1,093 research outputs found

    Rewriting Modulo SMT and Open System Analysis

    Get PDF
    Rewriting modulo SMT is a new technique that combines the power of SMT solving, rewriting modulo theories, and model checking. Rewriting modulo SMT is ideally suited to model and analyze reachability properties of infinite-state open systems, i.e., systems that interact with a nondeterministic environment. Such systems exhibit both internal nondeterminism, which is proper to the system, and external nondeterminism, which is due to the environment. In a reflective formalism, such as rewriting logic, rewriting modulo SMT can be reduced to standard rewriting. Hence, rewriting modulo SMT naturally extends rewriting-based reachability analysis techniques, which are available for closed systems, to open systems. In this talk, I will be discussing the main conceptual and technical ideas behind rewriting modulo SMT, its state of implementation in the Maude system, and some research challenges to be tackled during the next few years.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Rewriting Modulo SMT and Open System Analysis

    Get PDF
    This paper proposes rewriting modulo SMT, a new technique that combines the power of SMT solving, rewriting modulo theories, and model checking. Rewriting modulo SMT is ideally suited to model and analyze reachability properties of infinite-state open systems, i.e., systems that interact with a nondeterministic environment. Such systems exhibit both internal nondeterminism, which is proper to the system, and external nondeterminism, which is due to the environment. In a reflective formalism, such as rewriting logic, rewriting modulo SMT can be reduced to standard rewriting. Hence, rewriting modulo SMT naturally extends rewriting-based reachability analysis techniques, which are available for closed systems, to open systems. The proposed technique is illustrated with the formal analysis of: (i) a real-time system that is beyond the scope of timed-automata methods and (ii) automatic detection of reachability violations in a synchronous language developed to support autonomous spacecraft operations.NSF Grant CNS 13-19109 and NASA Research Cooperative Agreement No. NNL09AA00AOpe

    Rewriting Modulo SMT

    Get PDF
    Combining symbolic techniques such as: (i) SMT solving, (ii) rewriting modulo theories, and (iii) model checking can enable the analysis of infinite-state systems outside the scope of each such technique. This paper proposes rewriting modulo SMT as a new technique combining the powers of (i)-(iii) and ideally suited to model and analyze infinite-state open systems; that is, systems that interact with a non-deterministic environment. Such systems exhibit both internal non-determinism due to the system, and external non-determinism due to the environment. They are not amenable to finite-state model checking analysis because they typically are infinite-state. By being reducible to standard rewriting using reflective techniques, rewriting modulo SMT can both naturally model and analyze open systems without requiring any changes to rewriting-based reachability analysis techniques for closed systems. This is illustrated by the analysis of a real-time system beyond the scope of timed automata methods

    Two Decades of Maude

    Get PDF
    This paper is a tribute to José Meseguer, from the rest of us in the Maude team, reviewing the past, the present, and the future of the language and system with which we have been working for around two decades under his leadership. After reviewing the origins and the language's main features, we present the latest additions to the language and some features currently under development. This paper is not an introduction to Maude, and some familiarity with it and with rewriting logic are indeed assumed.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Efficient Generation of Craig Interpolants in Satisfiability Modulo Theories

    Full text link
    The problem of computing Craig Interpolants has recently received a lot of interest. In this paper, we address the problem of efficient generation of interpolants for some important fragments of first order logic, which are amenable for effective decision procedures, called Satisfiability Modulo Theory solvers. We make the following contributions. First, we provide interpolation procedures for several basic theories of interest: the theories of linear arithmetic over the rationals, difference logic over rationals and integers, and UTVPI over rationals and integers. Second, we define a novel approach to interpolate combinations of theories, that applies to the Delayed Theory Combination approach. Efficiency is ensured by the fact that the proposed interpolation algorithms extend state of the art algorithms for Satisfiability Modulo Theories. Our experimental evaluation shows that the MathSAT SMT solver can produce interpolants with minor overhead in search, and much more efficiently than other competitor solvers.Comment: submitted to ACM Transactions on Computational Logic (TOCL

    Rewriting modulo symmetric monoidal structure

    Get PDF
    String diagrams are a powerful and intuitive graphical syntax for terms of symmetric monoidal categories (SMCs). They find many applications in computer science and are becoming increasingly relevant in other fields such as physics and control theory. An important role in many such approaches is played by equational theories of diagrams, typically oriented and applied as rewrite rules. This paper lays a comprehensive foundation for this form of rewriting. We interpret diagrams combinatorially as typed hypergraphs and establish the precise correspondence between diagram rewriting modulo the laws of SMCs on the one hand and double pushout (DPO) rewriting of hypergraphs, subject to a soundness condition called convexity, on the other. This result rests on a more general characterisation theorem in which we show that typed hypergraph DPO rewriting amounts to diagram rewriting modulo the laws of SMCs with a chosen special Frobenius structure. We illustrate our approach with a proof of termination for the theory of non-commutative bimonoids

    Language and Proofs for Higher-Order SMT (Work in Progress)

    Full text link
    Satisfiability modulo theories (SMT) solvers have throughout the years been able to cope with increasingly expressive formulas, from ground logics to full first-order logic modulo theories. Nevertheless, higher-order logic within SMT is still little explored. One main goal of the Matryoshka project, which started in March 2017, is to extend the reasoning capabilities of SMT solvers and other automatic provers beyond first-order logic. In this preliminary report, we report on an extension of the SMT-LIB language, the standard input format of SMT solvers, to handle higher-order constructs. We also discuss how to augment the proof format of the SMT solver veriT to accommodate these new constructs and the solving techniques they require.Comment: In Proceedings PxTP 2017, arXiv:1712.0089

    SAT Modulo Linear Arithmetic for Solving Polynomial

    Get PDF
    Polynomial constraint solving plays a prominent role in several areas of hardware and software analysis and verification, e.g., termination proving, program invariant generation and hybrid system verification, to name a few. In this paper we propose a new method for solving non-linear constraints based on encoding the problem into an SMT problem considering only linear arithmetic. Unlike other existing methods, our method focuses on proving satisfiability of the constraints rather than on proving unsatisfiability, which is more relevant in several applications as we illustrate with several examples. Nevertheless, we also present new techniques based on the analysis of unsatisfiable cores that allow one to efficiently prove unsatisfiability too for a broad class of problems. The power of our approach is demonstrated by means of extensive experiments comparing our prototype with state-of-the-art tools on benchmarks taken both from the academic and the industrial world
    corecore