings are predictive of treatment response, which is the motive
for examining tumor heterogeneity. In fact, works such as [104] have demonstrated
that as the temporal resolution increases, a higher number of curve archetypes can
be naturally identified and can be used for classification of voxel-wise perfusion
curves.

We consider it noteworthy therefore, that when K was reduced to just three
or four groups, these were identifiable with the 3 enhancement patterns (or these
three and non-enhancement) used in clinical practice for the assessment of the
breast cancer. As well, the confines of the groups with DCE-MRI time-course
patterns consistent with malignant and benign tumors coincided very closely with
the tumor margin drawn by a radiologist. Increasing the K value showed the
expected progressive splitting of these groups as K increased, with kADC providing
a distinction in the way this splitting proceeded based on the relative weight given
to the diffusion data. The benefits of increasing the number of clusters are evident
for understanding the heterogeneity of the lesion and the distribution of voxels that
share certain similarities, however the increase of the number of clusters should go
hand to hand with cluster and data analysis techniques in order to avoid false or
meaningless divisions.

The primary criteria for non-invasive assessment of tumors based on DCE MRI
involves three enhancement patterns (four including necrosis / non - enhance-
ment). In the clinical data used for this study this assessment criteria has limited
the validation to the visual interpretation of enhancement patterns based on the
conventional interpretation of DCE curves, with a reader dependent incorporation
of ADC information.

Ultimately, the envisaged application is in anticipating and evaluating treat-
ment response. If tumor heterogeneity in terms of both perfusion and diffusion is
to be encompassed, the conventional 3-way categorization may not be adequate or
appropriate and indeed for other organs this rating is less common.

We are now looking into robust methods for further validation of the process-
ing pipeline that would enable a clinical exploitation of the multimodal analysis.
Access to ground truth beyond radiological and biopsy evaluation is needed and
likely requires voxel-wise comparison with histology of resections, a process that
requires modifications to the surgical procedure that were not justified for this first
demonstration and research of the method. Even in the case of available histologic
image data, a significant task remains in the spatially correlation of individual
MRI voxels with the histological results in order to get the requisite voxel-scale
validation.

In this chapter we presented a general methodology for heterogeneity quantifi-
cation that integrates information from diffusion (an indicator of cellularity) and
perfusion (reflecting blood volume, flow and vascular permeability) MRI images,
and illustrated its use in application to ductal carcinoma. The demonstration il-
lustrated multimodal clustering leads to improved selectivity and yields a greater
refinement of the segmentation of tissues within the lesion than the separate pro-
cessing of the two modalities.
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By demonstrating that statistically consistent subgroups can be defined within
tumors based on a combination of DCE-MRI and DWI-MRI data, we have indi-
cated a means for objectively segmenting tumors that can be used for larger studies
to examine clinical impact. Moreover, the appearance of statistically distinct per-
fusion regions within the tumor at moderate and low ADC weightings that in turn
have statistically distinct ADC distributions suggests there is a useable distinction
present that is not capitalized upon in present clinical practice.



6

A multi-view approach to multi-modal MRI
clustering

6.1 Overview

In this Chapter we present our final methodology for the integration of multi-
modal MR images for the unsupervised segmentation tumoral lesions for hetero-
geneity assessment. This “multi-view” imaging approach calculates multiple vec-
torial dissimilarity-spaces for each modality and make use of the concepts behind
cluster ensembles (CE) to combine a set of base unsupervised segmentations into
an unified partition of the voxel data. In the final part of the Chapter we evaluate
the method with synthetic MRI datasets.

6.2 Introduction

Generally, it is the case that a discriminating a strategy based on a unique imag-
ing modality is unable to appropriately differentiate normal from cancerous tissue,
thus requiring a multi-modal view of the tissue for clinical assessment. Moreover,
since many tumors, such as human glioma, are characterized by topographically
heterogeneous histopathology or have evolved to different stages of tumor pro-
gression that may impact on their response to a given therapy, it is important
to obtain a complete coverage of the lesion. This need arises also in response to
the limitations of biopsies,in which, besides being difficult to localize and repeat,
a sampling error at limited biopsy may mean that the specimen does not reflect
the degree of malignancy elsewhere in the tumour and may result in significant
mislabeling [198].

A single glioma can display regions of tumor-infiltrated brain tissue, regions
containing a high density of tumor cells, and necrotic regions. This heterogene-
ity within a single tumor calls not only for a simple distinction of normal from
pathologic tissue but to the development of methods for the assessment and seg-
mentation of subregions. Preoperative heterogeneity assessment and grading helps
in better treatment planning and management [198].

Going beyond the use of a single non fully discriminant MRI modality, nu-
merous studies have shown that the combined information from multiple imaging
modalities can yield improved discrimination of diseased tissue [122]. However,
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the fusion of dissimilar imaging data for classification and segmentation purposes
is not a trivial task. There is an inherent difference in information domains, di-
mensionality, scale and, due to limitations in certain imaging protocols, imaging
resolution.

From the many MRI modalities performed in clinical practice, of particular
interest are Dynamic Contrast Enhanced (DCE-MRI) and Diffusion Tensor Imag-
ing (DTI-MR). DCE-MRI uses serial acquisition of images during and after the
injection of intravenous contrast agent and has been shown to reflect tumor vas-
cularity [98, 185]. DTI is sensitive to the preferred direction of the microscopic
diffusion of water molecules in tissue, such as the one ocurring along the white
matter tracts, which is less restricted along the axis of a fiber than along its trans-
verse direction [107].

In DTI a diffusion tensor (DT), a 3 × 3 positive-definite symmetric matrix,
is calculated for each voxel from measurements in several directions of diffusion-
sensitized magnetic gradients. Each DT characterizes the directionality and mag-
nitude of the anisotropic diffusion occurring in that particular voxel. Many studies
that incorporate DTI process the multidimensional diffusion information contained
in the DT by the use of scalar indices such as the Fractional Anisotropy (FA) and
Mean Diffusivity (MD). However, such scalar measures do not account for the full
information present in the tensor, the spatial relationship between neighboring
voxels and commonly require a priori knowledge of how pathology affects these
measures [93].

Since DT are positive-definite symmetric matrices their mathematic definition
restrict them to lie on a manifold of the space R6, which is known to be a cone em-
bedded in that space. The structure is also determined by the anisotropy property
of a particular tissue and the underlying geometry, such as in white matter, which
confines the local neighboring tensors to a more restricted submanifold in R6 [187].
The approach of writing 6 DT components as a feture vector and embed it in a
vector space in R6 is hindered by the non linear nature of DT. To address this prob-
lem there have been some attempts to use manifold learning techniques such as
ISOMAP [93,187], in which the focus is learning low-dimensional embeddings that
parametrize the underlying manifold structure of the tensors, generally through
the use of geodesic distances along the Riemmanian DT manifold. Alternatively,
kernel methods for manifold learning in DTI were initially used by Khurd [94], in
which kernel principal component analysis (KPCA) and kernel Fisher discriminant
analysis (kFDA) were used for group-wise statistical analysis and classification of
voxel based DTI datasets between normal and diseased groups.

In this Chapter we present a methodology for the integration of multi-modal
MR images for the unsupervised segmentation of brain lesions for heterogeneity
assessment. The ultimate objective is not tumor detection but the unsupervised
segmentation of tumoral lesions into zones of voxels that share certain similar-
ity using available multi-modal images. This multi-view imaging approach calcu-
lates multiple vectorial dissimilarity-spaces for each modality and make use of the
concepts behind cluster ensembles (CE) to combine a set of base unsupervised
segmentations into an unified partition of the voxel data.

Cluster Ensembles (CE) address the problem of combining multiple base clus-
terings of the same set of objects into a single consolidated clustering. Each base
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clustering refers to a grouping of the same set of objects or its transformed ver-
sion using a suitable clustering algorithm or variations of the same algorithm. The
consolidated clustering is often referred to as the consensus solution. A proven
strategy is to create various base clusterings of the same set of objects using di-
verse clustering algorithms and a different number of clusters. This strategy relies
on the requirement that the base algorithms have different biases, i.e. they make
different errors on new instances.

The final partition is obtained with a consensus function which maps the set of
base clusterings to an integrated final clustering [59]. In unsupervised classification
it is often the case that the objects to be clustered have multiple facets or views,
a clear example of this would be the end result of the different imaging modalities
used clinically to assess the same tissue, each one conveys information belonging
to a different domain than the rest. In CE different base clusterings may be built
on these distinct views. In this work we extend the multi-view notion considering
the derivation of different vectorial spaces for each modality and then, using a
variety of clustering algorithms, calculating a set of base clusterings for each of
them which later are combined using a Cluster Ensemble strategy.

To represent each MR modality in diverse spaces we relied on the concepts be-
hind dissimilarity based representations (DBR). The dissimilarity representation
is an alternative to the use of features in pattern recognition [141]. Objects are
characterized through pairwise dissimilarities; instead of using an absolute charac-
terization of the objects by a set of features, problem-centric knowledge is used to
define a measure that estimates the dissimilarity between objects. The term object
refers, in the present context, to the information represented by each particular
voxel such as tensors, scalars and temporal series.

Using a variety of established metrics and distance functions we calculate sev-
eral dissimilarity spaces for each MR modality. In the case of DTI the used metrics
are of different nature; from metrics that use scalar indices to Riemmanian geome-
try metrics that employ the full tensor information and others based on statistical
divergence.

Kernel Principal Component Analysis was used as a non-linear manifold learn-
ing technique to address the aforementioned constrains imposed by the manifold in
which the DT lie. A key difference to the way KPCA was employed in [94] is that
in that work KPCA was used for statistical analysis of groups using as input the
6 DT elements of each voxel or the elements contained in a given neighborhood
radius in the form of a vector, whereas in this work KPCA is performed using
as inputs the dissimilarity spaces calculated with the DT metrics that make use
of the whole tensor information. The use of DBR offers also the inherent advan-
tage of having encoded in the vectorial space the relationship to each other voxel,
expressed in the vector correspoding to the representation for each voxel.

6.3 Overview

Figure 6.1 shows the general methodology. Special emphasis should be placed to
ensure the correct spatial registration between modalities. This initial registration
problem is not covered here as it is the subject of a wide variety of succesful re-
search efforts and frequently the strategy is problem-dependent [32,147,157]. The
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Fig. 6.1: A schematic diagram of the proposed multi-view methodology for cluster
ensembles in multi-modal MRI. The initial multi-modal volumes are spatially co-
registered and pre-processed (a), from each imaging volume a suitable assortment
of distance functions is chosen and used to derive a corresponding set of dissimilar-
ity spaces using voxel-wise relationships (b), a set of different clustering algorithms
are applied to each dissimilarity space and a ensemble of base clusterings formed
(c), a consensus function combines the many base partitions of the dataset into a
final unified clustering (d).
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rest of the methodology assumes the registration problem is effectively sorted out.
As a second step a Region of Interest (ROI) is manually delineated around the
detected lesion, larger than the lesion itself in order to include adjacent relevant
voxels belonging to relevant zones such as edema and infiltration. The voxels from
all the spatially registered multi-modality volumes contained in this ROI are the
base for the dissimilarity spaces in which the MRI data are diversely represented.
The following step consists in the actual calculation of the pairwise relationships
between voxels and the creation of the vectorial spaces, as explained in detail in the
following subsection. These diverse and unique vectorial representations of each
MRI volume are the base of the methodology, as the set of clusterers operates
separatedly in these different measurement spaces. In the case of the DTI volume
a variety of established metrics are used, each one leading to a different representa-
tion of the data. For the DCE-MRI volume a distance function that measures the
distance between two voxel-wise temporal series is used. The DCE-MRI distance
function has an adjustable parameter that allows to diversely balance the infor-
mation contained in the temporal series, this characteristic allows for the distinct
representation of the DCE-MRI data in unique spaces. Following the representa-
tion of the data a set of diverse clustering algorithms is used to partition each one
of the derived spaces for each MRI modality. From a single space and clustering
algorithm several base clusterings may be calculated changing the desired number
of clusters or the initialization parameters of the algorithm. The labels from all
the calculated base clusterings are arranged in an ensemble matrix which serves as
input to a consensus function. This function evaluates the relationships between
all the datapoints belonging to the diverse base clusterings and produces a unified
similarity matrix which is later partitioned hierarchically to obtain the final unified
result.

6.4 Data Representation in Derived Vectorial Spaces

The first main approach of the proposed unsupervised clustering methodology is
the representation of the MRI information into a set of diverse vectorial spaces.
These diverse vectorial spaces that emphasize certain views or aspects from the
lesion are constructed employing a variety of distance functions and metrics.

Unlike the known approach of creating cluster ensembles from the same data
representation, in which each clusterer can be considered to produce an estimate
of the same a posteriori class probability, in our multi-view approach many rep-
resentations are created from a single MRI modality and used independetly by a
set of clusterers. As it is the case when combining classifiers in supervised classifi-
cation [95], in this case it is not possible to consider the a posteriori probabilities
to be estimates of the same functional value, as the clustering systems operate in
different measurement spaces.

Instead of using descriptive features, these vectorial spaces are derived from
pairwise object comparisons, where the shared degree of affinity between two ob-
jects is captured by a dissimilarity value. There are many ways of comparing two
objects, therefore there are many dissimilarity measures. Hand-picking the best
set of measures for a specific problem requires additional knowledge of the behav-
ior and the assumptions made by each specific dissimilarity measure, as well as
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of the problem itself. Expert knowlege of the problem and the domain to which
the specific imaging information belongs plays a crutial role in the definition and
selection of the dissimilarities.

Formally, a dissimilarity space is constructed as a square matrix. This matrix
consists of a set of row vectors, one for each voxel. These vectors represent the
voxels in a vector space constructed by the dissimilarities to each other voxel.
Usually, such a space can be safely treated as an Euclidean space equipped with
the standard inner product definition (Pekalska). Let X = {x1, . . . , xn} be a voxel-
based dataset. Given a dissimilarity function, a data-dependent mapping D is
defined as D(·, R) : X → Dn linking X to a dissimilarity space [142]. The complete
dissimilarity representation yields a square matrix consisting of the dissimilarities
between all pairs of objects. In this matrix every object is described by an n-
dimensional vector of distances between the object x and all the elements of X,
such that D(x,X) = [d(x, x1) . . . d(x, xn)]T .

One of the advantages of this representation is that every classifier defined for
feature spaces can be used in the dissimilarity space.

Choosing different dissimilarity measures allows us to construct a variety of
vectorial spaces for each modality under consideration. Each one of them will
serve as the space where unsupervised clustering algorithms will produce the base
partitions for the cluster ensemble procedure.

6.5 DTI-MR processing

6.5.1 DT metrics

As it was described in the introduction, the succesful analysis of DTI poses a va-
riety of challenges and constrains. The complexity of the diffusion data, belonging
to a high-dimensional geometrical manifold structure in which the tensors are by
definition restricted, requires a careful selection of methods that guarantee the
correct use of the diffusion information fitted into the tensorial model.

Commonly, it is the case that if more than one metric is admissible or available
to the problem, selecting among them as well as determining which representation
would best characterize the relation between tensors in a relevant way becomes a
important issue [136].

Part of this work aims at addressing the issue of choosing among the many
measures and representations of complex data by proposing a methodology for the
integration of relevant dissimilarity measures acknowledging that the information
they convey can be used in a complementary way.

Instead of trying to choose a single measure to derive properties of diffusion
tensors, we propose a multi-view approach to combine the results obtained with a
set of them.

Many different measures have been proposed and defined to calculate dissimi-
larities between tensors. The measures present in literautre belong to a wide array
of domains and it is often difficult to predict the outcome.

The calculation of dissimilarity spaces with DTI should rely in dissimilarity
measures that are both informative and meaningful to the problem, incorporating
expert knowledge and common assumptions.
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A measure is defined as a function m that has two tensors A,B ∈ Sym+
3 as

input, and returns a non-negative scalar value (Eq. 6.1) [139]. In this work we
focus exclusively on dissimilarity measures that return the distance between two
tensors.

m : Sym+
3 × Sym

+
3 7→ R+

0 (6.1)

Although a case can be justly made against the use of scalar indices such
as fractional anisotropy (FA) and mean diffusivity (MD) to reduce the tensorial
information to a scalar value in order to infer relevant properties of the tissue
under consideration, the widespread use of these scalar indexes in literature makes
them relevant and well studied in a clinical context. For this reason we choose as a
starting point two common scalar measures that employ important derivations of
the full tensor, that is, the Fractional Anisotropy (FA) and the Mean Diffusivity
(MD). These measures show just one aspect of the diffusion information, fitting in
this way into the multi-view approach.

Both dsFA and dsMD follow the same structure, which is to calculate the
absolute difference of the respective indexes between two tensors (Equations 6.2
and 6.3 )

dsFA(A,B) = |FA(A)− FA(B)| (6.2)

dsMD(A,B) = |MD(A)−MD(B)| (6.3)

The angular difference (dangi) (Eq. 6.4) of the eigevectors (eDi : i ∈ 1, 2, 3)
is also considered as a distance between tensors. It measures the changes of ori-
entation and can be calculated with respect to any of the eigenvectors, although
commonly it is restricted to the main eigenvector (i = 1) that describes the prin-
cipal direction of diffusion in a particular voxel.

dangi(A,B) = arccos(eA
i · eB

i ) (6.4)

Certain measures, such as Ln-norms or the Frobenius distance treat the ele-
ments of the diffusion tensor as a vector. Several studies use the Frobenius distance
and, although it ignores the actual structure and dependencies among tensors, it
is included for evaluation considering its widespread use (Eq. 6.5).

dF (A,B) =
√
tr((A−B)2) (6.5)

Of more theoretical utility are the measures that use the full tensor information.
Measures based on Riemannian geometry take into account the constrain of the
diffusion tensors to be positive definite matrices. These measures compute the
distances along geodesics in the manifold of symmetric positive definite matrices.

The geometric distance (dg) proposed by Batchelor in [14] belongs to this cate-
gory. It is built on the curved space of positive definite tensors and penalizes small
eigenvalues when the tensors approach the set of tensors with negative eigenvalues.
The metric also has the additional property of being invariant under any linear
change of coordinates. dg is calculated as follows (Eqs. 6.6 and 6.7):
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dg(A,B) = N(A−
1
2 BA−

1
2 ) (6.6)

where N(D) is defined as

N(D) =

√√√√ 3∑
i=1

(log(λDi ))2 (6.7)

Also belonging to the Riemmanian category, we employ the Log-Euclidean met-
ric dLE proposed by Arsigny in [3,4], equivalent to the dL2 metric of the logarithm
of the tensors. This metric is part of a general framework developed as a mean
to perform fast and straightforward calculations between tensors, as the base for
operations such as interpolation and regularization.

To calculate the logarithm an eigendecomposition is performed on the tensor
after which the natural logarithm of the eigenvalues is calculated before recom-
posing again the altered diffusion tensor into a squared matrix.

dLE(A,B) =
√
tr((log(A)− log(B))2) (6.8)

Since another interpretation of a tensor is that of a covariance matrix of a
Gaussian distribution that describes the diffusion at a particular voxel, it is natural
to define statistical measures based on the overlap of probability density functions.

From this category we use the distance function proposed by Wang and Vemuri
[189], based on the square root of the J-divergence (symmetrized Kullback-Leibler)
between two Gaussian distributions corresponding to the diffusion tensors being
compared (Eq. 6.9).

dKL(A,B) =
1

2

√
tr((A−1B + B−1A))− 2n (6.9)

where n is the size of the square matrices from which the distance is calculated,
namely 3 in the case of a diffusion tensor.

6.5.2 Kernel Manifold Learning

In order to account for the diffusion manifold to which the DTI data is constrained
we decided for the use of KPCA as a non-linear manifold learning technique. The
use of kernel functions makes KPCA more computationally tractable than a gen-
eral nonlinear feature extraction method.

Principal component analysis is a widely used statistical tool for dimensionality
reduction [36, 74]. Let xi ∈ Rd, where i = 1, . . . , n be the training patterns. The
principal components are a set of q < d orthonormal vectors and span a subspace
in the major directions into which the patterns extend. PCA finds the q major
directions of maximal variance within the set of patterns {xi} and which also
minimize the least-squares representation error for the samples [94].

Related to linear PCA, in which we find principal directions in the input space
that maximize the variance of the projections of the samples along those directions,
in KPCA similar principal eigendirections in a higher-dimensional Hilbert space
are found. Unlike linear PCA which finds the best ellipsoidal fit for the data,
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KPCA has the capability to extract non-linear features that are a more natural
and compact representation of the data. KPCA can be regarded as a combination
of two processes, a first process that implicitly transforms the input space into a
higher dimensional feature space, and a second process that implements PCA in
the feature space to extract a non-linear representation of the data by projecting
it onto the subspace spanned by the eigenvectors of the q largest eigenvalues [90].

Thanks to the kernel trick the algorithm, if defined in terms of dot products,
can be implemented in the input space by virtue of a kernel function, avoiding the
need to perform the explicit computation of the data mapping (Eq. 6.10).

For a given non-linear mapping Φ, the input data space Rd can be mapped into
the feature space H:

Φ : Rd → H
x 7→ Φ(x)

(6.10)

As a result, a pattern in the original input space Rd is mapped into a higher
dimensional feature space H, which is a reproducible kernel Hilbert space.

Assume that the mapping Φ(xi) is centered, that is ΣN
i=1Φ(xi) = 0.

Being k a suitable kernel function (see REF SCHOLKOPF), where k(xi, xj) =
〈Φ(xi) · Φ(xj)〉, a kernel matrix K is calculated as

Kij = 〈Φ(xi) · Φ(xj)〉 = k(xi, xj), i = 1, . . . , N, j = 1, . . . , N (6.11)

Given a set of training samples xi ∈ Rd, where i = 1, . . . , n, the covariance
operator in the feature space H can be expressed as

SΦt =
1

N

N∑
j=1

(Φ(xj)−mΦ
0 )(Φ(xj)−mΦ

0 )T (6.12)

where mΦ
0 = 1

N

∑N
j=1 Φ(xj). In a finite-dimensional Hilbert space this operator

is generally called covariance matrix. The convariance operator satisfies the follow-
ing properties: it is bounded, compact, positive and it is a self-adjoint (symmetric)
operator on the Hilbert space H [199].

Considering that every eigenvalue of a positive operator is nonnegative in a
Hilbert space [W. Rudin, Functional Analysis. McGraw-Hill, 1973.], it follows that
all non-zero eigenvalues of SΦt are positive.

A principal eigenvector in the higher-dimensional Hilbert space H lies in the
span of the vectors Φ(xi) −mΦ

0 , i = 1, . . . , N . Every eigenvector of SΦt , β, can be
linearly expanded by

β =

N∑
i=1

aiΦ(xi) (6.13)

where ai is an N -dimensional vector. To obtain the expansion coefficients,
let us denote Q = [Φ(X1), . . . , Φ(XN )] and, to form an N × N Gram matrix

K̃ = QTQ, we use a suitable kernel function k (see REF SCHOLKOPF) where
k(xi, xj) = 〈Φ(xi) · Φ(xj)〉. The kernel or Gram matrix is calculated as
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K̃ij = 〈Φ(xi) · Φ(xj)〉 = k(xi, xj), i = 1, . . . , N, j = 1, . . . , N (6.14)

Since commonly it is the case that the data is not centered in the feature space,
that is ΣN

i=1Φ(xi) 6= 0, K̃ij must be centered by

K = K̃ − 1NK̃ − K̃1N + 1NK̃1N (6.15)

where 1M is a N ×N matrix defined as 1N = (1/N)N×N . After K̃ is appropi-
ately centered, solving the eigenvelue problem Kα = λα we obtain the correspond-
ing orthogonal eigenvectors α1, α2, . . . , αn corresponding to the largest eigenvalues
λ1 ≥ λ2 ≥ · · · ≥ λn. The orthonormal eigenvectors of β1, β2, . . . , βn of Sφt corre-
sponding to the n largest positive eigenvalues λ1, λ2, . . . , λn are calculated as

βj =
1√
λj
Qλj , j = 1, . . . , N (6.16)

After the projection of the mapped sample Φ(x) onto the eigenvector sys-
tem β1, β2, . . . , βn, we can obtain the KPCA-transformed feature vector y =
(y1, y2, . . . , ym)T by

y = PTΦ(x), where P = (β1, β2, . . . , βn) (6.17)

specifically, the j th KPCA feature component yj is calculated by

yj = βTj Φ(x) =
1√
λj
αTj Q

TΦ(x)

=
1√
λj
αTj [k(x1, x), k(x2, x), . . . , k(xn, x)],

j = 1, . . . , N

(6.18)

In addition to finding the orthogonal directions of maximal variance in the
higher-dimensional space H, KPCA also provides an estimate of the probability
density underlying the samples.

Girolami [61] presented an argument that the nonlinear features extracted using
KPCA in conjunction with a Gaussian radial basis function kernel provides features
that can be considered as components of an orthogonal series density estimate
using Hermite polynomials.

Testing the KPCA

To illustrate the effectiveness of KPCA in calculating informative non-linear fea-
tures from data laying in a given geometric manifold, we performed an experiment
similar to that proposed by Khurd et al. in [94].

For simplification and ease of visualization, this test presents results on a
dataset of points with variation in the radial and angular directions. The dataset
was composed of points on a 2D plane, forming a semi-circular band. The dataset
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was generated using 36 angles in the 0-144 degrees range and 6 radial values
(1.3, 1.4, 1.5, 1.6, 1.7, 1.8) which resulted in a dataset of 216 points.

Kernel Principal Component Analysis was applied to this dataset using a Gaus-
sian kernel, setting the width parameter of the kernel, σ2, to 0.1, which is a suitable
function of the average distance between nearest neighbors. An automatic calcu-
lation of the optimal kernel width parameter (KPA, described in Section 6.5.3)
yields a similar choice for the parameter σ2.

The principal components obtained through KPCA can be plotted as iso-
contours representing the hyperplanes having constant projections onto the cor-
responding eigenvectors in the feature space H. A visualization of the first seven
principal components obtained through KPCA can be seen in Figures 6.2 and 6.3.
As in the results obtained by Khurd, it can be seen that the first six components
represent the angular changes in the data using varying scales. In addition it can
also be appreciated in Figure 6.3 that the seventh KPCA component individually
captures the radial change in the data and that it smoothly increases from negative
to positive values as we move along the arc in the radial direction.

6.5.3 Kernel Parameter Selection

The choice of kernel to use requires some consideration, and indeed much of the
research in the field of kernel methods is moving to address this question. From
the viewpoint taken by Girolami in [61], the choice of kernel is determined by the
desire to model any density function. The gaussian, radial basis function (RBF)
kernel has well-known universal approximation properties, and fitting a sufficient
number of them to continuous data provides a means of estimating an arbitrary
density function which may be useful in certain applications and algorithms [61].

When a radial basis function kernel is used, such as the Gaussian kernel, one
simple choice is to set the kernel width to the median distance between points in
the aggregate sample. While this is certainly straightforward, it has no guarantees
of optimality. The Gaussian kernel is defined by the following function

k(xi, xj) = exp(−‖xi − xj‖
2

2σ2
) (6.19)

Another common form to express the Gaussian kernel is shown in Eq. 6.20.
Sometimes this formulation is preferred to that of Eq. 6.19 in order to work ex-
perimentally with q as a scale parameter.

k(xi, xj) = exp(q‖xi−xj‖2)

where q = − 1

2σ2

(6.20)

The smoothing parameter σ, also called kernel width plays an important role
in the calculation of the Kernel matrix and the subsequent operations. Although
a number of heuristics has been suggested to select the parameter σ there is not
a universal consensus to reach an optimal value. In this work we use the method
proposed by Jørgensen in [90] for kernel scale selection. This method makes use of
a kernelized adaptation of Parallel Analysis (PA).
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Fig. 6.2: First three KPCA components.

Parallel Analysis (PA) is a resampling based methodology for the estimation
of the components or non-trivial factors to retain in linear PCA. PA compares
the eigenvalues with the distribution of eigenvalues obtained by PCA on data
sets distributed according to a null hypothesis of zero covariance. The PA null
distributed data sets are obtained by permuting the measurements among the data
points within each feature dimension and the number of factors to be retained is
determined as the set of original PCA eigenvalues greater than the 95th percentile
of the corresponding null distribution of eigenvalues.
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Fig. 6.3: Fourth to seventh KPCA components.
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The idea behind PA is extended to KPCA to include the choice of kernel width
σ for the Gaussian kernel. The resulting method is presented and referred as kernel
Parallel Analysis (kPA) in [90].

In feature space the eigenvalue λi for component i extracted with of the PCA
procedure is compared with the distribution of eigenvalues of null data sets ob-
tained by permuting the data in input space p times.

For component i, a reference threshold Ti is set to the value of the 95th per-
centile in the distribution of the components of the eigenvalues. The number of
components q to retain is chosen such that the original data eigenvalues are larger
than threshold for all retained components. It is important to note that the orig-
inal data eigenvalues, the reference thresholds, and the number of components q
will depend upon the Gaussian scale σ

q(σ) = max
λ(σ)−Tiσ>0

i (6.21)

A conservative estimate of the signal energy can be obtained as the cumulated
difference between the original data eigenvalues and reference threshold levels

E(σ) =

q(σ)∑
i=1

λiσ − Ti(σ) (6.22)

kPA chooses the kernel scale σ to maximize E(σ). The energy is an estimate of
the variance of the retained components in kernel space when accounting for the
variance of null data. Thus, maximizing the energy in kernel space will maximize
the variance of the true signal.

By column-wise permuting the data between samples for a given input dimen-
sion, kPA assures that the null-data is drawn from a distribution which has the
same marginal distributions as the original data. Furthermore the input dimen-
sions of the null distribution are statistical independent, i.e., the joint probability
density function is fully factorized. This means that all manifold structures in in-
put space are destroyed. This is a stronger condition than necessary in PA which
only requires a null distribution with no covariance. Hence, the corresponding null
distribution in feature space is that of a kernel mapped fully factorized distribu-
tion in input space with the correct input space marginals. The kernel spectrum
of permuted data represents this null information. The distribution of the null
kernel spectrum, as estimated by repeated permutation, allows us to determine
when structure is present, identified in kPA as eigenvalue magnitudes rejected in
the distribution of the null spectrum (p < 0.05). The details and pseudocode for
the kPA procedure can be found in [90].

6.6 DCE-MRI processing

The distance function DDCE (Eq. 5.1), presented in Section 5.3, was used to cal-
culate the dissimilarity spaces derived from the DCE-MRI modality. We have used
this function for calculating the pairwise proximity between DCE-MRI perfusion
curves in the following works [123,124].
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As it was explained in Sec. 5.3 there are two main approaches to quantifiably
compare two time-series: one makes use of the distances between the absolute
values of their elements while the other focuses on the similarity of their behavior
along time. Both criteria are quantified by DDCE .

A parameter kDCE was incorporated to Eq. 5.1 in order to weight the contribu-
tion of both types of similarities in time-intensity curves; the value-based similarity
and the similarity with respect to their behavior (Sec. 5.3). The modified equation
is then expressed as

DDCE(S1, S2) =
2

1 + exp(kDCECort(S1, S2))
dH(S1, S2) (6.23)

where S1 = (u1, . . . , up) and S2 = (v1, . . . , vp) are two voxel-derived perfusion
curves sampled at time instants (t1, . . . , tp) [29,38]. Cort and dH stand for Tempo-
ral Correlation and Hausdorff Distance, which are defined respectively in Eq. 5.2
and Eq. 5.3.

The tuning parameter kDCE weights the contribution of both Cort and dH
to the complete dissimilarity measure DDCE by modulating the shape of the sig-
moid function. When Cort(S1, S2) is in the negative range of 0 to -1 the total
dissimilarity DDCE approaches the value of dH(S1, S2), on the contrary when
Cort(S1, S2) is in the positive range of 0 to 1, DDCE is diminished accordingly.

6.7 Base clustering algorithms

As clustering algorithms we used the three methods described in Chapter 3.6:
K-Means, Affinity Propagation and Support Vector Clustering.

6.8 Consensus function

In its most basic definition, consensus function Γ maps an ensemble Π =
{π1, π2, . . . , πM} composed of M base clusterings to a final unified partition π∗,
Γ : πq ∈ Π|q ∈ {1, 2, . . . ,M} 7→ π∗.

When objects are connected according to their relations, it is possible to esti-
mate the similarity of any object pair by using the underlying link information.

Being a normalized similarity matrix built on the average mutual memberships
among base clusterings, the ensemble co-association matrix (CO matrix) (Eq. 3.16)
indicates, for each pair of points, the proportion of times in which they are clustered
together. However, despite the advantage of its simplicity and being a widely used
method, it fails to account for hidden or unknown relations between data points
and partitions.

Its own difinition makes the CO matrix prone to expose only a small proportion
of the pairwise similarity between data points, that is, the obvious relationship
that exists for a pair of points assigned to the same cluster in any given clustering,
expressed originally in the binary similarity matrix (coassociation matrix) Eq.
3.15. This processing presupposes that the relationship between those two points is
always zero for any given clustering when they are assigned to different partitions.
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More information about the relationships may be better discovered by bringing in
additional information regarding the relations or links that exist between clusters
considering the complete ensemble.

To this end Iam-On [79] proposes the Connected-Triple approach applied to
the cluster ensemble problem. This technique was originally developed to find
duplicates of author names in large bibliographical databases [97]. The Connected-
Triple approach works on the assumption that if two directly unconnected nodes
in a graph share a link to a third node then this relationship is indicative of a
certain degree of similarity between those two nodes.

A schematic illustrating this concept can be seen in Figure 6.4. The red circles
{x1, x2} ∈ X represent a pair of data points as nodes in a graph with edges
connecting each of them to a respective partition in each one of the three base
clusterings {π1, π2, π3} depicted in the figure. There exists an edge between data
point xi and a cluster Cmj if xi was assigned to the partition Cmj in the base
clustering πm.

In contrast to the techniques involving the N × N co-association matrix Sm,
calculated for each one of the base clusterings πm and in which the informa-
tion between points not belonging to the same cluster is accounted as zero, the
Connected-Triple approach intends to reveal the amount of information that exists
between apparently unrelated data points and partitions. In figure 6.4, data points
x1 and x2 are considered to be similar with respect to the base clusterings π2 and
π3 on the grounds that they are both grouped together in partitions C2

1 and C3
1 .

On the contrary, when points x1 and x2 are evaluated exclusively with respect to
the clustering π1 their similarity is denoted as zero. The Connected Triple method
starts with the idea that, despite being assigned to different partitions in cluster-
ing π1, data points x1 and x2 may reveal a certain degree of similarity between
partitions C1

1 and C1
2 when the relations of x1 and x2 to other clusterings where

they are grouped together are taken into account. According to the Connected
Triple technique, clusters C1

1 and C1
2 are similar due to the fact that they possess

two Connected-Triples in which the clusters C2
1 and C3

1 are the centers of such
triples.

Given a set Π of M base clusterings, a weighted graph G = (V,W ) can be
constructed where V is the set of vertices representing clusters in the each one of
the base clusterings πm of Π and W is a set of weighted edges between clusters.
The weight assigned to the edge wij connecting clusters Ci and Cj is estimated in
accordance with the proportion of overlapping members (Eq. 6.24).

wij =

∣∣XCi ∩XCj

∣∣∣∣XCi
∪XCj

∣∣ (6.24)

where XCi ⊂ X represents the set of data points that belong to cluster Ci.
Originally in [97], the number of triples associated with any pair of objects is
summed up as an integer. The approach proposed in [79] postulates that this simple
counting, effective for data points or indivisible objects, might be insufficient to
evaluate the similarity between clusters. In order to effectively take into account
characteristics such as shared members among clusters the Weighted Connected-
Triple regards each triple as the minimum weight of the two involving edges (Eq.
6.25).
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Fig. 6.4: A schematic representation of an ensemble composed of three base clus-
terings {π1, π2, π3}.

WCT kij = min(wik, wjk) (6.25)

where WCT kij is the count of the connected-triple between clusters Ci, Cj whose
common neighbor is cluster Ck. The count of all triples (1, . . . , q) between cluster
Ci and Cj is calculated as:

WCTij =

q∑
k=1

WCT kij (6.26)

Following Eq. 6.26, the similarity SimWCT (i, j) between clusters Ci and Cj
can be estimated with Eq.6.27, where WCTmax is the maximum WCTxy value
between any pair of clusters within the cluster ensemble Π.

SimWCT (i, j) =
WCTij
WCTmax

(6.27)

The Connected-Triple approach is applied to the concept behind the co-
association matrix in order to enhance the accounting of information between
apparently unassociated clusters, which is generally regarded as zero with the
classical co-association matrix formulation. More formally, for any base clustering
πm ∈ Π,m = 1, . . . ,M , a new type of co-association matrix is calculated where
the similarity between any pair of datapoints xi and xj is estimated according to
Eq. 6.28.

Sm(xi, xj) =

{
1 if C(xi) = C(xj),

SimWCT (C(xi), C(xj))×DC otherwise
(6.28)
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where DC ∈ [0, 1] is a constant decay factor which denotes the confidence level
of accepting two non-identical objects as similar. Following Eq. 6.28, each entry in
the final Connected-Triple-based similarity matrix (CTS) is computed as:

CTS(xi, xj) =
1

M

M∑
m=1

Sm(xi, xj) (6.29)

6.9 Generation of Synthetic MRI Data

In an ideal experimental setting, methodological validation would be carried out
with real anatomical datasets; noiseless and depicting clearly delimited, patholog-
ically homogeneous and labeled regions of relative importance to the problem at
hand. However in real settings it results very difficult to have such perfect and real
ground truth data, with homogeneous delimited zones and all relevant variables
controlled in a satisfactory manner. Moreover, in cases where the methodological
scope includes statistical tests and quantitative voxel-based analysis among a di-
verse set of patients or clinical cases, the procurement of suitable ground truth for
test and validation purposes becomes difficult or unpractical.

As a validation strategy, the creation of synthetic MRI data, either by software-
based simulations or by the use of physical hardware phantoms, occupies a promi-
nent place. The purpose of a software-based simulation is to construct a defined
and controlled model of the anatomical environment and to simulate the signal
acquisition of the pertinent MRI modalities in the synthetic voxel-based dataset.

In literature, two are the most prominent methods used for the generation of
synthetic Diffusion Weighted MR data: the multi-tensor model and the model that
calculates the restricted diffusion inside a cylinder of known dimensions.

6.9.1 Multi-Tensor Model

The multi-tensor model starts with the asumption that each fiber inside a single
voxel can be described by a second order diffusion tensor. The signal in voxels
containing more than one fiber is composed by the superposition of multiple tensors
that describe the underlying probability density function. This model assumes
that each fiber is independent in the sense that there is no exchange of molecules
between the different fiber compartments [137].

For a given set of gradient directions gi, the corresponding signal will be de-
termined by

S(b, gi) =

n∑
k=1

pk expbg
T
i Dkgi (6.30)

where b is the b-value and pk are the different weights for the diffusion tensors
Dk that compose the signal in the Stejskal-Tanner equation 2.9.
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6.9.2 Restricted Diffusion in Cylindrical Geometry Model

This model, originally proposed by Söderman and Jönsson [169], describes the
restricted MRI signal attenuation from molecules inside a cylinder of known di-
mension. In the presence of an underlying geometry that considers the existence
of crossing fibers within a single voxel, the model assumes the presence of more
than one cylinder, each representing a fiber component, and the signal attenua-
tion is averaged from the independent signals within each cylinder. Multiple fiber
orientations can be modelled with the assumption that the diffusing molecules are
constrained within these cylinders with no possibility for exchange between the
cylinders.

A pulse field gradient experiment consists of a pair of field gradient pulses of
duration δ and magnitude g separated by duration ∆ applied to a standard nuclear
magnetic resonance spin-echo experiment. In this setup, if the short-gradient-pulse
approximation is made, the echo attenuation is given by:

S(q,∆) =

∫ ∫
β(r0)P (r|r0, ∆) exp[i2πq(r − r0)]∂r∂r0 (6.31)

where q is the reciprocal state vector given by q = γδgi/2π, where γ is the
gyromagnetic ratio, P (r|r0, ∆) gives the probability of a molecule being at r after
a time ∆ if it started at r0 and β(r0) is the initial density of molecules.

Using this equation, Söderman and Jönsson [169] presented the equation for
restricted water diffusion in a cylindrical geometry of radius ρ and length L, where
the signal attenuation is determined by:

S(ρ, q, θ,∆) =

∞∑
n=0

∞∑
k=1

∞∑
m=0

2Knmρ
2(2πqρ)4 sin2(2θ)α2

km

[(nπρ/L)2 − (2πqρ cos θ)2]2

× [1− (−1)n cos(2πqL cos θ)][J ′m(2πqρ sin θ)]2

L2[α2
km − (2πqρ sin θ)2]2(α2

km −m2)

× exp

(
−

[(
αkm
ρ

)2

+
(nπ
L

)2]
D∆

) (6.32)

where Jm is the mth order Bessel function, αkm is the kth solution to
J ′m(α) = 0, with the convention that α = 0. Knnm is a constant value depending
on the values of the indexes n and m, θ is dependent on the gradient vector gi
as it represents the angle between the cylinder and the applied diffusion gradient
direction, and q = |q| is the magnitude of the q-space vector.

The simulations from this model employ an exact form of the MR signal at-
tenuation from particles diffusing inside cylindrical boundaries and has become a
benchmark for other techniques, as well as the basis for multi-fiber signal recon-
struction methodologies [101]. It has the advantage over the multi-tensor model
that does not enforce mono-exponential decay.
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6.9.3 Synthetic DTI Data Geometry

As an initial dataset to validate the multi-view approach, we created a synthetic
dataset composed of four main zones, mutually differentiated by their underlying
geometry and simulated diffusion characteristics.

These main four zones were designed to simulate the a cerebral glioma and the
regions surrounding it. As in any other synthetic model, this dataset assumes a
simplification of the complex characteristics of the tissue such as the soft bound-
aries that may be present in real cases, abnormalities within a single zone and
unknown interactions between tissues not accounted by the model. However the
model is clearly delimited in its scope of evaluation of the methodology.

There exists a wide variety of scientific literature describing the MR imaging
characteristics of the various types of tissue involved in glioma lesions, and it is
the case that some reports of characteristic values are in disagreement among the
various different sources.

The four main zones of the synthetic dataset are designed to simulate the
diffusion characteristics and geometric relationships of white matter, vasogenic
edema, infiltrated fibers and central tumoral region. For the creation of the
dataset we relied mainly in the reported measurements by Inoue et al. [82],
in which an extensive preoperative evaluation of different grade gliomas is re-
ported, Morita et al. [127] concentrates on the characterization of peritumoral
edema, and Wieshmann et al. [192] who investigates the behavior of diffusion
in cerebral abnormalities. Other relevant research works that investigate the
characterization in diffusion imaging of cerebral tumors, specially gliomas, are
[1, 5, 25,117,118,149,150,150,153,166,176,176,191,197].

As a further refinement of the synthetic dataset, the zone corresponding to the
white matter was designed to be composed of three subzones. These subregions
represent two different white matter tracts and a mutual crossing zone. The two
tracts follow a very similar pathway and were designed with the express purpose
to test the effect of manifold learning on the discrimination methodology between
extremely similar zones, such as is the case with normal and displaced white mat-
ter, which are zones that share practically similar diffusion characteristics. Figure
6.5 shows a schematic view of the white matter subregions; the first zone follows
a circular path whereas the second one lays on an ellipsis. The crossing of both
pathways occurs on the top and bottom of the tensor field where the designed
paths meet.

Figure 6.6 depicts the spatial configuration of the synthetic DTI dataset, com-
possed of 2500 voxels in a 50× 50 tensor field. Depending on the zone, the general
geometry was defined for each voxel and the diffusion signal was calculated with
21 gradient directions computed as the tessellation of the icosahedron of the unit
sphere and b-value=1500 s/mm2, using the accurate continuous approximation
of the diffusion signal in Söderman and Jönsson restricted diffusion model by
Barmpoutis [10]. The mean derived parameters for each zone, mean diffusivity
and fractional anisotropy, are detailed in Table 6.1. Depending on the fractional
anistopy for each zone, different degrees of random variation to the main pathway
were introduced in each tensor to reflect the respective anisotropy with respect
to the neighbors. Figure 6.7 and 6.8 show the tensor field visualized as classic
ellipsoids.
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Fig. 6.5: Schematic of the two tracts composing the White Matter zone in the
Synthetic DT dataset. The upper right rectangle shows an enlargement of the zone
where the fibers cross. The signal of the crossing zone was calculated combining
the diffusion signal of both tracts.

Fig. 6.6: The different zones composing the synthetic DTI dataset.
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Region FA MD (mm2/sec)

White Matter 1 0.74 7.63×10−4

White Matter 2 0.70 7.98×10−4

Crossing WM1 & WM2 0.72 7.81×10−4

Vasogenic Edema 0.41 14×10−4

Infiltrated zone 0.29 11×10−4

Central glioma 0.15 11×10−4

Table 6.1: Mean Fractional Anisotropy (FA) and Mean Diffusivity (MD) values
for the different zones composing the synthetic DTI dataset.

Fig. 6.7: Plot of the diffusion tensors visualized as ellipsoids in each one of the
distinct zones of the synthetic dataset.
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Fig. 6.8: Detail of the diffusion tensors, visualized as ellipsoids, corresponding to
the zones in the synthetic DTI dataset.

6.9.4 Synthetic DCE-MRI dataset

In order to create a synthetic DCE-MRI dataset that corresponds spatially and
functionally with the calculated diffusion tensor field we relied on the segmentation
results and evaluation of a real glioma MRI volume. Following the methodology
detailed in the previous chapter we performed a segmentation of a DCE-MRI
volume. This volume was obtained using a pre-clinical mouse model of inoculated
glioma cells.

The laboratory mouse shares extensive molecular and physiological similarities
to humans and is a powerful tool for studying cancer. Unlike invertebrate model
systems, tumor development in mice is accompanied by other complex processes
such as angiogenesis and metastasis, similar to those in human cancer. More impor-
tantly, mouse tumor models provide temporally and genetically controlled systems
for studying the tumorigenic process as well as response to treatment [26].

The DCE-MRI volume was acquired 35 days after inoculation and consisted
on 60 timepoints. Just as in the previous chapter, a region of interest was drawn
surrounding the lesion and a vectorial space was constructed using the voxel-wise
dissimilarities between perfusion curves given by Equation 6.23. Furthermore, a
second region of interest was added, this ROI was taken in the contralateral white
matter in order to add a sizeable region of healthy white matter voxels to serve
as reference for the. The corresponding vectorial space was clustered in 4 zones
as in Section 5.3. From each zone the mean perfusion curve was extracted and
used as a prototype of its corresponding region. A random variation was added
systematically to each timepoint in the corresponding representative time-intensity
curve in order to build a different perfusion curve for each voxel. The layout of
the diverse zones is equal to that of the DTI synthetic dataset, as depicted in
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Figure 6.9, with the main difference that in the DCE-MRI dataset there is no
distinction between different subregions of white matter such as in the DTI dataset
due to the fact that the contrast intake in white matter is the same indepently
of the underlying geometry of the fibers. This model assumes a relation between
the DTI and DCE information in co-registered voxels that might not exist in
reality, however for the purposes of the methodological validation this presuposed
relationship proves to be useful and valid.

Fig. 6.9: The DCE-MRI volume from which the perfusion prototypes for the syn-
thetic dataset were extracted (left). Original and normalized perfusion curves of
the disntinct zones segmented in the volume (right).

6.10 Results

In order to test the multi-view methodology presented in this chapter and illus-
trated in Fig. 6.1, a synthetic MRI dataset was generated as described in Sec. 6.9.

Using the synthetic MRI dataset, distinct vectorial dissimilarity spaces were
calculated using the DT metrics described in Sec. 6.5.1: dsFA, dsMD, dang,
dF , dg, dLE , dKL. These vectorial spaces were created by the computation be-
tween every pair of diffusion tensors in the dataset, resulting in a N × N
squared matrix for every dissimilarity space derived from any individual met-
ric. For any DT-based dissimilarity measure DDT , every voxel x ∈ X belong-
ing to the DT volume is represented in these dissimilarity spaces by the vec-
tor DDT (x,X) = [DDT (x, x1), DDT (x, x2), . . . DDT (x, xn)]

T
. Besides the use of

DT metric-derived spaces, we considered the inclusion of the 6 DT components
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(XX,XY,XZ, Y Y, Y Z,ZZ) as another voxel-based input vector for the kernel
manifold learning processing and subsequent clustering, just as suggested by Khurd
et al. in [94]. It is important to remark that the direct vector representation using
the 6 unprocessed DT components is not clustered directly, only their principal
components resulting from the kernel manifold learning procedure. The first fifty
principal components of the DTI-derived spaces were obtained by virtue of the
KPCA methodology using a Gaussian Kernel and an appropriate kernel width
calculated for each space [90].

From the DCE-MRI side, the time-intensity curves derived from the DCE syn-
thetic dataset were processed in the same way as in Section 5.3, that is, using
Eq. 5.1 as the dissimilarity function to form the corresponding vectorial spaces,
which are diversely created varying the tuning parameter kDCE , introduced in 6.6
to form Eq. 6.23. To this end kDCE was varied from 1 to 5.

To create the ensemble of base clusterings we relied on three algorithms coming
from different theoretical domains, described in Sec. 6.7: the classic K-means,
Support Vector Clustering (SVC) and clustering by Affinity Propagation (AP)
[56, 202]. The parameter k in the K-means algorithm was varied from 3 to 10,
allowing for a heterogeneous ensemble encompasing diverse scales.

Three cases were generated for Affinity Propagation, with all self similarities
set at -1, -5 and -10, without giving any preference to any data point to be regarded
as an exemplar. These three values were selected with the same purpose as the
diverse k values in K-means, i.e., to probe the data at diverse scales and add
heterogeneity to the general ensemble.

All the vectorial spaces were clustered with these algorithms to create a com-
prehensive set of base clusterings. The resulting cluster ensemble was then used as
input for the Connected-Triple link-based consensus function (Sec. 6.8) [79]. The
output similarity matrix was partitioned hierarchically after which the final parti-
tion was assessed. A detailed diagram of all the steps followed in the methodology
with DCE-MRI and DTI-MR is presented in Fig. 6.10.

For our analysis, we defined an assorted set of test cases to evaluate the effects
of including base clusterings derived from different DT metrics to form the final
partition through a consensus function. We hypothesized that the best results
would be obtained using the base clusterings derived from metrics that use the
full tensor information, an assumption that is based on the complex geometric
nature of the DT-derived information and the expectations of the manifold learning
techniques used in the methodology. The definition of the diverse test cases can be
seen in Table 6.2. Besides the aforementioned DT metrics, all the test cases share
the same set of base clusterings derived from the DCE-MRI volume.

The results of the tests performed with the diverse cases are presented in
Table 6.3. To assess the results we have used the Classification Accuracy, Rand
Index and the Adjusted Rand Index 3.8.2. As it was hypothesized the case using
the DT metrics that make use of the full tensor information and manifold learning
scored the best in the evaluation. This case was, thanks to an effective manifold
learning, able to discern both white matter zones and their mutual crossing area,
a task where the other cases failed in varying degrees.
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Table 6.2: Definition of the diverse test cases used for evaluation of the methodol-
ogy with synthetic datasets. Besides the using the DCE-derived base clusterings,
these cases are composed of the individual base-clusterings obtained from a diverse
set of DTI metrics. The last ones in particular make use of the metrics that use
the full tensor information.

Method dsFA dsMD dang dF dg dLE dKL
DT

elements

Case 1 x x x x x x x

Case 2 x x x x x x x x

Case 3 x x x x x x

Case 4 x x x x x x x

Case 5 x x x x x

Case 6 x x x x x x

Table 6.3: Results of the evaluation performed with synthetic datasets. The results
are evaluated by means of the Classification Accuracy (AC), Rand Index (RI) and
Adjusted Rand Index (ARI). For each of the defined test cases (Table 6.2) two
different results were generated; one with the implementation of manifold learning
techniques (labeled as KPCA) and one without. The use of manifold learning
improved the results in all cases and, as it was expected, the case with the metrics
that use the full tensor information proved to be the best among all.

Method CA RI ARI

Case 1 0.719 0.826 0.515

Case 1 KPCA 0.864 0.915 0.750

Case 2 0.6848 0.801 0.489

Case 2 KPCA 0.842 0.884 0.662

Case 3 0.7312 0.831 0.533

Case 3 KPCA 0.866 0.911 0.7398

Case 4 0.726 0.833 0.529

Case 4 KPCA 0.852 0.900 0.7080

Case 5 0.7352 0.837 0.543

Case 5 KPCA 0.865 0.905 0.7275

Case 6 0.7312 0.834 0.532

Case 6 KPCA 0.986 0.991 0.973
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Fig. 6.10: Diagram of the multi-view cluster-ensemble methodology applied to
DCE-MRI and DTI-MR volumes.

6.11 Tests with a software tumor simulator

To further the validation of our methodology we also relied on the simulator de-
veloped by Prastawa and colleagues [148].

Their proposed system combines physical and statistical modeling to gener-
ate synthetic multi-modal 3D brain MRI with tumor and edema, along with the
underlying anatomical ground truth. They place emphasis on the simulation of
the major effects known for tumor MRI, such as contrast enhancement, local dis-
tortion of healthy tissue, infiltrating edema adjacent to tumors, destruction and
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deformation of fiber tracts, and multi-modal MRI contrast of healthy tissue and
pathology.

The simulator synthesizes pathology in multi-modal MRI and diffusion tensor
imaging (DTI) by simulating mass effect, warping and destruction of white mat-
ter fibers, and infiltration of brain tissues by tumor cells. It generates synthetic
contrast-enhanced MR images by simulating the accumulation of contrast agent
within the brain. The appearance of the the brain tissue and tumor in MRI is
simulated by synthesizing texture images from real MR images.

In his published work Prastawa compares the manual segmentation of the sim-
ulated images by human experts with the reference ground truth masks generated
by his simulator and finds a considerable agreement, arguing that the simulated
images at least present a segmentation challenge similar to that of real pathological
images for human experts.

Tumor and edema growth involves many concurrently occurring processes. The
growth model may involve biomechanics, nutrient distribution, and metabolic pro-
cesses. Since Prastawa’s goal was not to model tumor growth in detail, they have
chosen to simplify the model and use three separate sequential processes for effi-
ciency, as shown in Figure 6.11. First, the simulator process the deformation that
is due to tumor mass effect using a biomechanical model. It is then followed by the
simulation of the infiltration process using reactiondiffusion. Finally, it computes
the deformation that is due to tumor infiltration of brain tissue and the mass effect
of edema [148].

6.11.1 Drawbacks of the tumor simulator

Despite its promised utility, the tumor simulator has certain drawbacks that need
to be taken into consideration when using it for validation. First, it is important to
note that with this simulator, the goal of Prastawa and colleagues was to generate
sufficiently realistic MR images, or in other words, to generate MRI volumes that
appear to be realistic, similar to real pathologic images. In the documentation this
modified MRI images are specially used to assess the segmentation abilities of
human experts. The accurate modeling of tumor growth and MR image synthesis
are beyond the scope of the simulator, instead the focus falls on the generation of
test images that empirically exhibits pathology seen in real images.

Our principal concern, however, is in the way the DTI is processed. As it can be
seen in Figure 6.11, the DTI modification step is performed after the first body-
mass simulation due to the initial tumoral seed and it is not influenced by the
following step, which is the second body-mass simulation due to the infiltration
process. The DTI modification process is based mainly in the observation that
white matter fibers around a tumor tend to be displaced, and in regions near the
tumor the mean diffusivity tends to increase while the fractional anisotropy usu-
ally decreases. Local volume explansion reduces tensor coherence, producing more
isotropic tensors, while local volume compression or shrinking does not modify the
tensor information. Starting from these basic assumptions, the simulator process
the input DT volume using a combination of image warping and non-linear inter-
polation. Our main criticism of this methodology is that, although the assumptions
regarding the changes in diffusivity are backed by the literature, the tensor modifi-
cation process it too simplistic and relies only on the results of the first body-mass
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iterations, without taking into account the results of the infiltration process. Since
the final ground truth masks are mainly calculated by the tumor and infiltration
processes, the modification of the DTI can be seen mainly as a byproduct that
does not contribute to the final ground truth. This is particularly important for
the validation of our methodology, which relies in the full tensor information and
the relationships between all voxels when calculating KPCA as a manifold learning
technique.

Fig. 6.11: Overview of the simplified tumor and edema growth model in the tu-
mor simulator by Prastawa et al. [148]. The model is composed of four sequential
processes, where we simulate the deformation due to tumor expansion, the mod-
ification of DTI due to the deformation, the infiltration of brain tissue by tumor
cells and edema, and the displacements due to the infiltrating cells.

6.11.2 Test case

Despite the aforementioned drawbacks, we think that the tumor simulator is an
interesting and useful tool, as long as we have in mind its limitations, specially
when evaluating specific validation results. Another mundane reason that pushed
us to its use is the known difficulty of obtaining real appropriate datasets for
validation, a common problem in the world of medical imaging research. Using the
tumor simulator, we generated a synthetic tumor with 20 iterations in the mass
effect calculation of the tumor volume expansion on surrounding tissues and 20
iterations in infiltration, which simulates of the growth and spreading of tumor
cells due to the infiltrating process. The full list of parameters is shown in Table
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6.4. Most of the parameters refer to the biomechanical properties used to model
the brain tissue and the interactions with the distinct pathological processes. The
full description of the methodology used by the simulator to calculate every step
of the process is described in the work by Prastawa [148].

Table 6.4: Parameters used in the tumor simulator [148] to generate the test case.

Parameter Value Parameter Value

Deformation Iterations 20 Infiltration Iterations 20

Infiltration body-force iterations 6 Deformation initial pressure 6

Deformation kappa coefficient 20 Deformation damping 0.05

Infiltration time-step 0.5 Infiltration early-time 6

Infiltration body-force coefficient 120 Infiltration body-force damping 0.25

Contrast-enhancement type uniform Brain young modulus 694

Brain poisson ratio 0.4 Falx young modulus 1200

Falx poisson ratio 0.4 Infiltration reaction coefficient 0.1

White matter tensor multiplier 200 Gray matter tensor multiplier 1

Gad noise stddev 20 T1 noise stddev 50

T2 noise stddev 50 Flair noise stddev 90

Gad max-bias degree 4 T1 max bias degree 4

T2 max bias degree 4 Flair max-bias degree 4

Disable background 1 Deformation solver iterations 8

Infiltration solver iterations 8 Number of threads 4

A sample of the resulting set of images from the test case can be seen in
Figure 6.12, where the T1, T2 and T1 with contrast agent images exhibit a clear
lesion zone and deformation. Figure 6.13 shows the resulting DTI volume as a
visualization with diffusion ellipsoids. In this figure it can be clearly appreciated
the effect described in the previous Subsection, i.e. the articial-looking swelling of
the diffusion tensors that compose the initial tumoral seed in the middle of a more
restricted tensor deformation surrounding that area. Such seed does not appear
delineated in the final ground truth masks, as it is part of the region regarded as
tumor. We applied to the results of the simulation the same procedure used in the
previous synthetic dataset, as written in Section 6.10. It is worth noticing that the
tumor simulator does not calculate a full DCE-MRI sequence, just a single image
that simulates the contrast agent accumulation. The equations for the processing
of DCE-MRI are used as if we had a single timpoint beyond the initial baseline
volume.

The results shown in Figure 6.14 and Table fig:tumorsimout4 indicate an im-
portant agreement between the ground truth and the obtained segmentation. How-
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ever the limitations of the simulation in the DTI processing lead us to think that
a better result would be obtained in the case of a more comprehensive or relevant
DTI volume. Nevertheless, this positive results warrant a further analysis of the
methodology with real pathological datasets.

(a) T2 image (b) T1 image (c) Contrast-enhanced T1

Fig. 6.12: Output volumes from the tumor simulator. The images correspond to a
slice of the test case generated with the parameters shown in Table 6.4

Table 6.5: Results of the evaluation performed with the tumor simulator. The
results are evaluated by means of the Classification Accuracy (AC), Rand Index
(RI) and Adjusted Rand Index (ARI). Two different results were generated; one
with the implementation of manifold learning techniques (labeled as KPCA) and
one without. Despite the drawbacks inherent to the tumor simulator, explained in
Section 6.11.1, the use of manifold learning improved the results.

Method CA RI ARI

Multi-view method 0.714 0.772 0.53

Multi-view method + KPCA 0.800 0.832 0.610

6.12 Conclusion

We have presented a general multi-view strategy for for creating a set of unsuper-
vised base clusterings of lesions in multi-modal MRI images with the purpose to
reach a unified consensus. The creation of multiple vctorial spaces from each MRI
modality allow to focus on specific characteristics or views of the multi-dimensional
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(a) DTI image, visualized as
diffusion ellipsoids.

(b) Enlargement of the tumoral zone
in the DTI image.

Fig. 6.13: DTI-MR output volumes from the tumor simulator. The images corre-
spond to a slice of the test case shown in Figure 6.12, generated with the param-
eters shown in Table 6.4. In both images can be appreciated the artificial-looking
swelling of the tensors composing the initial seed, which does not appear delineated
in the final ground truth (Fig. 6.14 ).

(a) Ground truth. (b) Resulting segmentation.

Fig. 6.14: Result of the clustering procedure performed on a test case calculated
with the software tumor simulator.
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information conveyed by the MRI data. The use of the dissimilarity representation
paradigm allows us to represent the data in vectorial spaces created according to
their relationships expressed by a specific distance or dissimilarity function. The
results show a consistent improvement of the assessment scores when using KPCA
as a manifold learning technique, a consideration taken specifically to address the
geometric structure of the tensorial diffusion data. This outcome, together with
the results showing a marked increase in performance with the test case that em-
ploys the DT metrics using the full tensor information, shows the importance of
including problem-specific knowledge in choosing the appropriate set of metrics
or dissimilarity functions. A drawback of this method is the high computational
cost of KPCA, since using the standard eigendecomposition of the kernel matrix
involves a time complexity of O(n3). However there are considerable advances on
alternative methods for reducing the complexity of KPCA, with special focus on
the factorization of the Gram matrix [195,206]

As we have mentioned, the positive results in the tests warrant a further anal-
ysis using real pathological datasets, either from human patients or, as it is more
feasible, using pre-clinical rodent models with inoculated tumoral cells. In any
case, with this work we have demonstrated that the use of Consensus Clustering
techniques in multi-modal medical image segmentations is a promising strategy
for assessing the heterogeneity of tumoral regions.
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Conclusions

Medical imaging is one of the most powerful tools for gaining insight into normal
and pathological processes that affect health. The role of image processing in
medicine is expanding with the increasing importance of finding ways to improve
workflow in reading environments where more images are being acquired in more
acquisition modalities. Image processing has an important influence on the medical
decision making process and even on surgical actions. The performance of image
processing methods may have an important impact on the performance of the
larger systems as well as on the human observer that needs to analyze all of the
available image data and render a diagnostic or therapeutic decision. An emerging
focus is the development of imaging biomarkers for drug or therapy response, and
the development and application of sophisticated image analysis methods in order
to improve the accuracy of diagnosis, or to better predict outcomes of disease or
treatment and intervention strategies.

Regarding diagnosis and treatment of tumors, the act of differential diagnosis
applies a label to the tumor as a whole, but therapy outcomes are increasingly
recognized to depend only on part on this label but appear to have correlations
with such local properties as cellularity, vascularity and oxygen delivery. Biopsy,
in addition to providing a definitive label, can provide indications of these local
properties as well as histochemical profiles. It would be very, very costly however
to attempt to use biopsy to achieve comprehensive coverage of tumors. MRI on
the other hand is well suited to such coverage, and can provide indicators of some
of the tissue properties of interest: cell density via diffusion imaging, and a mix of
vascularity and vessel permeability via DCE-MRI.

In a conventional radiological report however, the results of the MRI-derived
mappings are typically reduced to minimalist statements that leave important
questions in the face of therapy. The present work is a contribution towards ad-
dressing the generalized clinical desire to integrate the different domains of multi-
modal MRI into a single coherent framework to aid in diagnosis and therapy.

The aim of this thesis was to investigate processing strategies for the com-
bination of multi-modal MRI images. Mainly we made special emphasis in the
combination of perfusion and diffusion MRI, considering and exploiting the par-
ticularities of each modality.
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We initiated this thesis with the relevant background in medical imaging, par-
ticularly the two MRI modalities used through this work. Furthermore, continuing
with the background information, we presented details on unsupervised classifica-
tion, specially the interesting and sometimes overlooked problem of data represen-
tation.

Ultimately we reviewed the approaches to medical imaging fusion for ulterior
discrimination, and proposed two main methodologies for the combination and
usupervised classification of MRI mdoalities for heterogeneity assessment.

The use of the first methodology (Chapter 5) for heterogeneity quantifica-
tion that integrates information from diffusion (an indicator of cellularity) and
perfusion MRI images was illustrated in application to ductal carcinoma. The
demonstration illustrated multimodal clustering leads to improved selectivity and
yields a greater refinement of the segmentation of tissues within the lesion than
the separate processing of the two modalities.

By demonstrating that statistically consistent subgroups can be defined within
tumors based on a combination of DCE-MRI and DWI-MRI data, we have indi-
cated a means for objectively segmenting tumors that can be used for larger studies
to examine clinical impact. Moreover, the appearance of statistically distinct per-
fusion regions within the tumor at moderate and low ADC weightings that in turn
have statistically distinct ADC distributions suggests there is a useable distinction
present that is not capitalized upon in present clinical practice.

This methodology could also benefit from the incorporation of a cluster ensem-
ble strategy, like the one we used in the last Chapter, to make a consensus between
the different parameters that control the combination and weighting of diffusion
and perfusion information to the overall dissimilarity score. Since the combina-
tion of modalities creates a vectorial “meta-space” in which both modalities are
represented, the resulting partitioned zones should be carefully evaluated by the
medical experts in order to compare them to a wide range of their histological
and clinical assessments, not just a reductionist label as is commonly done with a
regular biopsy.

The issue of a more conscientious validation still remain, specially from the
clinical perspective. We are now looking into robust methods for further valida-
tion of the processing pipeline that would enable a clinical exploitation of the
multimodal analysis. Access to ground truth beyond radiological and biopsy eval-
uation is needed and likely requires voxel-wise comparison of with histology of
resections, a process that requires modifications to the surgical procedure that
were not justified for this first demonstration and research of the method. Even
were histology image data available, a significant task remains in the spatially cor-
relation of individual MRI voxels with the histological results in order to get the
requisite voxel-scale validation.

Although the first proposed methodology was applied to the specific problem
of breast ductal carcinoma although it was formulated in a general and flexible
way, with focus on the dimensionality and definition of suitable criteria for the
representation of the multi-modal MRI data. There is nothing in the methodology
that makes it exclusively suitable for breast cancer, on the contrary, its flexibility
makes it appropriate for a straightforward implementation and tuning specific to
a variety of different clinical domains.
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The second methodology we presented in Chapter 6 relied on a “multi-view”
approach to represent different aspects of each modality in a series of unique
dissimilarity spaces. We exploited this set of vectorial spaces through a cluster
ensemble strategy that served to reach a consensus between the different decisions
and eventually an unifying partition.

Particularly, as we have focused on DTI-MR, an analysis of the peculiar charac-
teristics of the modality highlights the importance of the geometric characteristics
of the high-dimensional data. This is an issue that we have addressed with the
integration of a kernel-based manifold learning technique. Results obtained with
simulated data have demonstrated an improvement of the results using the man-
ifold learning stage against the same methodology without it. However, just as
with the first proposed approach, a further validation is required. In the case of
the multi-view method the first step would be to make further analysis with a
more complex set of simulated data, which would serve to analyze the specific
limits and drawbacks of the method. As a second step, following the methodology
of Chapter 5, an analysis with clinical data would be optimal. This of course raises
new concerns, specifically the selection of appropriate cases and the reduction of
variables with the selection of patients with the same pathology, something which
is difficult to obtain when dealing with clinical medical data.

A common suggestion when dealing with validation is that of allowing an expert
radiologist to delineate the regions of inhomogeneity and measure the amount of
overlap with the results in terms of any specific validation index. However, the
delineation by a radiologist is a highly non-trivial task. We have little hope that
delineations by an expert radiologist will provide useful reference material however.
Such an approach will require pixel by pixel decision-making on their part, and
reflect entirely their bounds on defining similarity between enhancement patterns.
We are looking instead to a histological approach that can be based on less biased
analysis methods, or at least established criteria that will be suitable for an analysis
of the type suggested by the reviewer. Access to ground truth beyond radiological
and biopsy evaluation is needed and likely requires voxel-wise comparison of with
histology of resections, a process that requires modifications to surgical procedures
that were not justified for this first demonstration of the method. Either approach
requires much greater funding and effort commitments than we have been able to
obtain for a novel technique without prior validation.

The issue of multi-modal MRI data combination for classification purposes is
still relatively new, we are sure this will become an buoyant and interesting research
area as the MRI methods keep progressing towards higher resolutions. We hope
to have made an interesting and relevant contribution to the development of this
field with this thesis.
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