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Abstract. This paper proposes rewriting modulo SMT, a new technique that
combines the power of SMT solving, rewriting modulo theories, and model check-
ing. Rewriting modulo SMT is ideally suited to model and analyze reachability
properties of infinite-state open systems, i.e., systems that interact with a non-
deterministic environment. Such systems exhibit both internal nondeterminism,
which is proper to the system, and external nondeterminism, which is due to the
environment. In a reflective formalism, such as rewriting logic, rewriting modulo
SMT can be reduced to standard rewriting. Hence, rewriting modulo SMT nat-
urally extends rewriting-based reachability analysis techniques, which are avail-
able for closed systems, to open systems. The proposed technique is illustrated
with the formal analysis of: (i) a real-time system that is beyond the scope of
timed-automata methods and (ii) automatic detection of reachability violations in
a synchronous language developed to support autonomous spacecraft operations.

1 Introduction

Symbolic techniques can be used to represent possibly infinite sets of states by means
of symbolic constraints. These techniques have been developed and adapted to many
other verification methods such as SAT solving, Satisfiability Modulo Theories (SMT),
rewriting, and model checking. A key open research issue of current symbolic tech-
niques is extensibility. Techniques that combine different methods have been proposed,
e.g., decision procedures [50, 51], unifications algorithms [7, 11], theorem provers with
decision procedures [1, 10, 53], and SMT solvers in model checkers [3, 30, 49, 62, 66].
However, there is still a lack of general extensibility techniques for symbolic analy-
sis that simultaneously combine the power of SMT solving, rewriting- and narrowing-
based analysis, and model checking.

This paper proposes a new symbolic technique that seamlessly combines rewrit-
ing modulo theories, SMT solving, and model checking. For brevity, this technique
is called rewriting modulo SMT, although it could more precisely be called rewrit-
ing modulo SMT+B, where B is an equational theory having a matching algorithm.
It complements another symbolic technique combining narrowing modulo theories and
model checking, namely narrowing-based reachability analysis [8,48]. Neither of these
two techniques subsumes the other. Indeed, each technique has specific advantages:
narrowing-based reachability analysis is more general and can perform more powerful
forms of symbolic execution based on narrowing, as opposed to matching and rewrit-
ing. But rewriting modulo SMT can verify both satisfiability and validity of constraints
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in the decidable built-in subtheory, and can be considerably more efficient because of
the higher efficiency of matching versus unification modulo a set of axioms.

In rewriting logic [46], deterministic systems can be naturally specified by equa-
tional theories, but specification of concurrent, nondeterministic systems in rewriting
logic requires rewrite theories, i.e., triples R = (Σ, E,R) with (Σ, E) an equational
theory describing system states as elements of the initial algebra TΣ/E , and R rewrite
rules describing the system’s local concurrent transitions. Rewriting modulo SMT tech-
niques can then be applied to increase the power of rewrite-based equational reason-
ing for (Σ, E) such as, for instance, inductive theorem proving [29, 39, 40], termination
checking [28,61], and procedural verification [41]. However, the full power of rewriting
modulo SMT, including its model checking capabilities, can be better exploited when
applied to concurrent open systems.

An open system is a concurrent system that interacts with an external, nondetermin-
istic environment. When such a system is specified by a rewrite theory R = (Σ, E,R),
it has two sources of nondeterminism, one internal and the other external. Internal non-
determinism comes from the fact that in a given system state several instances of each
rule in R may be enabled. The local transitions thus enabled may lead to completely
different states. What is peculiar about an open system is that it also has external, and
often infinitely-branching, nondeterminism due to the environment. That is, the state
of an open system must include the state changes due to the environment. Technically,
this means that, while system transitions in a closed system can be described by rewrite
rules of the form t(−→x )→t′(−→x ), transitions in an open system can instead be modeled by
rules of the form t(−→x ) → t′(−→x ,−→y ), where the extra variables −→y on the right-hand side
of the rule are fresh new variables that can represent external nondeterminism such as,
for instance, user input, sensor probing, and random computations. Therefore, a sub-
stitution for the variables −→x]−→y decomposes into two substitutions, one, say θ, for the
variables −→x under the control of the system and another, say ρ, for the variables −→y un-
der the control of the environment. In rewriting modulo SMT, such open systems are
described by conditional rewrite rules of the form t(−→x ) → t′(−→x ,−→y ) if φ(−→x ,−→y ), where
φ is a constraint solvable by an SMT solver. This constraint φ may still allow the envi-
ronment to choose an infinite number of substitutions ρ for −→y , but can exclude choices
that the environment will never make.

Consider the example of a real-time system comprising a thermostat sensing the
temperature from the environment and an air conditioning device. The goal of the ther-
mostat and the air conditioning is to maintain the system’s temperature near a desired
setpoint. The thermostat does this by switching the air conditioning device on or off,
depending on the relation between the temperature it senses from the environment and
the setpoint. For this example, the state of the system can be modeled by tuples of the
form

〈 time :_ , temp :_ , setpoint :_ , ac :_ 〉 or [ time :_ , temp :_ , setpoint :_ , ac :_ ]

where the values associated to attributes time, temp, and setpoint are natural numbers
specifying, respectively, the system’s global clock, the temperature sensed by the ther-
mostat from the environment, and the system’s desired setpoint, and the value associated
to attribute ac is a Boolean constant indicating whether the air conditioning device is
turned on or not. The idea is that the first two attributes in a state (i.e., time and temp)



are the ones under control of the environment, while the last two attributes (i.e., setpoint
and ac) are the ones under the internal control of the system. The state transitions can
be modeled by the following three rules, with R, S ,T,Te natural number variables and
B a Boolean variable:

〈 time :R, temp :T, setpoint :S , ac : B 〉 → [ time : R, temp : T, setpoint : S , ac : true ] if T >S

〈 time :R, temp :T, setpoint :S , ac : B 〉 → [ time :R, temp :T, setpoint :S , ac : false ] if T ≤S

[ time :R, temp :T, setpoint :S , ac : B ]→ 〈 time :R + 1, temp :Te, setpoint :S , ac :B 〉

The first rule models the situation in which the temperature sensed from the environ-
ment exceeds the setpoint of the system and, thus, the air conditioning device must be
turned on (if it was not). The second rule models the opposite situation in which the
temperature sensed from the environment does not exceed the setpoint of the system
and the air conditioning device must be turned off (if it was not). The third rule is a tick
rule modeling the passage of time and the corresponding changes in the environment,
namely, the global clock is increased by one time unit and the next value of the tem-
perature is read from a sensor. The interplay between states of the form 〈_〉 and [_] can
be explained as follows: rules under the internal control of the system are exclusively
applicable to a state of the form 〈_〉, producing a state of the form [_] in a zero-time
transition, while the rule under the control of the external environment is only applica-
ble to a state of the form [_], producing a state of the form 〈_〉 in one time unit. In the
above-stated sense, this is an example of an open and concurrent system that interacts
with an external nondeterministic environment: the extra variable Te in the right-hand
side of the last rule represents the external nondeterminism due to changes in the envi-
ronment. Note that this system cannot be directly executed via term rewriting because
there are infinitely many substitutions for Te.

The non-trivial challenges of modeling and analyzing open systems can now be bet-
ter explained. They include: (1) the enormous and possibly infinitary nondeterminism
due to the environment, which typically renders finite-state model checking impossi-
ble or unfeasible; (2) the impossibility of executing the rewrite theory R = (Σ, E,R)
in the standard sense, due to the nondeterministic choice of ρ; and (3) the, in general,
undecidable challenge of checking the rule’s condition φ, since without knowing ρ, the
condition φθ is non-ground, so that its E-satisfiability may be undecidable. As further
explained in the paper, challenges (1)–(3) are all met successfully by rewriting modulo
SMT because: (1) states are represented not as concrete states, i.e., ground terms, but as
symbolic constrained terms (t ;ϕ) with t a term with variables ranging over the domains
handled by the SMT solver and ϕ an SMT-solvable formula, so that the choice of ρ is
avoided; (2) rewriting modulo SMT can symbolically rewrite such pairs (t ;ϕ) (describ-
ing possibly infinite sets of concrete states) to other pairs (t′ ;ϕ′); and (3) decidability
of φθ (more precisely of ϕ∧φθ) can be settled by invoking an SMT solver. In this sense,
rewriting modulo SMT is a symbolic reachability analysis technique for topmost rewrite
theories, i.e., rewrite theories for which nondeterministic computation specified by the
rules happens at the top of the state terms. Many systems whose state can be represented
by a set or multiset of objects and messages can be naturally specified as topmost rewrite
theory. In particular, most distributed systems and network protocols, including those
with real-time features, can be easily modeled this way. This rewriting-based system



specification style is illustrated with the above thermostat example —which is fully
specified later in the paper— and with two longer case studies.

Rewriting modulo SMT can be integrated with model-checking by exploiting the
fact that rewriting logic is reflective [20], i.e., a logic in which important aspects of its
metatheory can be represented at the object level in a consistent way. Hence, rewrit-
ing modulo SMT can be reduced to standard rewriting. In particular, all the tech-
niques, algorithms, and tools available for model checking of closed systems specified
as rewrite theories, such as Maude’s search-based reachability analysis [19], become
directly available to perform symbolic reachability analysis on systems that are now
infinite-state.

The approach and formal analysis techniques proposed in this paper are illustrated
with the formal analysis of the CASH scheduling protocol [15] and formal executable
semantics of the Plan Execution Interchange Language (PLEXIL) [26]. The CASH
protocol specifies a real-time system whose formal analysis is beyond the scope of
timed-automata [2]. The language PLEXIL is a safety-critical synchronous language
developed by NASA to support autonomous spacecraft operations.

This paper is an extended and revised version of [58], including:

– A running example, namely, the real-time and open system comprising the ther-
mostat and the air conditioning device, that is used for the purpose of explaining
concepts, definitions, and results in sections 3, 4, and 5.

– Complete proofs of all results in sections 3, 4, and 5.
– A more comprehensive description of the CASH protocol case study in Section 7,

in which all transitions rules are included and explained.
– A new case study in Section 8 on automatically detecting symbolic reachability

violations for PLEXIL.

The rest of this paper is organized as follows. Section 2 presents some preliminary
material on rewriting logic. Section 3 introduces built-in subtheories and elaborates on
some of its equational properties. Section 4 presents the concept of rewriting modulo
a built-in equational sub-theory. Section 5 then explains how to perform sound and
complete symbolic rewriting with these theories. Section 6 presents an overview of a
reflective implementation in Maude that offers support for symbolic rewriting modulo
SMT. Sections 7 and 8 present case studies, respectively, on the symbolic reachability
analysis for the CASH real-time protocol and the plan execution language PLEXIL.
Finally, Section 9 presents some concluding remarks.

2 Preliminaries

Notation on terms, term algebras, and equational theories is used as in [6,36]. An order-
sorted signature Σ is a tuple Σ=(S ,≤, F) with a finite poset of sorts (S ,≤) and set of
function symbols F typed with sorts in S . The binary relation ≡≤ denotes the equiva-
lence relation (≤ ∪ ≥)+ generated by ≤ on S and its point-wise extension to strings in
S ∗. The function symbols in F can be subsort-overloaded. To avoid ambiguous parses
they are required to satisfy the condition that, for w,w′ ∈ S ∗ and s, s′ ∈ S , if f : w −→ s



and f : w′ −→ s′ are in F, then w ≡≤ w′ implies s ≡≤ s′. For any sort s ∈ S , the ex-
pression [s] denotes the connected component of s, that is, [s] = [s]≡≤ . A top sort in Σ
is a sort s ∈ S such that for all s′ ∈ [s], s′ ≤ s.

Let X = {Xs}s∈S denote an S -indexed family of disjoint variable sets with each Xs

countably infinite. The set of terms of sort s and the set of ground terms of sort s are
denoted, respectively, by TΣ(X)s and TΣ,s; similarly, TΣ(X) and TΣ denote, respectively,
the set of terms and the set of ground terms. TΣ(X) and TΣ denote the corresponding
order-sorted Σ-term algebras. All order-sorted signatures are assumed preregular [36],
i.e., each Σ-term t has a unique least sort ls(t) ∈ S s.t. t ∈ TΣ(X)ls(t). It is also assumed
that Σ has nonempty sorts, i.e., TΣ,s , ∅ for each s ∈ S . The set of variables of t is
written vars(t) and for a list of terms t0, t1, . . . , tn, vars(t1, . . . , tn) = vars(t0) ∪ · · · ∪
vars(tn). For a term t ∈ TΣ(X) and −→x a list of variables in X, the expression t(−→x ) denotes
the term t and the fact that each variable in vars(t) occurs in the list −→x . A term t is called
linear if and only if each x ∈ vars(t) occurs only once in t. For S ′ ⊆ S , a term is called
S ′-linear if and only if each x ∈ vars(t) with sort in S ′ occurs only once in t.

A substitution is an S -indexed mapping θ : X −→ TΣ(X) that is different from the
identity only for a finite subset of X and such that θ(x) ∈ TΣ(X)s if x ∈ Xs, for any x ∈ X
and s ∈ S . The identity substitution is denoted by id and θ|Y denotes the restriction of
θ to a family of variables Y ⊆ X. The domain of θ, denoted dom(θ), is the subfamily
of X for which θ(x) , x, and ran(θ) denotes the family of variables introduced by the
terms θ(x), such that x ∈ dom(θ). Substitutions extend homomorphically to terms in the
natural way. A substitution θ is called ground if and only if ran(θ) = ∅. The application
of a substitution θ to a term t is denoted by tθ and the composition (in diagrammatic
order) of two substitutions θ1 and θ2 is denoted by θ1θ2, so that tθ1θ2 denotes (tθ1)θ2. A
context C is a λ-term of the form C = λx1, . . . , xn.c with c ∈ TΣ(X) and {x1, . . . , xn} ⊆

vars(c); it can be viewed as an n-ary function (t1, . . . , tn) 7→ C(t1, . . . , tn) = cθ, where
θ(xi) = ti for 1 ≤ i ≤ n and θ(x) = x otherwise.

A Σ-equation is an unoriented pair t = u with t ∈ TΣ(X)s, u ∈ TΣ(X)s′ , and s ≡≤ s′.
A conditional Σ-equation is a triple (t, u, γ), denoted t = u if γ, with t = u a Σ-equation
and γ a finite conjunction of Σ-equations; Σ-equations and conditional Σ-equations will
be just called Σ-equations for brevity. An equational theory is a tuple (Σ, E), with Σ an
order-sorted signature and E a finite collection of (possibly conditional) Σ-equations.
An equational theory E = (Σ, E) induces the congruence relation =E on TΣ(X) defined
for t, u ∈ TΣ(X) by t =E u if and only if E ` t = u, where E ` t = u denotes E-provability
by the deduction rules for order-sorted equational logic in [47]. For the purpose of this
paper, such inference rules, which are analogous to those of many-sorted equational
logic, are even simpler thanks to the assumption that Σ has nonempty sorts, which
makes unnecessary the explicit treatment of universal quantifiers. Similarly, =1

E
denotes

provable E-equality in one step of deduction. The E-subsumption ordering �E is the
binary relation on TΣ(X) defined for any t, u ∈ TΣ(X) by t �E u if and only if there
is a substitution θ : X −→ TΣ(X) such that t =E uθ. The expressions TE(X) and TE
(also written TΣ/E(X) and TΣ/E) denote the quotient algebras induced by =E on the
term algebras TΣ(X) and TΣ , respectively. TΣ/E is called the initial algebra of (Σ, E).
A theory inclusion (Σ, E) ⊆ (Σ′, E′), with Σ ⊆ Σ′ and E ⊆ E′, is called protecting



if and only if the unique Σ-homomorphism TΣ/E −→ TΣ′/E′ |Σ to the Σ-reduct1 of the
initial algebra TΣ′/E′ is a Σ-isomorphism, written TΣ/E ' TΣ′/E′ |Σ . Intuitively, if a
theory inclusion (Σ, E) ⊆ (Σ′, E′) is protecting, this means that: (i) =E′ does not identify
terms in TΣ(X) that cannot be proved equal by =E , that is, no confusion is added when
extending (Σ, E) to (Σ′, E′), and (ii) for each sort s of Σ and t′ ∈ TΣ′,s there is a t ∈ TΣ,s
such that t′ =E′ t, that is, no junk is added to the sorts of Σ when extending (Σ, E) to
(Σ′, E′).

A set of equations E is called regular (resp., linear) if and only if for any equation
(t = u if γ) ∈ E vars(t) = vars(u) (resp., both t and u are linear terms). Moreover, E
is called collapse-free for a subset of sorts S ′ ⊆ S if and only if for any t = u ∈ E and
for any substitution θ : X −→ TΣ(X) neither tθ nor uθ map to a variable having some
sort s ∈ S ′. In this paper, intuitively, regularity assumptions are used to prevent some
equations from adding/dropping variables and linearity assumptions are used to forbid
the use of matching for denoting equality among terms; both of this assumptions are
crucial for proving completeness of the proposed approach. Furthermore, by excluding
collapsing equations for the relevant subset of sorts, it becomes impossible to identify
those terms that are directly handled by SMT solving and those that are reduced by
rewriting.

A Σ-rewrite rule is a triple l → r if φ, with l, r ∈ TΣ(X)s, for some sort s ∈ S ,
and φ =

∧
i∈I ti = ui a finite conjunction of Σ-equations. A rewrite theory is a tuple

R = (Σ, E,R) with (Σ, E) an order-sorted equational theory and R a finite set of Σ-rules.
R = (Σ, E,R) is called a a topmost rewrite theory if it has a top sort State such that
no operator in Σ has State as argument sort and each rule l → r if φ ∈ R satisfies
l, r ∈ TΣ(X)State and l < X. A rewrite theory R induces a rewrite relation→R on TΣ(X)
defined for every t, u ∈ TΣ(X) by t →R u if and only if there is a rule (l → r if φ) ∈ R
and a substitution θ : X −→ TΣ(X) satisfying t =E lθ, u =E rθ, and E ` φθ. The tuple
TR = (TΣ/E ,→∗R) is called the initial reachability model of R [14].

Appropriate requirements are needed to make an equational theory E admissible,
i.e., executable in rewriting languages such as Maude [19]. In this paper, it is assumed
that the equations of E can be decomposed into a disjoint union E]B, with B a collection
of regular and linear structural axioms (such as associativity, and/or commutativity,
and/or identity) for which there exists a matching algorithm modulo B producing a
finite number of B-matching solutions, or failing otherwise. Furthermore, it is assumed
that the equations E can be oriented into a set of (possibly conditional) sort-decreasing,
operationally terminating, confluent rewrite rules

−→
E modulo B. The rewrite system

−→
E

is sort decreasing modulo B if and only if for each (t → u if γ) ∈
−→
E and substitution

θ, ls(tθ) ≥ ls(uθ) if (Σ, B,
−→
E ) ` γθ. The system

−→
E is operationally terminating modulo

B [25] if and only if there is no infinite well-formed proof tree in (Σ, B,
−→
E ) (see [45]

for terminology and details). Furthermore,
−→
E is confluent modulo B if and only if for

all t, t1, t2 ∈ TΣ(X), if t →∗E/B t1 and t →∗E/B t2, then there is u ∈ TΣ(X) such that
t1 →∗E/B u and t2 →∗E/B u. The term t ↓E/B∈ TΣ(X) denotes the E-canonical form of t
modulo B so that t →∗E/B t ↓E/B and t ↓E/B cannot be further reduced by →E/B. Under

1 For Σ ⊆ Σ′ a subsignature inclusion and A a Σ′-algebra, its Σ-reduct A|Σ is the Σ-algebra
obtained fromA by ignoring all operators and sorts in Σ′ \ Σ.



sort-decreasingness, operational termination, and confluence, the term t ↓E/B is unique
up to B-equality.

For a rewrite theory R, the rewrite relation →R is undecidable in general, even if
its underlying equational theory is admissible, unless conditions such as coherence [65]
are given (i.e, whenever rewriting with→R/E∪B can be decomposed into rewriting with
→E/B and→R/B). A key goal of this paper is to make such a relation both decidable and
symbolically executable when R is topmost and E decomposes as E0 ] B1, where E0
is a built-in theory for which formula satisfiability is decidable and B1 has a matching
algorithm.

3 Built-in Subtheories

For the purpose of rewriting modulo SMT, a built-in subtheory corresponds to the por-
tion of the equational theory that will be handled by the SMT solver. The goal of this
section is twofold. On the one hand, it introduces the concept of built-in subtheory,
key for defining rewriting modulo built-in subtheories in Section 4. On the other hand,
it presents some equational properties of these theories that are useful in proving the
main theorems of this paper in Section 5.

The signature of a built-in subtheory defines the sorts and the function symbols that
the SMT solver can handle.

Definition 1 (Signature with Built-ins). An order-sorted signature Σ = (S ,≤, F) is a
signature with built-in subsignature Σ0 ⊆ Σ if and only if Σ0 = (S 0, F0) is many-sorted,
for each s ∈ S 0 its connected component [s] in (S ,≤) is the singleton set [s] = {s},
and, for F1 = F\F0, if f : w −→ s ∈ F1, then s < S 0 and f has no other (subsort-
overloaded) typing in F0.

The notion of built-in subsignature in an order-sorted signature Σ is modeled by a
many-sorted signature Σ0 defining the built-in terms TΣ0 (X0). The restriction imposed
on the sorts and the function symbols in Σ w.r.t. Σ0 provides a clear syntactic distinction
between built-in terms (the only ones with built-in sorts) and all other terms.

Example 1. Consider the example of the open system comprising a thermostat and an
air conditioning device from the Introduction. This example is used here to illustrate
the definition of a built-in subsignature (S 0, F0) of an order-sorted signature (S ,≤, F).
Later on it will also be used to illustrate rewriting modulo SMT and its use in system
analysis. In this system, the set of sorts S is defined by:

S = {Nat,Bool,Attribute,AttrSet, State},

where Nat is the sort of natural numbers, Bool the sort of Boolean values, Attribute
the sort of attributes, AttrSet the sort of multisets of attributes, and State the topsort
representing the system’s states. The partial order ≤ on S is the set:

≤ = {(s, s) | s ∈ S } ∪ {(Attribute,AttrSet)}.



The set of function symbols F is given by the following definitions:

0 : −→ Nat s : Nat −→ Nat

true : −→ Bool false : −→ Bool

_ < _ : Nat × Nat −→ Bool _ ≤ _ : Nat × Nat −→ Bool

time :_ : Nat −→ Attribute temp :_ : Nat −→ Attribute

setpoint :_ : Nat −→ Attribute ac :_ : Bool −→ Attribute

mt : −→ AttrSet _ , _ : AttrSet × AttrSet −→ AttrSet

〈 _ 〉 : AttrSet −→ State [ _ ] : AttrSet −→ State.

Natural numbers are represented in Peano-like notation with constant 0 and successor
function s, Boolean values are represented by constants true and false, and operators
< and ≤ are used to compare natural numbers in the usual way. Tokens time, temp,
setpoint, and ac are used as attribute names, with the former three taking a natural
number as a parameter and the latter one a Boolean value. Token mt is used to represent
the empty multiset of attributes, while the union of (multisets) of attributes is denoted
by comma. Notice that by the subsort inclusion Attribute ≤ AttrSet, any attribute is
a singleton multiset of attributes. Finally, a state is formed by enclosing a multiset of
attributes in angular braces or square brackets.

The built-in subsignature Σ0 is defined to be that of the natural numbers and the
Boolean values, namely Σ0 = (S 0, F0) is defined to be

S 0 = {Nat,Bool}, F0 = {0, s, true, false, <,≤}.

There are a few extra things to be said about the signature presented in Example 1.
First, note that some usual function symbols for Nat and Bool have not been included
as part of the signature. Second, for AttrSet to correctly model multisets of attributes,
some axioms such as associativity, commutativity, and identity for ‘,’ need to be in-
cluded. Additional function symbols and equational axioms for this specification will
be gradually added later. Finally, observe that the Peano-like specification of the natural
numbers presented in this signature can be quite problematic when dealing with large
numbers. However, in rewriting logic specification languages such as Maude [19], and
in state-of-the-art SMT solvers, there is no need to explicitly define natural numbers in
Peano-like notation: instead, natural numbers can be specified in decimal notation and
s(n) can be denoted as n + 1. Here, the Peano notation is used to better illustrate the
difference between built-in function symbols and the rest of the function symbols, but
actually a possibly infinite signature Σ0 of built-in symbols could be used.

Since the goal of rewriting modulo SMT is to achieve conditional symbolic rewrit-
ing with decidable built-in constraints by delegating to an SMT solver the handling of
such constraints on built-in terms, it is important to have a mechanism for completely
‘hiding’ the syntactic details of built-in terms from the rewrite relation. In this paper,
this idea of hiding the structure of built-in terms from a term is captured by the notion
of abstraction of built-ins, a mechanism for replacing each one of the maximal built-in
subterms of a term by distinct fresh new variables.



Definition 2. If Σ ⊇ Σ0 is a signature with built-ins, then an abstraction of built-ins for
a Σ-term t is a pair (λx1 · · · xn.t◦ ; θ◦) consisting of context λx1 · · · xn.t◦ and a substitu-
tion θ◦ : X0 −→ TΣ0 (X0) such that: (i) t◦ ∈ TΣ1 (X) is a S 0-linear term, (ii) t = t◦θ◦; and
(iii) dom(θ◦) = {x1, . . . , xn} are pairwise distinct variables disjoint from vars(t), and
{x1, . . . , xn} = vars(t◦) ∩ X0, where Σ1 = (S ,≤, F1) and X0 = {Xs}s∈S 0 .

Lemma 1 shows that such an abstraction can always be chosen so as to provide a
canonical decomposition of t enjoying useful properties.

Lemma 1. Let Σ be a signature with built-in subsignature Σ0 = (S 0, F0). For each t ∈
TΣ(X), there exist an abstraction of built-ins (λx1 · · · xn.t◦; θ◦). Furthermore, {x1, . . . , xn}

can always be chosen to be disjoint from an arbitrarily chosen finite subset Y of X0.

Proof. By induction on the structure of t.

From now on, for any t ∈ TΣ(X) and Y ⊆ X0 finite, the expression abstractΣ1 (t,Y)
will denote the choice of an abstraction pair (λx1 · · · xn.t◦ ; θ◦) satisfying the disjoint-
ness condition w.r.t. Y stated in Lemma 1. Note that each substitution θ with dom(θ) =

{x1, . . . , xn} has an associated quantifier-free (QF) formula [θ] =
∧n

i=1 (xi = θ(xi)). In
particular, the formula [θ◦] associated to the substitution θ◦ in (λx1 · · · xn.t◦ ; θ◦) binds
the abstraction variables x1 · · · xn to subterms of t.

Example 2. Let t be the term

〈 time : R, temp : s(s(T )), setpoint : S , ac : B 〉

in the signature of Example 1, where R, S ,T are variables of sort Nat and B is a variable
of sort Bool. Consider the term t◦

〈 time : N0, temp : N1, setpoint : N2, ac : B0 〉

and the substitution θ◦ defined by θ◦(N0) = R, θ◦(N1) = s(s(T )), θ◦(N2) = S , θ◦(B0) =

B, and θ◦(x) = x otherwise, and with N0,N1,N2 variables of sort Nat and B0 a variable
of sort Bool. The context λN0,N1,N2, B0.t◦ is an abstraction of built-ins for t and θ◦

satisfies properties (i)–(iii) in Lemma 1. Moreover, for any set Y not containing variables
N0,N1,N2, B0, t◦ and θ◦ satisfy abstractΣ1 (t,Y) = (λN0,N1,N2, B0.t◦ ; θ◦) with [θ◦] the
QF-formula

N0 = R ∧ N1 = s(s(T )) ∧ N2 = S ∧ B0 = B.

As illustrated by Example 2, the abstraction of built-ins for a given term t intro-
duces new variables even for maximal built-in subterms that correspond to a built-in
variable in t. However, for efficiency reasons, an algorithm actually implementing the
abstraction procedure can avoid introducing extra-variables in these cases since these
extra-variables are not technically useful.

Under certain restrictions on axioms, matching a Σ-term t to a Σ-term u can be
decomposed modularly into Σ1-matching of the corresponding λ-abstraction and Σ0-
matching of the built-in subterms. This is described in Lemma 3, with the help of
Lemma 2.



Lemma 2. Let Σ = (S ,≤, F) be a signature with built-in subsignature Σ0 = (S 0, F0).
Let B0 be a set of Σ0-axioms and B1 a set of Σ1-axioms. For B0 and B1 regular, linear,
and collapse free for any sort in S 0, and sort-preserving, and t ∈ TΣ(X0):

(a) if t ∈ TΣ0 (X0) and t =B1 t′, then t = t′;
(b) if t ∈ TΣ1 (X0) and t =B0 t′, then t = t′;
(c) if t ∈ TΣ1 (X0) and t =1

B1
t′, then vars(t) = vars(t′) and t is linear if and only if t′ is

so;

Proof.

(a) Axioms B1 do not mention any function symbol in F0 and are sort-preserving.
Therefore, the equation in B1 can only apply to variables in X0. But B1 is collapse-
free for any sort in S 0. Therefore, no B1 equation can be applied to t, forcing t = t′.

(b) Same argument as (a).
(c) Consequence of B1 being regular and linear.

Lemma 3. Let Σ = (S ,≤, F) be a signature with built-in subsignature Σ0 = (S 0, F0).
Let B0 be a set of Σ0-axioms and B1 a set of Σ1-axioms. For B0 and B1 regular, lin-
ear, collapse free for any sort in S 0, and sort-preserving, if t ∈ TΣ1 (X0) is linear with
vars(t) = {x1, . . . , xn}, then for each θ : X0 −→ TΣ0 (X0):

(a) if tθ =1
B0

t′, then there exist x ∈ {x1, . . . , xn} and w ∈ TΣ0 (X0) such that θ(x) =1
B0

w
and t′ = tθ′, with θ′(x) = w and θ′(y) = θ(y) if y , x;

(b) if tθ =1
B1

t′, then there exists v ∈ TΣ1 (X0) such that t =1
B1

v and t′ = vθ; and
(c) if tθ =B0]B1 t′, then there exist v ∈ TΣ1 (X0) and θ′ : X0 −→ TΣ0 (X0) such that

t′ = vθ′, t =B1 v, and θ =B0 θ
′ (i.e., θ(x) =B0 θ

′(x) for each x ∈ X0).

Proof. (a) It follows from Lemma 2 (b) that B0 can only be applied on some built-in
subterm θ(x) of tθ, for some x ∈ dom(θ). That is, there is w ∈ TΣ0 (X0) such that
θ(x) =1

B0
w and, since t is linear, t′ = tθ′, where θ′(x) = w and θ′(y) = θ(y) if y , x.

(b) It follows from Lemma 2 (c) that equational deduction with B1 can only permute
the built-in variables in t and it does not equate built-in subterms such as the ones
in ran(θ). Hence, by Lemma 2 (c), there exists a linear v ∈ TΣ1 (X0) such that t =1

B1
v

and t′ = vθ.
(c) Follows by induction on the proof’s length in B0 ] B1.

4 Rewriting Modulo a Built-in Subtheory

This section presents both the notion of a rewrite theory modulo built-ins and the ground
rewrite relation induced by it, along with some examples. This section concludes by
presenting a technical result that is at the heart of the main contribution of this paper:
for a very general class of these rewrite theories, matching provides a complete ground
unifiability procedure.

A rewrite theory modulo a built-in subtheory is a topmost rewrite theory with a
signature of built-ins and where structural axioms can be given for both built-in and
non built-in terms, but equations are only allowed at the built-in level. In these rewrite
theories, rules are given at a top sort, built-in extra variables are allowed in their right-
hand side, and constraints are quantifier-free formulas over built-in terms.



Definition 3 (Rewriting Modulo a Built-in Subtheory). A rewrite theory modulo the
built-in subtheory E0 is a topmost rewrite theory R = (Σ, E,R) with:

(a) Σ=(S ,≤, F) a signature with built-in subsignature Σ0=(S 0, F0) and a top sort State
in S \ S 0;

(b) E = E0 ] B0 ] B1, where E0 is a finite set of Σ0-equations, B0 (resp., B1) are
Σ0-axioms (resp., Σ1-axioms) satisfying the conditions in Lemma 3 (i.e., B0 and
B1 regular, linear, collapse-free for any sort in S 0, and sort-preserving), E0 =

(Σ0, E0 ] B0) and E = (Σ, E) are admissible, and the theory inclusion E0 ⊆ E is
protecting;

(c) R a finite set of rewrite rules of the form l(−→x1,
−→y ) → r(−→x2,

−→y ) if φ(−→x3) such that
l, r ∈ TΣ(X)State, l is (S \ S 0)-linear, −→xi is of the form −→xi :−→si with −→si ∈ S ∗0, for
i ∈ {1, 2, 3}, −→y :−→s with −→s ∈ (S \ S 0)∗, and φ ∈ QFΣ0

(X0), where QFΣ0
(X0) denotes

the set of quantifier-free Σ0-formulas with variables in X0.

In Definition 3, a quantifier-free Σ0-formula in QFΣ0
(X0) is a Boolean combination of

atoms, where an atom is a Σ0-equation with variables in X0. Note that no assumption
is made on the relationship between the built-in variables −→x1 in the left-hand side, −→x2 in
the right-hand side, and −→x3 in the condition φ of a rewrite rule. This freedom is key for
specifying open systems with a rewrite theory because, for instance, −→x2 can have new
variables not appearing in −→x1.

The restriction to topmost rewrite theories in Definition 3 is a fairly mild one: in
practice, most distributed systems (including distributed object-based ones), actor sys-
tems, cyber-physical systems, and network protocols, can be easily modeled by topmost
rewrite theories using the simple theory transformation described in [48].

Example 3. Recall the thermostat example from the Introduction, and the signature
with built-ins from Examples 1 and 2. Consider the following extension of this sig-
nature with natural number addition and Boolean conjunction, and some axioms and
equations for these symbols, where variables M,N have sort Nat and variables X,Y
have sort Bool:

_ + _ : Nat × Nat −→ Nat _ ∧ _ : Bool × Bool −→ Bool

M + N = N + M X ∧ Y = Y ∧ X

M + 0 = M M + s(N) = s(M + N).

Also, consider the topmost rewrite rules of the thermostat system from Section 1, where
R, S ,T,Te are variables of sort Nat and B is a variable of sort Bool:

〈 time :R, temp :T, setpoint :S , ac : B 〉 → [ time : R, temp : T, setpoint : S , ac : true ] if T >S

〈 time :R, temp :T, setpoint :S , ac : B 〉 → [ time :R, temp :T, setpoint :S , ac : false ] if T ≤S

[ time :R, temp :T, setpoint :S , ac : B ]→ 〈 time :R + 1, temp :Te, setpoint :S , ac :B 〉

This is an example of a rewrite theory modulo a built-in subtheory with built-in sub-
signature:

Σ0 = ({Nat,Bool}, {0, s, true, false, <,≤,+,∧}) .



In this rewrite theory, the sort State fulfills Condition (a) in Definition 3, and the sets B0
and E0 have two elements each, namely,

B0 = {M + N = N + M, X ∧ Y = Y ∧ X}

E0 = {M + 0 = M,M + s(N) = s(M + N)}.

Note that the axioms in B0 are regular, linear, collapse-free for Nat and Bool, re-
spectively, and sort-preserving. It is easy to check that the built-in subtheory E0 =

(Σ0, E0 ] B0) is admissible. Furthermore, in each rewrite rule, the left-hand side is lin-
ear, the extra variables in the right-hand side are built-in variables, and the condition is
a QF-free Σ0-formula.

The next task is to define what ground computation means for a rewrite theory
modulo a built-in subtheory.

Definition 4 (Ground Rewrite Relation). Let R = (Σ, E,R) be a rewrite theory mod-
ulo E0. The ground rewrite relation →R induced by R on TΣ,State is defined for t, u ∈
TΣ,State by t →R u if and only if there is a rule l→ r if φ in R and a ground substitution
σ : X −→ TΣ such that (a) t =E lσ, u =E rσ, and (b) TE0 |= φσ.

The ground rewrite relation→R is the topmost rewrite relation induced by R modulo E
on TΣ,State. This relation is defined even when a rule in R has extra variables in its right-
hand side: the rule is then nondeterministic and such extra variables can be arbitrarily
instantiated, provided that the corresponding instantiation of φ holds. Also, note that
non-built-in variables can occur in l, but φσ is a ground (i.e., variable-free) formula in
QFΣ0

(∅), so that either TE0 |= φσ or TE0 6|= φσ.

Example 4. Recall the rewrite theory modulo a built-in subtheory R from Example 3.
The following is an example of a rewrite computation with→R for the thermostat and
air conditioning system:

〈 time : 0, temp : 69, setpoint : 73, ac : false 〉

→R [ time : 0, temp : 69, setpoint : 73, ac : false ]
→R 〈 time : 1, temp : 71, setpoint : 73, ac : false 〉

→R [ time : 1, temp : 71, setpoint : 73, ac : false ]
→R 〈 time : 2, temp : 74, setpoint : 73, ac : false 〉

→R [ time : 2, temp : 74, setpoint : 73, ac : true ]
→R 〈 time : 3, temp : 71, setpoint : 73, ac : true 〉

The initial state corresponds to the global clock having 0 time units, the thermostat reg-
istering a temperature of 69 degrees from the environment and having setpoint at 73
degrees, while the air conditioning device is turned off. In this state, only a transition
under control of the system is enabled, namely, the transition that turns off the air con-
ditioning device, which is already off. The thermostat then senses 71 degrees from the
environment and the global clock is advanced in one time unit. The new temperature
does not exceed the setpoint of the thermostat and thus the air conditioning device re-
mains off after the next internal transition. At time 2, the temperature is updated to 74



degrees and, consequently, the next zero-time computation turns the air conditioning
device on. Finally, at time 3, 71 degrees are sensed from the environment.

According to Definition 4, the first rewrite step in this computation is induced by
the rewrite rule

[ time :R, temp :T, setpoint :S , ac : B ]→ 〈 time :R + 1, temp :Te, setpoint :S , ac :B 〉

and ground substitution σ satisfying

σ(R) = 0, σ(T ) = 69, σ(S ) = 73 σ(B) = false, σ(Te) = 71.

In this case, note that the constraint φ corresponds to the empty conjunction and then
φσ = true, which is always satisfiable. On the other hand, note that in each ground
rewrite step with→R in the above trace, the extra built-in variable Te in the right-hand
side of the applied rule is non-deterministically chosen, which is technically captured
by the ground substitution σ.

For technical reasons, it is very useful to shift the focus to a class of rewrite theo-
ries modulo built-ins in which the rewrite rules are left-linear. For any rewrite theory
modulo built-ins such a simpler rewrite theory can always be obtained by means of
the semantics-preserving theory transformation R 7→ R◦ presented in Definition 5. As
shown by Lemma 4, this transformation preserves ground rewriting. The specific rea-
son for this transformation is towards achieving the ultimate goal of having an SMT
solver exclusively handling all constraints over built-in terms, including those used for
expressing equality. If a left-hand side of a rule were allowed to be non-linear for built-
in sorts, then equality over built-in terms could be wrongfully delegated to the matching
algorithm used for rewriting.

Definition 5 (Normal Form of a Rewrite Theory Modulo E0). Let R = (Σ, E,R) be
a rewrite theory modulo E0. Its normal form R◦ = (Σ, E,R◦) has rules:

R◦ =
{
l◦ → r if φ ∧ [θ◦] | (l→ r if φ ∈ R) ∧

(
λ−→x .l◦ ; θ◦

)
= abstractΣ(l, vars({l, r, φ}))

}
.

Note that the rewrite theory in Example 3 is already in normal form, since its set of rules
is left-linear. Lemma 4 formalizes the previous claim about the fact that the rewrite rela-
tion induced by a rewrite theory modulo built-ins is preserved under the transformation
R 7→ R◦ in Definition 5, specifically meaning that both theories satisfy the same reach-
ability properties.

Lemma 4 (Invariance of Ground Rewriting under Normalization). LetR = (Σ, E,R)
be a rewrite theory modulo E0. Then→R =→R◦ .

Proof. It is shown that→R ⊆ →R◦ and→R◦ ⊆ →R.

(⊆) Let t, u ∈ TΣ,State. If t →R u, then there is a rule (l → r if φ) ∈ R and a ground
substitution σ : X −→ TΣ such that t =E lσ, u =E rσ, and TE0 |= φσ. It suffices
to prove t →R◦ u with witnesses (l◦ → r if φ ∧ [θ◦]) ∈ R◦ and ρ = θ◦σ. Note
that t =E lσ = l◦θ◦σ = l◦ρ. For TE0 |= (φ ∧ [θ◦])ρ first note that TE0 |= φρ since



φρ = φθ◦σ = φσ (because vars(φ) ∩ dom(θ◦) = ∅) and TE0 |= φσ by assumption.
For TE0 |= φ◦ρ notice that θ◦θ◦ = θ◦ because ran(θ◦) ∩ dom(θ◦) = ∅, and then:

[θ◦]ρ =

 n∧
i=1

xi = θ◦(xi)

 ρ =

n∧
i=1

xiρ = θ◦(xi)ρ =

n∧
i=1

θ◦(xi)σ = θ◦(xi)θ◦σ

=

n∧
i=1

θ◦(xi)σ = θ◦(xi)σ = >.

Hence, t →R◦ u.
(⊇) Let t, u ∈ TΣ,State. If t →◦

R
u, then there is a rule (l → r if φ) ∈ R, with

(λx1 · · · xn.l◦ ; θ◦) be the abstraction of built-ins for l, and a ground substitution
σ : X −→ TΣ such that t =E l◦σ, u =E rσ, and TE0 |= (φ ∧ [θ◦])σ. It suffices
to prove that t →R u with rule (l → r if φ) ∈ R. Substitution σ can be decom-
posed into substitutions θ : X0 −→ TΣ0 (X0) and ρ : X −→ TΣ , with θ(x) = σ(x) if
x ∈ {x1, . . . , xn} and θ(x) = x otherwise, such that σ = θρ. From TE0 |= (φ ∧ [θ◦])σ
it follows that TE0 |= φσ, i.e., TE0 |= φρ because vars(φ) ∩ dom(θ) = ∅. Also, it
follows that TE0 |=

∧n
i=1 θ(xi)ρ = θ◦(xi)ρ, which implies that:

t =E l◦σ = l◦θρ =E0]B0 l◦θ◦ρ = lρ.

Hence, t →R u.

Finally, Lemma 5 states that for the class of normalized rewrite theories modulo
built-ins, matching provides a complete ground unifiability procedure. More specifi-
cally, by the properties of the axioms in a rewrite theory modulo built-ins R = (Σ, E0 ]

B0 ] B1), B1-matching a term t ∈ TΣ(X0) to a left-hand side l◦ of a rule in R◦ provides a
complete unifiability algorithm for ground B1-unification of t and l◦.

Lemma 5 (Matching Lemma). LetR = (Σ, E0]B0]B1,R) be a rewrite theory modulo
E0. For t ∈ TΣ(X0)State and l◦ a left-hand side of a rule in R◦ with vars(t)∩ vars(l◦) = ∅,

t �B1 l◦ if and only if GUB1 (t = l◦) , ∅

where GUB1 (t = l◦) = {σ : X −→ TΣ | tσ =B1 l◦σ}.

Proof.

(=⇒) If t �B1 l◦, then t =B1 l◦θ for some θ : X −→ TΣ(X). Let ρ : X −→ TΣ be
any ground substitution, which exists because Σ has nonempty sorts. Then θρ ∈
GUB1 (t = l◦).

(⇐=) Let σ ∈ GUB1 (t = l◦) with l → r if φ ∈ R. Let vars(l◦) ∩ X0 = {x1, . . . , xn} and
X1 = X \ X0. Note that there are substitutions

α : vars(l◦) ∩ X1 −→ TΣ1 (X0)
ρ : X \ dom(α) −→ TΣ

satisfying σ = αρ and such that (l◦α) ∈ TΣ1 (X0) is linear and

ran(l◦α) ∩ (vars(t, l◦)) = ∅.



Let ran(α) = {y1, . . . , ym}. Therefore, by Lemma 3, there exists u ∈ TΣ1 (X0) such
that u =B1 l◦α, u is linear, and vars(u) = vars(l◦α) = x1, . . . , xn, y1, . . . , ym, and uρ =

t. Moreover, t can be written as u(t1, . . . , tn, tn+1, . . . , tn+m) with ti ∈ TΣ0 (X0). Define
θ : X0 −→ TΣ0 (X0) by θ(x) = ti if x ∈ {x1, . . . , xn}, θ(x) = ti+n if x ∈ {y1, . . . , ym},
and θ(x) = x otherwise. Then:

t = u(t1, . . . , tn, tn+1, . . . , tm+n)
= u(x1, . . . , xn, y1, . . . , ym)θ
=B1 l◦αθ.

Therefore, t �B1 l◦.

5 Symbolic Rewriting Modulo a Built-in Subtheory

This section explains how a rewrite theory modulo built-ins, as proposed in Section 4,
induces a symbolic rewrite relation and presents a general mechanism for symbolic
reachability analysis, along with some examples. One of the main results of this section
is that the symbolic rewrite relation is sound and complete w.r.t. to the ground rewriting
semantics for rewrite theories modulo built-ins from Section 4. The key idea is that,
when constrains over the built-ins are decidable, the transitions of the symbolic relation
can be performed by rewriting modulo axioms and satisfiability of the constraints can
be handled by an SMT decision procedure. This approach provides an executable sym-
bolic method via rewriting, called rewriting modulo SMT, that is a sound and complete
symbolic reachability mechanism for rewrite theories.

The symbolic rewrite relation induced by a rewrite theory with built-ins R operates
over pairs (t ;ϕ), called constrained terms, where t is a term and ϕ a constraint of built-
ins. Intuitively, in a constrained term (t ;ϕ), the term t can contain built-in variables and
thus can serve the purpose of a template for all its ground instances that are constrained
by ϕ. Definition 6 spells out the precise semantics of a constrained term.

Definition 6 (Constrained Terms). Let R = (Σ, E,R) be a rewrite theory modulo E0.
A constrained term is a pair (t ;ϕ) in TΣ(X)State×QFΣ0

(X0). Its denotation ~t�ϕ is defined
as ~t�ϕ = {t′∈TΣ,State | (∃σ : X−→TΣ) t′=E tσ ∧ TE0 |= ϕσ}.

The domain of σ in Definition 6 ranges over all variables X and consequently ~t�ϕ ⊆
TΣ,State for any t ∈ TΣ(X)State, even if vars(t) + vars(ϕ). Note, then, that ~t�ϕ semanti-
cally represents the set of all ground states that are E-equal to instances of t and satisfy
ϕ.

The following auxiliary notation for variable renaming is used for formally intro-
ducing the symbolic rewrite relation on constrained terms: in the rest of the paper, the
expression fresh-vars(Y), for Y ⊆ X with Y finite, represents the choice of a variable
renaming ζ : X −→ X satisfying Y ∩ ran(ζ) = ∅.

Definition 7 (Symbolic Rewrite Relation). Let R = (Σ, E,R) be a rewrite theory
modulo built-ins E0. The symbolic rewrite relation R induced by R on TΣ(X)State ×

QFΣ0
(X0) is defined for t, u ∈ TΣ(X)State and ϕ, ϕ′ ∈ QFΣ0

(X0) by (t ;ϕ)  R (u ;ϕ′) if



and only if there is a rule l → r if φ in R and a substitution θ : X −→ TΣ(X) such that:
(a) t =E lζθ and u = rζθ, (b) TE0 |= (ϕ′ ⇔ ϕ∧ φζθ), and (c) ϕ′ is TE0 -satisfiable, where
ζ = fresh-vars(vars(t, ϕ)).

The symbolic relation R on constrained terms is defined as a topmost rewrite relation
induced by R modulo E on TΣ(X) with extra bookkeeping of constraints. Note that ϕ′

in (t ;ϕ) R (u ;ϕ′), when witnessed by l → r if φ and θ, is semantically equivalent to
ϕ∧φζθ, in contrast to being syntactically equal. This extra freedom allows for simplifi-
cation of constraints if desired. Also, such a constraint ϕ′ is satisfiable in TE0 , implying
that ϕ and φθ are both satisfiable in TE0 , and therefore ~t�ϕ, ∅,~u�ϕ′ . Note that, up to
the choice of the semantically equivalent ϕ′ for which a fixed strategy is assumed, the
symbolic relation R is deterministic, in the sense of being determined by the rule and
the substitution ζθ, because the renaming of variables in the rules is fixed by fresh-vars.
This is key when executing R, as explained in Section 6.

Example 5. Recall the rewrite theory modulo built-ins R for the thermostat and air con-
ditioning device from Example 4. In what follows, variables T, S ,N0,N1,N2 range over
the sort Nat. Below, there is an example of a symbolic rewrite computation with R:

(〈 time : 0, temp : T, setpoint : S , ac : false 〉 ; true)

 R ([ time : 0, temp : N0, setpoint : S , ac : false ] ; true)

 R (〈 time : 1, temp : N0, setpoint : S , ac : false 〉 ; true)

 R ([ time : 1, temp : N0, setpoint : S , ac : false ] ; N0 ≤ S )

 R (〈 time : 2, temp : N1, setpoint : S , ac : false 〉 ; N0 ≤ S )

 R ([ time : 2, temp : N1, setpoint : S , ac : true ] ; S < N1 ∧ N0 ≤ S )

 R (〈 time : 3, temp : N2, setpoint : S , ac : true 〉 ; S < N1 ∧ N0 ≤ S ) .

At time 0, the initial state represents all those system instances where the setpoint and
the temperature reading from the environment are unspecified, and the air conditioning
system is turned off; in this case, the state constraint is the empty one represented by
true. At time 1, the system transitions to a symbolic state in which the temperature
reading from the environment is captured by the fresh built-in variable N0; the next
internal transition is possible because the constraint N0 ≤ S is satisfiable. At time 2,
the system reaches a state in which the external temperature is represented by the fresh
built-in variable N1. The next internal computation turns the air conditioning device on
because the constraint S < N1 ∧ N0 ≤ S is satisfiable. In the last transition, at time 3,
the system reaches a state in which the external temperature is represented by the fresh
built-in variable N2. As a remark, note that the ground computation with →R given
as part of Example 4 is a semantic instance of the above-given symbolic computation
with R. More precisely, the ground trace in Example 4 is an instance of the symbolic
trace above, witnessed by a ground substitution σ satisfying σ(S ) = 73, σ(T ) = 69,
σ(N0) = σ(N2) = 71, and σ(N1) = 74. As a final remark, note that the constraints are
accumulated in the symbolic computation, despite the fact that some of their conjuncts
are ‘meaningless’ w.r.t. the corresponding constrained term. For example, N0 ≤ S does



not play any role when constraining the term [ time : 2, temp : N1, setpoint : S , ac :
true ] because N0 does not occur in this state. In practice, such an important optimization
can be considered as part of an efficient implementation of the symbolic rewrite relation.

The next important question to ask is whether this symbolic rewrite relation soundly
and completely simulates its ground rewriting counterpart. The rest of this section affir-
matively answers this question in the case of normalized rewrite theories modulo built-
ins. Thanks to Lemma 4, the conclusion is therefore that R◦ soundly and completely
simulates→R for any rewrite theory R modulo built-ins E0.

The soundness of R◦ w.r.t.→R◦ is stated in Theorem 1.

Theorem 1 (Soundness). Let R = (Σ, E,R) be a rewrite theory modulo built-ins E0,
t, u ∈ TΣ(X)State, and ϕ, ϕ′ ∈ QFΣ0

(X0). If (t ;ϕ)  R◦ (u ;ϕ′), then tρ →R◦ uρ for all
ρ : X −→ TΣ satisfying TE0 |= ϕ′ρ.

Proof. Let ρ : X −→ TΣ satisfy TE0 |= ϕ′ρ. The goal is to show that tρ →R◦ uρ. Let
l◦ → r if φ ∈ R◦ and θ : X −→ TΣ(X) witness (t ;ϕ)  R◦ (u ;ϕ′). Then t =E l◦ζθ,
u =E rζθ, E0 ` (ϕ′ ⇔ ϕ ∧ φζθ), and ϕ′ is TE0 -satisfiable. Without loss of generality
assume dom(θ) = vars(l◦ζ) and θ|vars(t,ϕ) = id, and let σ = ζθρ. Then note that tρ =E

(l◦ζθ)ρ = l◦ζθρ = l◦σ and uρ =E (rζθ)ρ = rζθρ = rσ. Moreover, TE0 |= (ϕ′ ⇔ ϕ∧φζθ)
and TE0 |= ϕ′ρ imply TE0 |= φζθρ, i.e., TE0 |= φσ. Therefore, tρ→R◦ uρ, as desired.

The completeness of R◦ w.r.t.→R◦ is stated in Theorem 2. Intuitively, complete-
ness states that a symbolic relation yields an over-approximation of its ground rewriting
counterpart.

Theorem 2 (Completeness). Let R = (Σ, E,R) be a rewrite theory modulo built-ins
E0, t ∈ TΣ(X)State, u′ ∈ TΣ,State, and ϕ ∈ QFΣ0

(X0). For any ρ : X −→ TΣ such that
tρ ∈ ~t�ϕ and tρ →R◦ u′, there exist u ∈ TΣ(X)State and ϕ′ ∈ QFΣ0

(X0) such that
(t ;ϕ) R◦ (u ;ϕ′) and u′ ∈ ~u�ϕ′ .

Proof. By the assumptions there is a rule (l◦ → r if φ) ∈ R◦ and a ground substi-
tution σ : X −→ TΣ satisfying tρ =E l◦σ, u′ =E rσ, and TE0 |= φσ. Without loss
of generality assume vars(t, ϕ) ∩ vars(l◦, r, φ)) = ∅, because l, r, φ can be renamed by
means of fresh-vars. Furthermore, since vars(t, ϕ) ∩ vars(l◦, φ)) = ∅, σ = ρ can be as-
sumed. The goal is to show the existence of u ∈ TΣ(X)State and ϕ′ ∈ QFΣ0

(X0) such
that (i) (t ;ϕ)  R◦ (u ;ϕ′) and (ii) u′ ∈ ~u�ϕ′ . Since l◦ is linear and built-in subterms
are variables, by Lemma 3 there exists α : X −→ TΣ satisfying tα =B1 l◦α. Hence
GUB1 (t = l◦) , ∅ and, by Lemma 5, there exists θ′ : X −→ TΣ(X) satisfying t =B1 l◦θ′

and a fortiori t =E0]B0]B1 l◦θ′. Let θ : X −→ TΣ(X) be defined by θ(x) = θ′(x) if
x ∈ vars(l) and θ(x) = ρ(x) otherwise. Note that θ|vars(l)ρ =E0]B0 ρ|vars(l). Define u = rθ
and ϕ′ = ϕ ∧ φθ, and then for (i) and (ii) above:

(i) It suffices to prove that TE0 |= ϕ′ρ, i.e., TE0 |= (ϕ∧φθ)ρ. By assumption TE0 |= ϕρ
and TE0 |= φρ. Notice that:

φθρ = (φθ|vars(l))ρ =E0]B0 (φρ)ρ = φρ.

Hence TE0 |= φθρ.



(ii) By assumption u′ =E0]B0]B1 rρ; also:

rρ =E0]B0]B1 rθ|vars(l)ρ = rθρ = uρ.

Hence u′ =E0]B0]B1 uρ ∈ ~u�ϕ′ by part (i).

5.1 Computing with R◦

Although the above soundness and completeness theorems, plus Lemma 4, show that
→R is characterized symbolically by  R◦ , for any rewrite theory R modulo a built-
in subtheory E0, a key question to ask is how to effectively compute this symbolic
relation. More specifically, given a constrained term (t ;ϕ) in TΣ(X)State × QFΣ0

(X0),
how can one compute all constrained terms (u ;ϕ′) in TΣ(X)State × QFΣ0

(X0) such that
(t ;ϕ) R◦ (u ;ϕ′)?

Given a rule l◦ → r if φ in R◦ and according to the proof of Theorem 2, the existence
of a substitution θ : X −→ TΣ(X) satisfying t =E l◦ζθ (i.e., Condition (a) in Definition 7)
can be achieved by employing the strategy of first reducing t to its E0/B0-canonical form
t↓E0/B0 (which exists and is unique by the admissibility of E0) and then trying to check if
t↓E0/B0�B1 l◦ζ via a matching algorithm modulo B1 (which exists and is finitary by the
admissibility of (Σ, E)). If the set of B1-matching solutions produced by the matching
algorithm is empty, then such a substitution θ does not exist for the given constrained
term (t ;ϕ) and rule l◦ → r if φ. Otherwise, each one of the B1-matching solutions θ
produced by the matching algorithm is such that t =E0]B0 t↓E0/B0=B1 l◦ζθ, i.e., t =E l◦ζθ;
in this case, u = rζθ. Since the set of rules R◦ is finite and the matching algorithm is
finitary, there are finitely many of such substitutions θ for a given constrained pair (t ;ϕ).

For checking Condition (b) in Definition 7 and given θ satisfying t =E l◦ζθ as com-
puted above, formula ϕ′ can be chosen to be any quantifier-free formula in QFΣ0

(X0)
that is provably equivalent to ϕ ∧ φζθ in E0. In particular, ϕ′ can be chosen to be the
formula ϕ ∧ ((φζθ)↓E0/B0 ).

Finally, checking Condition (c) in Definition 7 is in general undecidable. However,
checking this condition becomes decidable for built-in theories E0 that can be extended
to a decidable theory E+

0 (typically by adding some inductive consequences and, per-
haps, some extra symbols) such that

(∀ψ ∈ QFΣ0
(X0)) ψ is E+

0 -satisfiable ⇐⇒ (∃σ : X0 −→ TΣ0 ) TE0 |= ψσ. (1)

Many decidable theories E+
0 of interest are supported by SMT solvers satisfying this

requirement. For example, E0 can be the equational theory of natural number addition,
i.e., TE0 = (N,+, s, 0, <,≤), and E+

0 Presburger arithmetic. That is, TE0 is the standard
model of both E0 and E+

0 , and E+
0 -satisfiability coincides with satisfiability in such a

standard model. Under such conditions, satisfiability of ϕ∧ φζθ (and therefore of ϕ′) in
a step (t ;ϕ) R◦ (u ;ϕ′) becomes decidable by invoking an SMT-solver for E+

0 .

Theorem 3 (Rewriting Modulo Axioms and Modulo SMT). Let R = (Σ, E,R) be a
rewrite theory modulo built-ins E0 and E+

0 a theory extending E0 such that satisfiability
of QF E+

0 -formulas is decidable and E+
0 -satisfiability coincides with satisfiability in TE0 .

Then R◦ can be effectively computed.



5.2 Symbolic Reachability Analysis

The goal of this section is to explain how rewriting modulo SMT can be used as a
mechanism for solving existential reachability goals in the initial model TR of a rewrite
theory R modulo built-ins E0. This technique can be especially useful for symbolically
proving or disproving safety properties of R such as, for instance, inductive invariants
of TR.

Consider the constrained terms (t ;ϕ) and (u ;ϕ′), with t, u ∈ TΣ(X)State and ϕ, ϕ′ ∈
QFΣ0

(X0). For many safety properties, the existential reachability question of whether
there are concrete states t′ ∈ ~t�ϕ and u′ ∈ ~u�ϕ′ such that t′ →∗

R
u′ is of particular

interest, that is, whether from some state in ~t�ϕ is it possible to reach some state in
~u�ϕ′ . When ~u�ϕ′ is a set of bad states, the idea is to know whether reaching a bad
state is possible.

This intuitive formulation is almost right, but overlooks the fact that if−→x = vars(t;ϕ)
and −→y = vars(u;ϕ′), the set of shared variables −→z = −→x ∩ −→y may be non empty, where
the variables −→z can be called the parameter variables. The interpretation of those pa-
rameter variables −→z should then agree when instantiated to the concrete states t′ ∈ ~t�ϕ
and u′ ∈ ~u�ϕ′ such that t′ →∗

R
u′.

This can be formulated more precisely by saying that, given symbolic descriptions
(t ;ϕ) of a set ~t�ϕ of source states, and (u ;ϕ′) of a set ~u�ϕ′ of target states, the interest
is in settling the question of whether in the initial model TR the following existential
reachability formula is satisfied:

TR |=
(
∃
−→x ∪ −→y

)
t →∗R u ∧ ϕ ∧ ϕ′. (2)

This, of course, exactly means settling whether there is a ground substitution ρ such
that tρ →∗

R
uρ and TE0 |= ϕρ ∧ ϕ′ρ, so that ρ interprets the parameter variables −→z in

the exact same way in the source and the target states.
Recall the system comprising the thermostat and the air conditioning device pre-

sented in Example 3. In this example, (t ;ϕ) could be the source constrained term

(〈 time : 0, temp : T, setpoint : S , ac : false 〉 ; true)

and (u ;ϕ′) the target constrained term

([ time : N0, temp : N1, setpoint : S , ac : B0 ] ; B1 ∧ N1 ≤ S ∧ B0) ,

so that the only parameter variable shared by both terms is S . An affirmative answer
to the above reachability query would mean that from some ground initial state at time
zero and in which the air conditioning device is off, a problematic state can be reached,
namely, a state in which all zero-time transitions have taken place and in which the air
conditioning device is turned on despite the fact that the temperature sensed from the
environment does not exceed the system’s setpoint.

The question, of course, is how to use symbolic rewriting to find answers to existen-
tial reachability queries of this kind. Since in rewriting modulo SMT there is a useful
division of labor between matching pattern terms modulo B1 and SMT solving of built-in
constraints, the above existential formula needs to be slightly modified into an equiva-
lent one, more suitable for technical reasons. Note that the set −→z of parameter variables



decomposes as a disjoint union −→z = −→z0]
−→z1, where −→z0 ⊂ X0, and −→z1 ⊂ (X\X0). To be able

to use matching modulo B1, the idea is to have: (i) the built-in parameter variables −→z0
not to appear in u, but only in its condition ϕ′, and (ii) u to be a Σ1-term. This can easily
be accomplished by an abstraction of built-ins for the original u in (u ;ϕ′). That is, the
Σ0-subterms of u can be abstracted with fresh abstraction variables

−→
y′ ⊆ X0, where u◦

is S 0-linear, and if
−→
y′ = y1, . . . , yn then [γ] is the conjunction y1 = v1 ∧ · · · ∧ yn = vn

associated to the substitution γ = {y′1 7→ v1, . . . , y′n 7→ vn} such that u = u◦γ. This yields
a reformulation of the above existential formula as the semantically equivalent one:

TR |=

(
∃
−→x ∪ −→y ∪

−→
y′

)
t →∗R u◦ ∧ ϕ ∧ ϕ′ ∧ [γ], (3)

where two essential points are: (i) ~u�ϕ′ = ~u◦�ϕ′∧[γ], and (ii) the built-in parameter
variables −→z0 no longer appear in u◦ but appear instead in ϕ′ ∧ [γ].

In the above example, since −→z0 consisted only of the variable S , this can be eas-
ily accomplished by reformulating the target constrained term (u ;ϕ′) as the following
constrained term (u◦ ;ϕ′ ∧ [γ]):

([ time : N0, temp : N1, setpoint : N2, ac : B0 ] ; B1 ∧ N1 ≤ N2 ∧ B0 ∧ N2 = S ) .

Therefore, the existential reachability goal in (3) can be written for this example as

TR |= (∃T, S ,N0,N1,N2, B0) 〈 time : 0, temp : T, setpoint : S , ac : false 〉

→∗R [ time : N0, temp : N1, setpoint : N2, ac : B0 ]
∧ N1 ≤ N2 ∧ B0 ∧ N2 = S . (4)

In general, thanks to the soundness and completeness results, Theorems 1 and 2,
the solvability of existential reachability queries of the form (3) can be achieved by the
symbolic rewrite relation R◦ . This results in a sound and complete symbolic reacha-
bility analysis technique based on rewriting modulo SMT.

Theorem 4 (Symbolic Reachability Analysis). Let R = (Σ, E,R) be a rewrite theory
modulo built-ins E0. The model-theoretic satisfaction relation (3) holds if and only if
there exist a term v ∈ TΣ(X)State, a constraint ψ ∈ QFΣ0

(X0), and a B1-unifier2 θ of
the equation v◦ = u◦ such that: (a) (t ;ϕ)  ∗

R◦
(v ;ψ), and (b) (ψ ∧ [η] ∧ ϕ′ ∧ [γ])θ is

TE0 -satisfiable, where (v◦; η) is an abstraction of built-ins for v.

Proof. By Theorems 1 and 2, and induction on the length of the rewrite derivation.
The key points to bear in mind are that: (i) ~v�ψ = ~v◦�ψ∧[η] and therefore (ii) ~v�ψ ∩
~u◦�ϕ′∧[γ] = ~v◦�ψ∧[η] ∩ ~u◦�ϕ′∧[γ]; but then, since v◦ and u◦ are Σ1-terms, reachability
is achieved, i.e., ~v�ψ ∩ ~u◦�ϕ′∧[γ] , ∅, iff there is a B1-unifier θ of the equation v◦ = u◦

such that (b) holds.

2 It is assumed that, in addition to a B1-matching algorithm, there is also a finitary B1-unification
algorithm, so that a finite number of most general such unifiers can be effectively computed;
but see Remark 1 below for an alternative formulation not requiring B1-unification.



Note that ϕ is not included as a conjunct in the constraint (ψ ∧ [η] ∧ ϕ′ ∧ [γ])θ
of Condition (b) of Theorem 4 because (t ;ϕ)  R◦ (v ;ψ) implies that ϕ is a semantic
consequence of ψ.

To be able to exploit Maude’s efficient built-in search command, which is based on
B1-matching, the reflexive implementation described in Section 6 uses the following
alternative reformulation of Theorem 4.

Remark 1. Theorem 4 can be reformulated in a way in which only B1-matching, as
opposed to B1-unification, is required to solve existential reachability queries. The key
point is that, since R = (Σ, E,R) is a topmost rewrite theory, there is one operator
(or at most a finite number of them: the generalization to several such operators is
straightforward), say [_, . . . , _] : s1 . . . sn → State, typically not obeying any axioms3

B1, such that any Σ-term u of sort State is of the form u = [u1, . . . , un], so that there is a
substitution α = {y′′1 7→ u1, . . . , y′′n 7→ un} with y′′i of sort si such that u = [y′′1 , . . . , y

′′
n ]α.

This means that the semantic relation (2) can be reformulated as:

TR |=

(
∃
−→x ∪ −→y ∪

−→
y′′

)
t →∗R [y′′1 , . . . , y

′′
n ] ∧ ϕ ∧ ϕ′ ∧ [α]. (5)

But this means that the model-theoretic satisfaction relation (5) holds if and only if there
exist a term v ∈ TΣ(X)State, a constraint ψ ∈ QFΣ0

(X0), and a substitution θ such that (a)
(t ;ϕ) ∗

R◦
(v ;ψ), (b) v =B1 [y′′1 , . . . , y

′′
n ]θ, and (c) ψ ∧ (ϕ′ ∧ [α])θ is TE0 -satisfiable.

Example 6, at the end of Section 6, illustrates how Remark 1 is useful in practice
for querying the reachability goal (4) in the thermostat example by invoking Maude’s
search command. In this example, as pointed out in Remark 1, B1-matching can be used
for the purpose of solving existential queries via the symbolic relation R because the
target term in the query is general enough and thus avoids the need for performing
B1-unification in the search process.

6 Reflective Implementation of R◦

This section discusses the design and implementation of a prototype that offers support
for symbolic rewriting modulo SMT in the Maude system. The prototype relies on
Maude’s meta-level features, which implements rewriting logic’s reflective capabilities,
and on SMT solving for E+

0 integrated in Maude as CVC3’s decision procedures. The
extension of Maude with CVC3 is available from the Matching Logic Project [59]. In
the rest of this section, R = (Σ, E0 ] B0 ] B1,R) is a rewrite theory modulo built-ins E0,
where E0 satisfies Condition (1) in Section 5. The theory mapping R 7→ u(R), basically,
makes the rules unconditional by removing the constraints φ in the conditions of the
rules in R.

In Maude, reflection is efficiently supported by its META-LEVEL module [19],
which provides key functionality for rewriting logic’s universal theory U [20]. In par-
ticular, rewrite theories R are meta-represented in U as terms R of sort Module, and

3 If [_, . . . , _] were to obey any axioms in B1, since we assume that there is a B1-matching
algorithm, we would just need a finite number α1, . . . , αk of matching substitutions instead of
a single α, so that [α] would be replaced by [α1] ∨ . . . ∨ [αk].



a term t in R is meta-represented in U as a term t of sort Term. The key idea of the
reflective implementation is to reduce symbolic rewriting with R◦ to standard rewrit-
ing in an associated reflective rewrite theory that extends the universal theory U. This
reduction is specially important for formal analysis purposes, because it makes avail-
able to R◦ some formal analysis features provided by Maude for rewrite theories such
as ground reachability analysis by search. This capability is illustrated by the running
example in Section 5, and by the case studies in sections 7 and 8.

The prototype defines a parametrized functional module SAT(Σ0, E0 ] B0) of quant-
ifier-free formulas with Σ0-equations as atoms. In particular, this module extends (Σ0, E0]

B0) with new sorts Atom and QFFormula, and new constants var(X0) representing the
variables X0. It has, among other functions, a function sat : QFFormula −→ Bool such
that for φ, sat(φ) = > if φ is E+

0 -satisfiable, and sat(φ) = ⊥ otherwise.
The process of computing the one-step rewrites of a given constrained term (t ;ϕ)

under R◦ is decomposed into two conceptual steps using Maude’s metalevel. First, all
possible triples (u ; θ ; φ) such that t →u(R◦) u is witnessed by a matching substitution
θ and a rule with constraint φ are computed4. Second, these triples are filtered out by
keeping only those for which the quantifier-free formula ϕ ∧ φθ is E+

0 -satisfiable.
The first step in the process is mechanized by function next, available from the

parametrized module NEXT(R, State,QFFormula) where R, State, and QFFormula are
the metalevel representations, respectively, of the rewrite theory module R, the state
sort State, and the sort QFFormula for quantifier-free formulas. The function next uses
Maude’s meta-match function and the auxiliary function new-vars for computing fresh
variables (see Section 5). In particular, the call

next(((S ,≤, F ] var(X0)), E0 ] B0 ] B1,R◦), t, ϕ)

computes all possible triples
(
u ; θ′ ; φ′

)
such that t R◦ u is witnessed by a substitution

θ′ and a rule with constraint φ′. More precisely, such a call first computes a renaming
ζ = fresh-vars(vars(t, ϕ)) and then, for each rule(l◦ → r if φ), it uses the function meta-
match to obtain a substitution θ ∈ meta-match(((S ,≤, F ] var(X0)), B0 ] B1), t↓E0/B0]B1 , l◦ζ),
and returns

(
u ; θ′ ; φ′

)
with u = rζθ, θ′ = ζθ, and φ′ = φζθ. Note that by having a

deterministic choice of fresh variables (including those in the constraint), function next
is actually a deterministic function.

Using the above-mentioned infrastructure, the parametrized module NEXT imple-
ments the symbolic rewrite relation  R◦ as a standard rewrite relation, extending
META-LEVEL, by means of the following conditional rewrite rule:

(X ; C)→
(
Y ; C′

)
if

(
Y ; θ ; φ

)
S := next(R•, X,C) ∧ C′ := (C ∧ φ) ∧ sat(C′)

where X,Y range over sort State and C,C′ over sort Bool, andR• = ((S ,≤, F]var(X0)), B,R◦).
Therefore, a call to an external SMT solver is just an invocation of the function sat in
SAT(Σ0, E0 ] B0) in order to achieve the above functionality more efficiently and in a

4 Note that in u(R◦) variables in X0 are interpreted as constants. Therefore, the number of match-
ing substitutions θ thus obtained is finite.



built-in way. The matching condition [19](
Y ; θ ; φ

)
S := next(R•, X,C)

is a syntactic variant of an equational condition mathematically interpreted as an or-
dinary equation. Operationally, when executing this matching condition, the variables
introduced in the left-hand side of the equation are instantiated by matching the term(
Y ; θ ; φ

)
S against the canonical form of the term next(R•, X,C). Since matching sub-

stitutions need not be unique, this matching condition provides a convenient way to
perform a search through the canonical form of the structure next(R•, X,C) without the
need to explicitly define a function for this purpose.

Recall the existential reachability problem (5) in Section 5:

TR |=

(
∃
−→x ∪ −→y ∪

−→
y′′

)
t →∗R [y′′1 , . . . , y

′′
n ] ∧ ϕ ∧ ϕ′ ∧ [α].

Given that the symbolic rewrite relation  R◦ is encoded as a standard rewrite rela-
tion, this reachability problem can be solved by symbolic search, directly available in
Maude from its search command. More precisely, for solving this reachability goal, the
following invocation of Maude’s search command will find a solution, if one exists:

search (t ;ϕ)→∗
(
[y′′1 , . . . , y

′′
n ] ; C

)
such that sat(C ∧ ϕ′ ∧ [α]).

In this command, C is a built-in variable of sort Bool used for matching any constraint
found in the search process. In this way, whenever a symbolic state is reached, the
interest is in checking whether the constraint C ∧ ϕ′ ∧ [α] is satisfiable, meaning that a
witness in the set

�
[y′′1 , . . . , y

′′
n ]
�
ϕ′∧[α]

of target states can be reached from at least one
term in the set ~t�ϕ of source states.

Example 6. Recall the existential reachability problem (4) in Section 5 for the thermo-
stat and the air conditioning system:

TR |= (∃T, S ,N0,N1,N2, B0) 〈 time : 0, temp : T, setpoint : S , ac : false 〉

→∗R [ time : N0, temp : N1, setpoint : N2, ac : B0 ]
∧ N1 ≤ N2 ∧ B0 ∧ N2 = S .

Since the target term [ time : N0, temp : N1, setpoint : N2, ac : B0 ] is a pattern satisfying
the requirements found in Remark 1, there is not need for involving unification algo-
rithms in the symbolic search process, as stated in Theorem 4. Instead, the following
invocation of Maude’s search command will find a solution to this query, if one exists,
up to a depth search bound of 10:

search [,10] ( < time: 0, temp: T, setpoint: S, ac: false > ; true )
=>* ( [ time: N0, temp: N1, setpoint: N2, ac: B0 ] ; B1 )

such that sat(B1 and N1 <= N2 and B0 and N2 = S) .

As expected, this command terminates without finding any solution to the reachability
query. It is key to note that the search command appearing in the above code snippet is



the one used in Maude for ground search, but thanks to the reflective implementation
of rewriting modulo SMT in the Maude system, this same command can actually be
used also for symbolic reachability analysis, as explained above. The pair [,10] in the
above search command is an optional argument providing a bound on: (i) the number
of desired solutions (first pair component) and (ii) the maximum depth of the search
(second pair component): in this case, no bound is given for the number of desired
solutions, but a bound of 10 is given for the maximum depth of the search task.

In general, and as witnessed by the case studies presented in sections 7 and 8,
the prototype implementation discussed in this section has been successfully used for
checking reachability properties of interesting open and real-time systems. However, as
pointed out as part of the concluding remarks of this work in Section 9, some future
work in incorporating various state space reduction techniques can be beneficial for
handling a broader class of problems with rewriting modulo SMT.

7 Analysis of the CASH Algorithm

This section presents a case study, developed jointly with K. Bae, of a real-time sys-
tem that can be symbolically analyzed in the prototype tool described in Section 6.
The analysis applies model checking based on rewriting modulo SMT and it is about
the symbolic analysis of the CASH algorithm [15], a real-time scheduling algorithm
that attempts to maximize system performance while guaranteeing that critical tasks
are executed in a timely manner. The CASH algorithm achieves this goal by maintain-
ing a priority queue of unused execution budgets that can be reused by other jobs to
maximize processor utilization. This algorithm poses non-trivial modeling and analysis
challenges because it contains, for instance, an unbounded priority queue, that cannot be
modeled in timed-automata formalisms, such as those of UPPAAL [43] or Kronos [67],
which assume a finite discrete state. More details about the case study, including its full
implementation, and the prototype tool can be found in [9].

The CASH algorithm was specified and analyzed in Real-Time Maude by explicit-
state model checking in an earlier paper by P. C. Ölveczky and M. Caccamo [52], which
showed that, under certain variations on both the assumptions and the design of the
protocol, it could miss deadlines. Explicit-state model checking has intrinsic limitations
which the new analysis by rewriting modulo SMT presented below overcomes. The
CASH algorithm is parametrized by: (i) the number N of servers in the system, and (ii)
the values of a maximum budget bi and period pi, for each server 1 ≤ i ≤ N. Even if N is
fixed, there are infinitely many initial states for N servers, since the maximum budgets bi

and periods pi range over the natural numbers. Therefore, explicit state model checking
cannot perform a full analysis. If a counterexample for N servers exists, it may be found
by explicit-state model checking for some chosen initial states, as done in [52], but it
could be missed if the wrong initial states are chosen.

Rewriting modulo SMT is useful for symbolically analyzing infinite-state systems
like CASH. Infinite sets of states are symbolically described by constrained terms which
may involve user-definable data structures such as priority queues, but whose only vari-
ables range over decidable types for which an SMT solving procedure is available. For



the CASH algorithm, the built-in sorts are Int and Bool ranging, respectively, over the
integer numbers and the Boolean values.

7.1 Symbolic States

In the symbolic CASH algorithm specification R, a symbolic state is a pair (t ;ϕ) of
sort Sys in which the term t ∈ TΣ(X0)Configuration represents the symbolic state of ex-
ecution of the algorithm and the formula ϕ ∈ QFΣ0

(X0) is a constraint on t. In this
symbolic specification, the built-in terms range over the sorts Int for integer numbers
and Bool for Boolean values, and have the usual connectives. A symbolic state t has sort
Configuration, representing multisets of objects, in which multiset union is denoted by
juxtaposition (i.e., by the empty syntax). An object has sort Object and has the form
〈 _ : _ | _ 〉, where the first argument is an object identifier having sort Oid, the sec-
ond argument a class identifier having sort Cid, and the third argument is a multiset
of attributes having sort AttrSet, where attribute union is denoted by comma. In each
object configuration there is a global object (of class global) that models the time of
the system (with attribute name time), the priority queue (with attribute name cq), the
availability (with attribute name available), and a deadline missed flag (with attribute
name deadlineMiss). A configuration can also contain any number of server objects
(of class server). Each server object models the maximum budget (the maximum time
within which a given job will be finished, with attribute name maxBudget), period (with
attribute name period), internal state (with attribute name state), time executed (with
attribute name timeExecuted), budget time used (with attribute name usedOfBudget),
and time to deadline (with attribute name timeToDeadline).

7.2 Symbolic Transitions

The symbolic transitions of CASH are specified by 13 conditional rewrite rules whose
conditions specify constraints solvable by the SMT decision procedure and some extra
conditions, with the help of auxiliary functions, which are solvable by rewriting. The
goal of the extra conditions is to minimize the number of (constrained) rewrite rules in
the formal specification of the protocol.

In what follows, the following conventions are adopted:

– Variables iNZT, iI, iT, inI1, inI2, etc., and their primed versions have built-in sort
Int and denote symbolic integer expressions.

– Variables φ, iB, inB1, inB2, etc., and their primed versions have built-in sort Bool
and denote symbolic constraints.

– Variable B has sort Boolean and denotes non built-in Boolean values, i.e., Boolean
values in the Maude language.

– Variable REST has sort Configuration and it is used in the rules to match parts of a
state that are not relevant to a particular rule.

– Variables G, O, and O’ have sort Oid and denote object identifiers.
– Variables AtSG, AtS, and AtS’ have sort AttrSet (see Section 4).
– Variables CQ, CQ1, CQ2, and their primed versions have sort Queue and denote

priority queues.



In the following rules, matching equations of the form _:=_ are extensively used. As
explained in Section 6, they are mathematically interpreted as ordinary equations, but
operationally the variables introduced in the left-hand side of the equation are instanti-
ated by matching the canonical form of the instance of the term on the right-hand side.
Intuitively, since matching condition is performed modulo axioms, a matching condi-
tion provides a convenient way to perform a search through the canonical form of the
structure of the right-hand side term without the need to explicitly define a function for
this purpose.

Rule [idleToExecuting] This rule models the situation in which an inactive server can
start executing if the processor is available. In this case, the server transitions from
state idle to executing, with zero use of its budget and execution time, and the system’s
processor is made unavailable.

(REST〈G : global | available : true, AtS G〉

〈O : server | period : iNZT, state : idle, timeToDeadline : iT,

timeExecuted : inI1, usedOfBudget : inI2, AtS 〉; φ)
→ (REST〈G : global | available : false, AtS G〉

〈O : server | period : iNZT, state : executing, timeToDeadline : iI,

timeExecuted : 0, usedOfBudget : 0, AtS 〉; φ′)
if (int : iI const : iB); ECS :=

(int : iT + iNZT const : iT > 0); (int : iNZT const : iT ≤ 0)
∧ φ′ := φ ∧ iNZT > 0 ∧ iB

∧ sat(φ′)

Auxiliary function symbol int:_const:_ represents a pair with first element an integer
expression of sort Int and second argument a constraint of sort Bool. In the case of this
rule, there are two of these constructs representing the situations in which timeToDeadline
can be positive and negative. Depending on the situation, quantity timeToDeadline can
be updated in two different ways, each specified by the corresponding symbolic integer
expression. Note that because constraint iNZT > 0, this rule is enabled only in a state
having a server with positive period.

Rules [idleToActiveP] and [idleToActiveN] These rules model the situation where a
server becomes active and another server is executing, which in turn will either preempt
(rule [idleToActiveP]) or not (rule [idleToActiveN]) according to its internal state. Rules



[idleToActiveP] and [idleToActiveN], in that order, are presented below.

(REST〈O : server | period : iNZT, state : idle, timeToDeadline : iT,

timeExecuted : inI1, usedOfBudget : inI2, AtS 〉

〈O′ : server | timeToDeadline : iT ′, state : executing, AtS ′〉; φ)
→ (REST〈O : server | period : iNZT, state : executing,

timeToDeadline : iI, timeExecuted : 0, usedOfBudget : 0, AtS 〉

〈O′ : server | timeToDeadline : iT ′, state : waiting, AtS ′〉; φ′)
if (int : iI const : iB); ECS :=

(int : iT + iNZT const : (iT > 0 ∧ iT ′ > 0 ∧ iT + iNZT < iT ′));
(int : iNZT const : (iT ≤ 0 ∧ iT ′ > 0 ∧ iNZT < iT ′))

∧ φ′ := φ ∧ iNZT > 0 ∧ iB

∧ sat(φ′)

(REST〈O : server | period : iNZT, state : idle, timeToDeadline : iT,

timeExecuted : inI1, usedOfBudget : inI2, AtS 〉

〈O′ : server | state : executing, timeToDeadline : iT ′, AtS ′〉; φ)
→ (REST〈O : server | period : iNZT, state : waiting,

timeToDeadline : iI, timeExecuted : 0, usedOfBudget : 0, AtS 〉

〈O′ : server | state : executing, timeToDeadline : iT ′, AtS ′〉; φ′)
if (int : iI const : iB); ECS :=

(int : iT + iNZT const : (iT > 0 ∧ iT + iNZT ≥ iT ′));
(int : iNZT const : (iT ≤ 0 ∧ iNZT ≥ iT ′))

∧ φ′ := φ ∧ iNZT > 0 ∧ iB

∧ sat(φ′)

Rules [stopExecuting1A] and [stopExecuting1B] These rules model the situation where
a server finishes execution and there is at least one server waiting. In this case, the
first waiting server in the queue starts executing. Also, if there is any budget left, it is
added to the global CASH. Below, rules [stopExecuting1A] and [stopExecuting1B] are



presented.

(REST〈G : global | cq : CQ CQ′, AtS G〉

〈O : server | state : executing, usedOfBudget : iT,maxBudget : iNZT,

timeToDeadline : iT ′, timeExecuted : iNZT ′, period : iNZT ′′, AtS 〉

〈O′ : server | state : waiting, timeToDeadline : iT ′′, AtS ′〉; φ)
→ (REST

〈G : global | cq : (CQ (deadline : iT ′budget : (iNZT − iT )) CQ′), AtS G〉

〈O : server | state : idle, usedOfBudget : iNZT,maxBudget : iNZT,

timeToDeadline : iT ′, timeExecuted : iNZT ′, period : iNZT ′′, AtS 〉

〈O′ : server | state : executing, timeToDeadline : iT ′′, AtS ′〉; φ′)
if ALL := · · ·
∧ inB1 := nextDeadlineWaiting(ALL,O, iT ′′)
∧ inB2 := belowDeadline(iT ′,CQ)
∧ inB3 := aboveOrEqualDeadline(iT ′,CQ′)
∧ φ′ := φ ∧ iT ≥ 0 ∧ iNZT > 0 ∧ iNZT ′ > 0 ∧ iNZT ′′ > 0 ∧ iNZT > iT∧

iT ′ > 0 ∧ iNZT ≤ iT + iT ′ ∧ inB1 ∧ inB2 ∧ inB3
∧ sat(φ′)

Variable ALL, whose specification has been omitted, represents the entire object config-
uration in the left hand side of the rule. Function call nextDeadlineWaiting(ALL,O,iT”)
computes a constraint over all waiting servers in ALL different from O that is satisfiable
by any of such servers whose timeToDeadline attribute is at least iT”. If the system has
missed a deadline, this constraint is unsatisfiable. Function call belowDeadline(iT’,CQ)
computes a constraint that is satisfiable if and only if all deadlines in CQ are less than
IT’. Analogously, function call aboveOrEqualDeadline(iT’,CQ’) computes a constraint
that is satisfiable if and only if all deadlines in CQ’ are at least IT’. Note that these two
functions are used together in order to keep the representation invariant of the system’s
priority queue when inserting a new element into it.



The following is the specification of rule [stopExecuting1B]:

(REST

〈O : server | state : executing, usedOfBudget : iT,maxBudget : iNZT,

timeToDeadline : iT ′, timeExecuted : iNZT ′, period : iNZT ′′, AtS 〉

〈O′ : server | state : waiting, timeToDeadline : iT ′′, AtS ′〉; φ)
→ (REST

〈O : server | state : idle, usedOfBudget : iNZT,maxBudget : iNZT,

timeToDeadline : iT ′, timeExecuted : iNZT ′, period : iNZT ′′, AtS 〉

〈O′ : server | state : executing, timeToDeadline : iT ′′, AtS ′〉; φ′)
if ALL := · · ·

inB1 := nextDeadlineWaiting(ALL,O, iT ′′)
∧ φ′ := φ ∧ iT ≥ 0 ∧ iNZT > 0 ∧ iNZT ′ > 0 ∧ iNZT ′′ > 0 ∧

iNZT ≤ iT ∧ inB1
∧ sat(φ′)

Rules [stopExecuting2A] and [stopExecuting2B] These two rules complement the pre-
vious two rules for situations where a server finishes execution and there is no server
waiting. The effect on the system is that the processor that was being used by the fin-
ishing server is released.

The following is the specification of rule [stopExecuting2A]:

(REST〈G : global | cq : CQ CQ′, available : B, AtS G〉

〈O : server | state : executing, usedOfBudget : iT,maxBudget : iNZT,

timeToDeadline : iT ′, timeExecuted : iNZT ′, period : iNZT ′′, AtS 〉; φ)
→ (REST

〈G : global | cq : (CQ (deadline : iT ′budget : (iNZT − iT )) CQ′),
available : true, AtS G〉

〈O : server | state : idle, usedOfBudget : iNZT,maxBudget : iNZT,

timeToDeadline : iT ′, timeExecuted : iNZT ′, period : iNZT ′′, AtS 〉; φ′)
if ALL := · · ·
∧ inB1 := belowDeadline(iT ′,CQ)
∧ inB2 := aboveOrEqualDeadline(iT ′,CQ′)
∧ inB3 := noServerWaiting(ALL,O))
∧ φ′ := φ ∧ iT ≥ 0 ∧ iNZT > 0 ∧ iNZT ′ > 0 ∧ iNZT ′′ > 0 ∧ iNZT > iT ∧

iT ′ > 0 ∧ iNZT ≤ iT + iT ′ ∧ inB1 ∧ inB2 ∧ inB3
∧ sat(φ′)



The following is the specification of rule [stopExecuting2B]:

(REST〈G : global | available : B, AtS G〉

〈O : server | state : executing, usedOfBudget : iT, timeToDeadline : iT ′,

maxBudget : iNZT, timeExecuted : iNZT ′, period : iNZT ′′, AtS 〉; φ)
→ (REST〈G : global | available : true, AtS G〉

〈O : server | state : idle, usedOfBudget : iNZT, timeToDeadline : iT ′,

maxBudget : iNZT, timeExecuted : iNZT ′, period : iNZT ′′, AtS 〉; φ′)
if ALL := · · ·
∧ inB1 := noServerWaiting(ALL,O))
∧ φ′ := φ ∧ iT ≥ 0 ∧ iNZT > 0 ∧ iNZT ′ > 0 ∧ iNZT ′′ > 0 ∧

iNZT ≤ iT ∧ inB1
∧ sat(φ′)

Rule [deadlineMiss] This rule models the detection of a deadline miss for a server with
non-zero maximum budget, i.e., a situation where the system has reached an overflow
and the allocated execution time cannot be exhausted before the server’s deadline.

(REST〈G : global | deadlineMiss : B, AtS G〉

〈O : server | state : S t, usedOfBudget : iT, timeToDeadline : iT ′,

maxBudget : iNZT, AtS 〉; φ)
→ (REST

〈G : global | deadlineMiss : true, AtS G〉

〈O : server | state : S t, usedOfBudget : iT, timeToDeadline : iT ′,

maxBudget : iNZT, AtS 〉; φ′)
if St , idle

∧ (int : iI const : iB); ECS :=
(int : iT const : (iT ′ > 0 ∧ iNZT > iT + iT ′));
(int : iT const : (iT ′ ≤ 0 ∧ iNZT > iT ))

∧ φ′ := φ ∧ iT ≥ 0 ∧ iNZT > 0 ∧ iB

∧ sat(φ′)

The following rules are included in the specification for modeling a job which is
longer than the execution time in one round of the server. This setting is considered in
the rest of the rules, where an idle server may be immediately activated again.

Rules [continueExInNextRound], [continueActInNextRound1] and [continueActInNextRound2]
These rules model the situation in which a server has executed all it can in the current
round but wishes to continue executing in the next round. Since the server’s deadline
is increased, it cannot just continue executing but must check if some waiting server
suddenly gets a shorter deadline.



Rule [continueExInNextRound] considers the case in which no other server is wait-
ing when a server wishes to continue executing in the next round.

(REST

〈O : server | state : executing,maxBudget : iNZT, usedOfBudget : iNZT ′,

period : iNZT ′′, timeToDeadline : iT, timeExecuted : inI1, AtS 〉; φ)
→ (REST

〈O : server | state : executing,maxBudget : iNZT, usedOfBudget : 0,
period : iNZT ′′, timeToDeadline : iI, timeExecuted : 0, AtS 〉; φ′)

if ALL := · · ·
∧ inB1 := eval(ALL, noServerWaiting(O))
∧ φ′ := φ ∧ iNZT > 0 ∧ iNZT ′′ > 0 ∧ iB ∧ inB1
∧ sat(φ′)

Rule [continueActInNextRound1] considers the case in which some other server is
waiting and the server willing to continue executing becomes preempted.

(REST

〈O : server | state : executing,maxBudget : iNZT, usedOfBudget : iNZT ′,

period : iNZT ′′, timeExecuted : inI1, timeToDeadline : iT, AtS 〉

〈O′ : server | state : waiting, timeToDeadline : iT ′, AtS ′〉; φ)
→ (REST

〈O : server | state : waiting,maxBudget : iNZT, usedOfBudget : 0,
period : iNZT ′′, timeExecuted : 0, timeToDeadline : iI, AtS 〉

〈O′ : server | state : executing, timeToDeadline : iT ′, AtS ′〉; φ′)
if ALL := · · ·
∧ inB1 := nextDeadlineWaiting(ALL,O, iT ′))
∧ φ′ := φ ∧ iNZT > 0 ∧ iNZT ′′ > 0 ∧ inB1 ∧ iB

∧ sat(φ′)



Rule [continueActInNextRound2] considers the case in which some other server is
waiting but the server willing to continue executing can do so.

(REST

〈O : server | state : executing,maxBudget : iNZT, usedOfBudget : iNZT ′,

period : iNZT ′′, timeExecuted : inI1, timeToDeadline : iT, AtS 〉

〈O′ : server | state : waiting, timeToDeadline : iT ′, AtS ′〉; φ)
→ (REST

〈O : server | state : executing,maxBudget : iNZT, usedOfBudget : 0,
period : iNZT ′′, timeExecuted : 0, timeToDeadline : iT + iNZT ′′, AtS 〉

〈O′ : server | state : waiting, timeToDeadline : iT ′, AtS ′〉; φ′)
if (int : iI const : iB); ECS :=

(int : iT + iNZT ′′ const : (iT > 0 ∧ iT ′ ≥ iT + iNZT ′′));
(int : iNZT ′′ const : (iT ≤ 0 ∧ iT ′ ≥ iNZT ′′))

∧ ALL := · · ·
∧ φ′ := φ ∧ iNZT > 0 ∧ iNZT ′′ > 0 ∧ inB1 ∧ iT ′ ≥ iT + iNZT ′′

∧ sat(φ′)

Rules [tickExecutingSpareCapacity] and [tickExecutingOwnBudget] These two rules
are directly involved with modeling the timed behavior of the protocol. In both rules
the time is increased by 1 unit.



Rule [tickExecutingSpareCapacity] models the situation in which time elapses when
a server is executing a spare capacity.

(REST

〈G : global | time : iT, cq : (deadline : iI1 budget : iI2) CQ, AtS G〉

〈O : server | state : executing, timeExecuted : iT ′, timeToDeadline : iT ′′,

AtS 〉; φ)
→ (deltaServers(REST , 1)

〈G : global | time : iT + 1, cq : delta(CQ2, 1), AtS G〉

〈O : server | state : executing, timeExecuted : iT ′ + 1,
timeToDeadline : iT ′′ − 1, AtS 〉; φ′)

if (queue : CQ1 CQ2 const : iB); ECS′ :=
usc1((deadline : iI1 budget : iI2) CQ)

∧ ALL := · · ·
∧ inB1 := mteServer(ALL,O, 1)
∧ inB2 := mteQueue((deadline : iI1 budget : iI2) CQ, 1)
∧ inB3 := noDeadlineMiss(ALL)
∧ inB4 := belowDeadline(2,CQ1) ∧ aboveOrEqualDeadline(2,CQ2)
∧ φ′ := φ ∧ iT ≥ 0 ∧ iT ′ ≥ 0 ∧ iB ∧ inB1 ∧ inB2 ∧ iT ′′ ≥ 1∧

inB3 ∧ iI1 ≤ iT ′′ ∧ inB4
∧ sat(φ′)

Function call deltaServers(REST,1) updates attribute timeToDeadline in non-executing
servers in REST by decreasing its value by 1 unit. Analogously, the function call delta(CQ2,1)
decreases the value associated to deadline in 1 unit for each element in the priority
queue CQ2. Given a non-empty queue, the function call

usc1((deadline: iI1 budget: iI2) CQ)

performs case splitting on the first element of the queue: it considers the case in which
the budget iI2 is at most 1 and the case when this quantity is more than 1. In either
case, the server continues executing, but with different contents in the priority queue.
Auxiliary functions mteServer and mteQueue generate constraints that simulate the time
increment by 1 unit for servers and values in the priority queue, respectively.



Rule [tickExecutingOwnBudget] models the situation in which time elapses when a
server is executing its own budget.

(REST

〈G : global | time : iT, cq : CQ CQ′, AtS G〉

〈O : server | state : executing, timeExecuted : iT ′,

usedOfBudget : iT ′′, timeToDeadline : iT ′′′, AtS 〉; φ)
→ (delta-servers(REST , 1)

〈G : global | time : iT + 1, cq : delta(CQ′, 1), AtS G〉

〈O : server | state : executing, timeExecuted : iT ′ + 1,
usedOfBudget : iT ′′ + 1, timeToDeadline : iT ′′′ − 1, AtS 〉; φ′)

if ALL := · · ·
∧ inB1 := mteServer(ALL,G, 1)
∧ inB2 := mteQueue(CQ CQ′, 1)
∧ inB3 := noDeadlineMiss(ALL)
∧ inB4 := lessThanFirstDeadline(iT ′′′,CQCQ′)
∧ inB5 := belowDeadline(2,CQ) ∧ aboveOrEqualDeadline(2,CQ′)
∧ φ′ := φ ∧ iT ≥ 0 ∧ iT ′ ≥ 0 ∧ iT ′′ ≥ 0 ∧ inB1 ∧ inB2 ∧ inB3 ∧ inB4 ∧ inB5
∧ sat(φ′)

Rule [tickIdle] Finally, rule [tickIdle] models the increase of time by 1 unit in the entire
system.

(REST〈G : global | time : iT, cq : CQ, available : true, AtS G〉; φ)
→ (deltaServers(REST , 1)

〈G : global | time : iT + 1, cq : delta(CQ2, 1), available : true, AtS G〉; φ′)
if (queue : CQ1 CQ2 const : iB); ECS′ := usc1(CQ)
∧ ALL := · · ·
∧ inB1 := mteServer(ALL,G, 1)
∧ inB2 := noDeadlineMiss(ALL)
∧ inB3 := belowDeadline(2,CQ1) ∧ aboveOrEqualDeadline(2,CQ2)
∧ φ′ := φ ∧ iT ≥ 0 ∧ iB ∧ inB1 ∧ inB2 ∧ inB3
∧ sat(φ′)

7.3 Symbolic Detection of Missed Deadlines

The goal is to verify symbolically the existence of missed deadlines of the CASH algo-
rithm for the infinite set of initial configurations containing two server objects s0 and
s1 with maximum budgets b0 and b1 and periods p0 and p1 as unspecified natural num-
bers, and such that each server’s maximum budget is strictly smaller than its period, i.e.,



0 ≤ b0 < p0 ∧ 0 ≤ b1 < p1. This infinite set of initial states is specified symbolically by
the equational definition (not shown) of term init. Maude’s search command can then
be used, as explained in Section 6, to symbolically check if there is a reachable state for
any ground instance of init that misses the deadline:

search init =>* ( Cnf < g : global | AtS, deadlineMiss : true > ; iB ) .
Solution 1 (state 233)
states: 234 rewrites: 60517 in 2865ms cpu (2865ms real) (21118 rewrites/second)
Cnf -->
< s1 : server | maxBudget : X0, period : X1, state : waiting,
usedOfBudget : 0, timeToDeadline : ((X1 - 1) - 1), timeExecuted : 0 >

< s2 : server | maxBudget : X2, period : X3, state : executing,
usedOfBudget : 2, timeToDeadline : ((X3 - 1) - 1), timeExecuted : 2 >

AtS --> time : 2, cq : emptyQueue, available : false
iB --> ((X0 <= 0 ^ X1 <= 0) v X0 <= 0 + X1 ^ ...

A counterexample is found at (modeling) time two, after exploring 233 symbolic states
in less than 3 seconds. By using a satisfiability witness of the constraint iB computed by
the search command, a concrete counterexample is found by exploring only 54 ground
states. This result compares favorably, in both time and computational resources, with
the ground counterexample found by explicit-state model checking in [52], where more
that 52,000 concrete states were explored before finding a counterexample.

8 Symbolic Reachability Analysis for PLEXIL Modulo Integer
Constraints

This section gives an overview of, and presents a case study about, the analysis of reach-
ability properties for the Plan Execution Interchange Language (PLEXIL) [26] that can
be expressed in rewriting modulo SMT and executed with the help of the prototype tool
in Section 6 and the Maude Model Checker [19]. The symbolic reachability analysis for
PLEXIL presented in this section is able to automatically detect reachability violations
on input plans, where the values of external variables can be left unspecified, for a large
subset of the language. More details on the symbolic specification of PLEXIL and the
analysis performed on it can be found at [55]. Moreover, this section assumes some
basic knowledge on LTL model checking in the Maude system [19].

PLEXIL is a synchronous language developed by NASA to support autonomous
spacecraft operations. Synchronous languages were introduced in the 1980s to program
reactive systems, i.e., open systems whose behavior is determined by their continuous
reaction to the environment where they are deployed. Given the safety-critical nature of
spacecraft operations, PLEXIL’s operational semantics has been formally defined [23]
and several properties of the language, such as determinism and compositionality, have
been mechanically verified [22]. A rewriting logic semantics of PLEXIL has been pre-
viously developed in Maude and has been used, within a formal interactive verification
environment [24, 56], to validate the intended semantics of the language against a wide
variety of plan examples. The symbolic specification of PLEXIL used in this section
extends and complements the ground rewriting logic semantics of the language with



symbolic reachability analysis, a task that is impossible to achieve with the rewriting
logic semantics of the language [24].

PLEXIL programs define reactive systems that interact with an external environ-
ment of sensors and actuators. Such programs are deterministic by assuming a given
concrete value for each of the sensors that the reactive system interacts with. Therefore,
to execute by standard rewriting the rewriting logic semantics in [24] (and perform var-
ious kinds of reachability analysis verification in Maude), concrete values of the data in
sensors had to be assumed for the reactive interactions. Since, in general, the possible
tuples of such values can be infinite or (assuming finite arithmetic precision) extremely
large, the concrete executions and formal analyses allowed by the concrete rewriting
semantics had to be necessarily incomplete. This is analogous to the incompleteness of
simulating and analyzing the CASH algorithm example in Real-Time Maude, versus
the complete analysis by rewriting modulo SMT presented in Section 7. Using rewrit-
ing modulo SMT, symbolic analysis based on the rewriting logic semantics for PLEXIL
can symbolically cover all possible values in an external environment [55].

8.1 PLEXIL Overview

This section presents an overview of PLEXIL; the reader is referred to [26] for a detailed
description of the language.

A PLEXIL program, called a plan, is a tree of nodes representing a hierarchical
decomposition of tasks. Interior nodes, called list nodes, provide control structure and
naming scope for local variables. The primitive actions of a plan are specified in the
leaf nodes. Leaf nodes can be assignment nodes, which assign values to local variables,
command nodes, which call external commands, or empty nodes, which do nothing.
PLEXIL plans interact with a functional layer that provides the interface with the ex-
ternal environment. This functional layer executes the external commands and commu-
nicates the status and result of their execution to the plan through external variables.

Nodes have an execution state, which can be inactive, waiting, executing, failing,
iterationend, finishing, or finished, and an execution outcome, which can be unknown,
skipped, success, or failure. They can declare local variables that are accessible to the
node in which they are declared and all its descendants. In contrast to local variables, the
execution state and outcome of a node are visible to all nodes in the plan. Assignment
nodes also have a priority, which can help in solving race conditions. The internal state
of a node consists of the current values of its execution state, execution outcome, and
local variables.

Each node is equipped with a set of gate conditions and check conditions that gov-
ern the execution of a plan. Gate conditions provide control flow mechanisms that react
to external events. In particular, the start condition specifies when a node starts its exe-
cution, the end condition specifies when a node ends its execution, the repeat condition
specifies when a node can repeat its execution, and the skip condition specifies when the
execution of a node can be skipped. Check conditions are used to signal abnormal exe-
cution states of a node and they can be either pre-condition, post-condition, or invariant
conditions. The language includes Boolean, integer, and floating-point arithmetic, and
string expressions. It also includes lookup expressions that read the value of external
variables provided to the plan through the executive. Expressions appear in conditions,



assignments, and arguments of commands. Each of the basic types is extended by a
special value unknown that can result, for example, when a lookup fails.

The execution of a plan in PLEXIL is driven by external events from the environ-
ment that trigger changes in the gate conditions. All nodes affected by a change in a
gate condition synchronously respond to the event by modifying their internal state.
These internal modifications may trigger more changes in gate conditions that in turn
are synchronously processed until quiescence is reached for all nodes involved. Exter-
nal events are considered in the order in which they are received. An external event and
all its cascading effects are processed before the next event is considered. This behavior
is known as run-to-completion semantics.

The atomic relation describes the execution of an individual node in terms of state
transitions triggered by changes in the environment. The micro relation describes the
synchronous reduction of the atomic relation with respect to the maximal redexes strat-
egy, i.e., the synchronous application of the atomic relation to the maximal set of nodes
of a plan. The remaining three relations are the quiescence relation, the macro relation,
and the execution relation that describe, respectively, the reduction of the micro rela-
tion until normalization, the interaction of a plan with the external environment upon
one external event, and the n-iteration of the macro relation corresponding to n time
steps. Figure 1 depicts the transition diagram defining PLEXIL’s atomic transitions for
lists in state executing. According to this diagram, when a list node is in state executing,
the only way for it to reach state finishing is whenever the invariant of its ancestor node
and its own invariant, together with its end condition, are all true. In any other case, this
node’s execution fails.

executing

ancestor inv inv condition end condition finishing

OUTCOME=fail failing

true

false

true

false

true

Fig. 1. Atomic transitions for list nodes in state executing.

Since local variables declared in a node are shared by its children nodes, it may be
possible that two nodes attempt to synchronously write the same variable. The priority
mechanism included in the semantics of PLEXIL can be used by programmers to deal
with this problem. Unfortunately, priorities are optional and, in practice, race conditions
may occur during the execution of a PLEXIL program. For instance, consider the plan
AssignWithConflig in Figure 2. This plan has one list node and two assignment nodes,
NonNeg and NonPos. It declares a local integer memory x and interacts with the exter-
nal environment via the integer variable S. Note that depending on the value of S, the



assignment nodes NonNeg and NonPos may or may not start execution, and a race con-
dition can happen on x when the value of S is 0. With the symbolic semantics presented
in this section, the race condition on x can be automatically detected.

AssignWithConflict: {
Integer x = 0;
Invariant: x >= 0;
NodeList:
NonNeg: {
Start: Lookup(S) >= 0;
Assignment: x := 1;

}
NonPos: {
Start: Lookup(S) <= 0;
Assignment: x := 2;

}
}

Fig. 2. A PLEXIL plan with a parallel assignment having a potential race condition.

8.2 Symbolic Detection of Race Conditions

In the symbolic rewriting logic semantics of PLEXIL R, a symbolic state is a pair
(t ;ϕ) in which the term t ∈ TΣ(X0)Configuration represents the symbolic state of execution
of a plan and the formula ϕ ∈ QFΣ0

(X0) is a constraint on t. In this rewriting logic
semantics, the built-in terms range over the sorts Int for integer numbers and Bool for
Boolean values, and are used to specify values of external variables under the control
of the environment that can be left unspecified. Similar to the CASH specification in
Section 7, a state t has sort Configuration, representing multisets of objects, in which
multiset union is denoted by juxtaposition (i.e., by the empty syntax). An object has
sort Object and has the form 〈 _ : _ | _ 〉, where the first argument is an object identifier
having sort Oid, the second argument a class identifier having sort Cid, and the third
argument is a multiset of attributes having sort AttrSet, where attribute union is denoted
by comma. A node in a PLEXIL plan is represented by an object.

As mentioned above, detection of race conditions on local memories and violation
of node invariants are important in PLEXIL. As such, predicates for checking these
predicates are already available from the symbolic rewriting logic semantics. In partic-
ular, states predicates inv and race-free are offered to the user; both predicates take as
input the identifier of a node in a plan and check if the corresponding condition holds
for that node in a given symbolic state. For this purpose, operator _ |= _ from the Maude
Model Checker is used to equationally define the semantics of the relevant state pred-
icates, where the first argument is a symbolic state (t ;ϕ) and the second the predicate



π being defined on that state, associating a Kripke structure to the initial reachability
model of the PLEXIL specification (see [19] for more details). For example, the fol-
lowing equation defines the satisfiabilty of predicate inv w.r.t. a symbolic state:(

〈O : C | inv:B,AtS〉 Cnf ; B′
)
|= inv(O)

= unsat(B′ ∧ ¬B)

where the variable O has sort Oid, the variable C has sort Cid, the variables B, B′ have
sort Bool, the variable AtS has sort AttrSet, and the variable Cnf has sort Configuration.
Function unsat is used to check for the unsatisfiability of a given constraint. In this
case, the invariant condition of a node O, represented here by the built-in variable B,
yields an invariant violation whenever the conjunction of the state’s constraint B’ and
the negation of B is unsatisfiable: that is, whenever a state is reachable in which the
negation of the invariant B holds.

Recall the plan AssignWithConflict in Figure 2, which has a potential race condition
for the local memory x. Let init be a configuration of objects representing an initial
configuration for AssignWithConflict in which all nodes in the plan are in state inactive.
Consider the following safety verification requirements, where symbol � represents the
‘always’ modal operator in LTL:

TR, (init ; true) |= �race-free(x.AssignWithConflict), (6)

TR, (init ; S ≥ 1) |= �race-free(x.AssignWithConflict), (7)

TR, (init ; S ≥ 1) |= �inv(AssignWithConflict). (8)

In this verification requirements, variable S ranges over the built-in sort Int and repre-
sents the variable S under the control of the environment in the plan AssignWithConflict,
in Figure 2. Property (6) asserts that all reachable states from init are free from race
conditions on memory x whenever S has no initial constraints. Property (7) asserts that
all reachable states from init are free from race conditions on memory x whenever S
is assumed to be at least 1. Property (8) asserts that the invariant condition of node
AssignWithConflict holds in all reachable states from init whenever S is assumed to be
at least 1. Note that these properties are symbolic reachability requirements because
of the nature of the external variable S. Also, the constrained terms defining the initial
states in these properties represent, in each case, infinitely many initial states.

By using Maude’s LTL Model Checker, Property (6) can be disproved, and proper-
ties (7) and (8) can be proved automatically.

reduce in ASSIGNWITHCONFLICT :
verify-lite( ( init ; true ), [] race-free(x . AssignWithConflict)) .

rewrites: 2590 in 525ms cpu (1629ms real) (4929 rewrites/second)
result Bool: false

reduce in ASSIGNWITHCONFLICT :
verify-lite( ( init ; S >= 1 ), [] race-free(x . AssignWithConflict)) .

rewrites: 2846 in 575ms cpu (614ms real) (4947 rewrites/second)
result Bool: true



reduce in ASSIGNWITHCONFLICT :
verify-lite( ( init ; S >= 1 ), [] inv(AssignWithConflict) .

rewrites: 3191 in 576ms cpu (702ms real) (5534 rewrites/second)
result Bool: true

The function verify-lite is a wrapper to Maude’s LTL Model Checker function
modelCheck. This mapping outputs either true or false, depending on the output of
the model checker function, ignoring the details of a counterexample, if any (see [55]
for more details).

9 Related Work and Concluding Remarks

The idea of combining term rewriting/narrowing techniques and constrained data struc-
tures is an active area of research, especially since the advent of modern theorem
provers and model checkers with highly efficient decision procedures in the form of
SMT solvers. The overall aim of these techniques is to advance applicability of meth-
ods in symbolic verification where the constraints are expressed in some logic that has
an efficient decision procedure. In particular, the work presented here has strong simi-
larities with the narrowing-based symbolic analysis of rewrite theories initiated in [48]
and extended in [8]. There are also some similarities with symbolic reachability analy-
sis based on (tree) automata (see, e.g., [32] and references there). In comparison with
the tree automata methods, a considerably richer set of infinite states and properties of
such states can be expressed. This is because sets of states —and therefore properties
to be verified— which are describable by regular tree languages roughly correspond
in our setting to symbolic states of the form u;>, where u is a linear term. Instead, in
rewriting modulo SMT richer sets of states (and properties) can be specified by pairs
u;ϕ, where u is an arbitrary, not necessarily linear, term, ϕ a decidable built-in formula,
and the ground instances of u are understood modulo the equations E. Then, rewriting
modulo axioms B1 is combined with SMT solving to explore reachable sets of states.
This greater expressiveness makes unnecessary the use of over-approximations of sets
of states by regular languages needed in tree automata methods. The main difference
in comparison with narrowing-based methods is the replacement of narrowing modulo
axioms by rewriting modulo axioms and SMT solving, the decidability advantages of
SMT for constraint solving, and the greater efficiency of matching modulo axioms B
over unification modulo B.

Besides the just-mentioned narrowing-based model checking of infinite-state sys-
tems, the present work has also important similarities with SMT-based model checking
approaches such as, for example, those by A. Podelski [54], G. Delzano and A. Podel-
ski [21], T. Rybina and A. Voronkov [60], the work by S. Ghilardi, S. Ranise, and
various other researchers around the MTMC SMT-based model checker [34, 35] and,
more recently, the IC3- and SMT-based model checking techniques [18], and the con-
strained Horn-clause-based approach for model checking timed systems by Hojjat et al.
in [37]. In comparison with that body of work, what is indeed common is the use of
SMT solving to handle symbolically infinite sets of states, but there are some notable
differences having to do with both the structure that is possible for states, and support
for open systems. Specifically, in [21, 54, 60] the state must always be an n-tuple of



data and control elements, with associated state variables −→x = x1, . . . , xn, and state
changes are specified by guarded (simultaneous) assignment commands of the form
φ ⇒ −→x ′ := −→t , where −→t = t1, . . . , tn is a sequence of Σ-terms with variables in −→x ,
φ is a Σ-formula, and (Σ,T ) is a decidable theory. Such guarded assignments are just
conditional rewrite rules of the form 〈x1, . . . , xn〉 → 〈t1, . . . , tn〉 if φ. Such rules can
have internal non-determinism, depending on which rule is chosen, but the systems so
specified are closed, i.e., they do not have any external non-determinism. Furthermore,
the state structure must necessarily be a tuple. The work in [34,35] allows greater flexi-
bility in this regard: the state structure is also fixed, namely, it must be an array, but this
makes it easy to specify parametric systems. Also, rather than assuming a specific for-
mat for state transitions, such as that of guarded assignments, transitions can be defined
by Σ-formulas with (Σ,T ) a decidable theory. This allows for a possibility of transitions
that, when viewed as conditional rewrite rules, can have extra variables in their right-
hand sides and can model an open system. In a similar way, the work in [37] assumes
a fixed state structure consisting of an array of processes and a shared global state. By
contrast, in the approach presented in this paper the state structure is completely gen-
eral and user-definable and can obey structural axioms also specified by the user; and
support for openness is a key part of the semantic framework.

In spite of the above-mentioned differences, there is great commonality in the type
of advanced techniques used in SMT-based model checking to speed up and often attain
convergence of the reachability analysis process, since all of them —including state
subsumption, backwards reachability, k-induction, interpolants, and the combination of
IC3 with SMT— can also be applied to rewriting modulo SMT. The current reflection-
based prototype described in Section 6 does not yet support any of these techniques, but
they should certainly be added to a future implementation.

Finally, SMT-based reachability analysis has been used in software testing in tools
such as KLEE [16] for symbolic execution and constraint solving, finding possible in-
puts that will cause a program to crash and outputting these as test cases, and SMT-
CBMC [3] and Corral [42] for bounded model checking where unbounded types are
represented by built-in variables and the syntax of expressions is restricted so that it
can be efficiently decided by SMT solving. See [17] for a comprehensive account of
symbolic techniques for reachability analysis in software testing, including SMT-based
ones.

The work by C. Kirchner, H. Kirchner, and M. Rusinowitch on deduction with sym-
bolic constraints [39] is a pioneering work where the notions of constraints, rewrite rule
with symbolic constraints, simplification with these rules, and applications to equational
superposition theorem proving based on such notions were proposed. These ideas have
had an important influence in several areas, such as, for example, subsequent work on
superposition theorem proving with constraints, see, e.g., [31]; and in the constrained
rewriting approach by H. Kirchner and C. Ringeissen to the combination of symbolic
constraint solvers [38]. In a similar vein, M. Ayala-Rincón [5] investigated, in the setting
of many-sorted equational logic, the expressiveness of conditional equational systems
whose conditions may use built-in predicates. This class of equational theories is impor-
tant because the combination of equational and built-in premises yield a type of clauses
which is more expressive than purely conditional equations.



Rewriting notions like sufficient completeness, confluence, termination, and criti-
cal pairs have also been investigated for rewriting modulo built-ins. There is the work
of A. Bouhoula and F. Jacquemard [13], who studied the problem of sufficient com-
pleteness for conditional and constrained term rewrite systems, and propose a solution
based on tree grammars and narrowing. S. Falke and D. Kapur [28] studied the problem
of termination of rewriting with constrained built-ins. In particular, they extended the
dependency pair framework to handle termination of equational specifications with se-
mantic data structures and evaluation strategies in the Maude functional sublanguage.
The same authors used the idea of combining rewriting induction and linear arithmetic
over constrained terms [29]. Their aim is to obtain equational decision procedures that
can handle semantic data types represented by the constrained built-ins. The main dif-
ference between their work and rewriting modulo SMT presented in this paper is that
the notion of symbolic rewriting modulo decidable constraints is completely different.
According to Definition 14 in [29], a symbolic rewrite step u; φ  R v; φ with a rule
l → r if ϕ in their sense requires a matching substitution θ such that φ ⇒ (ϕθ) is
TE0 -valid. This is a universal notion of symbolic rewriting with constraints completely
different from our existential notion in Definition 7, which is based instead on constrain
satisfiability. This difference is understandable by observing that the goal in [29] is to
prove universal formulas about equational specifications by inductive theorem proving,
whereas our goal is very different, namely, to prove existential reachability formulas
about a concurrent system specified by a rewrite theory. More recently, C. Kop and
N. Nishida [40] have proposed a way to unify the ideas regarding equational rewrit-
ing with logical constraints and have proposed in [41] an inductive method of proving
properties of programs in an imperative language by their notion of symbolic rewriting
modulo decidable constraints. The main difference with our approach is that, as in [29],
their notion of symbolic rewriting is universal, and therefore completely different from
our existential notion in Definition 7; furthermore, in [41] termination of the rewrite
theory is required for inductive reasoning, whereas no termination is required at all in
our setting. Again, all this is understandable given their focus on inductive theorem
proving of universal formulas. One similarity between the work in [41] and our work
is that, to handle input-output in an imperative language, they allow, as we do, extra
variables in the righthand sides of rewrite rules. In general, while approaches such as
in [5,12,27–29,38–40] address symbolic reasoning for equational theorem proving pur-
poses, or apply these techniques to imperative program analysis and verification, even
allowing sometimes extra variables in the right-hand sides of equations, e.g., [41,63,64],
theses approaches are quite different from ours because of their predominant focus on
equational reasoning for proving, often inductively, universal formulas, and/or on ap-
plications to, typically sequential, programming languages.

Last but not least, recently, A. Arusoaie et al. [4] have proposed a language-inde-
pendent symbolic execution framework, within the K framework [44], for languages
endowed with a formal operational semantics based on term rewriting. There, the built-
in subtheories are the datatypes of a programming language and symbolic analysis is
performed on constrained terms (called patterns); unification is also implemented by
matching for a restricted class of rewrite rules and uses SMT solvers to check con-
straints. This work is also related to our approach. A more detailed comparison of how



both approaches are applied to analyzing conventional programs based on their rewrit-
ing semantics is an interesting task for future research.

This paper has presented rewrite theories modulo built-ins and has shown how they
can be used for symbolically modeling and analyzing concurrent open systems, where
nondeterministic values from the environment can be represented by built-in terms [55,
57]. In particular, the main contributions of this paper can be summarized as follows: (1)
it presents rewriting modulo SMT as a new symbolic technique combining the powers
of rewriting, SMT solving, and model checking; (2) this combined power can be applied
to model and analyze systems outside the scope of each individual technique; (3) in
particular, it is ideally suited to model and analyze the challenging case of open systems;
and (4) because of its reflective reduction to standard rewriting, current algorithms and
tools for model checking closed systems can be reused in this new symbolic setting
without requiring any changes to their implementation.

Under reasonable assumptions, including decidability of E+
0 , a rewrite theory mod-

ulo is executable by term rewriting modulo SMT. This feature makes it possible to use,
for symbolic analysis, state-of-the-art tools already available for Maude, such as its
space search commands, with no change whatsoever required to use such tools. In this
paper, it has been proved that the symbolic rewrite relation is sound and complete with
respect to its ground counterpart. Furthermore, the paper has presented an overview of
the prototype that offers support for rewriting modulo SMT in Maude and two case stud-
ies. These case studies regard the symbolic analysis of the CASH scheduling algorithm
and the PLEXIL synchronous language illustrating the use of these techniques.

Future work on a mature implementation on extending the idea of rewriting mod-
ulo SMT with other symbolic constraint solving techniques such as narrowing modulo
should be pursued. Furthermore, the generalization of rewrite theories modulo a built-in
subtheory with equations for the non built-ins should also be investigated. Finally, the
extension to other symbolic LTL model checking properties, together with state space
reduction techniques, should be considered, taking into account the rich experience al-
ready available on model checking of temporal logic properties in SMT-based model
checkers, e.g., [21, 33, 34, 54]. Further applications to Real-Time Maude, PLEXIL, and
other languages should also be pursued.
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