245 research outputs found

    Rewritable storage channels with hidden state

    Get PDF
    Many storage channels admit reading and rewriting of the content at a given cost. We consider rewritable channels with a hidden state which models the unknown characteristics of the memory cell. In addition to mitigating the effect of the write noise, rewrites can help the write controller obtain a better estimate of the hidden state. The paper has two contributions. The first is a lower bound on the capacity of a general rewritable channel with hidden state. The lower bound is obtained using a coding scheme that combines Gelfand-Pinsker coding with superposition coding. The rewritable AWGN channel is discussed as an example. The second contribution is a simple coding scheme for a rewritable channel where the write noise and hidden state are both uniformly distributed. It is shown that this scheme is asymptotically optimal as the number of rewrites gets large

    Iterative Programming of Noisy Memory Cells

    Get PDF
    In this paper, we study a model, which was first presented by Bunte and Lapidoth, that mimics the programming operation of memory cells. Under this paradigm we assume that cells are programmed sequentially and individually. The programming process is modeled as transmission over a channel, while it is possible to read the cell state in order to determine its programming success, and in case of programming failure, to reprogram the cell again. Reprogramming a cell can reduce the bit error rate, however this comes with the price of increasing the overall programming time and thereby affecting the writing speed of the memory. An iterative programming scheme is an algorithm which specifies the number of attempts to program each cell. Given the programming channel and constraints on the average and maximum number of attempts to program a cell, we study programming schemes which maximize the number of bits that can be reliably stored in the memory. We extend the results by Bunte and Lapidoth and study this problem when the programming channel is either the BSC, BEC, or Z channel. For the BSC and the BEC our analysis is also extended for the case where the error probabilities on consecutive writes are not necessarily the same. Lastly, we also study a related model which is motivated by the synthesis process of DNA molecules

    Iterative Programming of Noisy Memory Cells

    Get PDF
    In this paper, we study a model, which was first presented by Bunte and Lapidoth, that mimics the programming operation of memory cells. Under this paradigm we assume that cells are programmed sequentially and individually. The programming process is modeled as transmission over a channel, while it is possible to read the cell state in order to determine its programming success, and in case of programming failure, to reprogram the cell again. Reprogramming a cell can reduce the bit error rate, however this comes with the price of increasing the overall programming time and thereby affecting the writing speed of the memory. An iterative programming scheme is an algorithm which specifies the number of attempts to program each cell. Given the programming channel and constraints on the average and maximum number of attempts to program a cell, we study programming schemes which maximize the number of bits that can be reliably stored in the memory. We extend the results by Bunte and Lapidoth and study this problem when the programming channel is either the BSC, BEC, or ZZ channel. For the BSC and the BEC our analysis is also extended for the case where the error probabilities on consecutive writes are not necessarily the same. Lastly, we also study a related model which is motivated by the synthesis process of DNA molecules.Comment: 10 pages, 2 figure

    Entropy of a bit-shift channel

    Get PDF
    We consider a simple transformation (coding) of an iid source called a bit-shift channel. This simple transformation occurs naturally in magnetic or optical data storage. The resulting process is not Markov of any order. We discuss methods of computing the entropy of the transformed process, and study some of its properties.Comment: Published at http://dx.doi.org/10.1214/074921706000000293 in the IMS Lecture Notes--Monograph Series (http://www.imstat.org/publications/lecnotes.htm) by the Institute of Mathematical Statistics (http://www.imstat.org

    NSSDC Conference on Mass Storage Systems and Technologies for Space and Earth Science Applications, volume 1

    Get PDF
    Papers and viewgraphs from the conference are presented. This conference served as a broad forum for the discussion of a number of important issues in the field of mass storage systems. Topics include magnetic disk and tape technologies, optical disks and tape, software storage and file management systems, and experiences with the use of a large, distributed storage system. The technical presentations describe, among other things, integrated mass storage systems that are expected to be available commercially. Also included is a series of presentations from Federal Government organizations and research institutions covering their mass storage requirements for the 1990's

    Towards higher-dimensional structured light

    Get PDF
    Structured light refers to the arbitrarily tailoring of optical fields in all their degrees of freedom (DoFs), from spatial to temporal. Although orbital angular momentum (OAM) is perhaps the most topical example, and celebrating 30 years since its connection to the spatial structure of light, control over other DoFs is slowly gaining traction, promising access to higher-dimensional forms of structured light. Nevertheless, harnessing these new DoFs in quantum and classical states remains challenging, with the toolkit still in its infancy. In this perspective, we discuss methods, challenges, and opportunities for the creation, detection, and control of multiple DoFs for higher-dimensional structured light. We present a roadmap for future development trends, from fundamental research to applications, concentrating on the potential for larger-capacity, higher-security information processing and communication, and beyond

    Ultrafast manipulation of mirror domain walls in a charge density wave

    Get PDF
    Domain walls (DWs) are singularities in an ordered medium that often host exotic phenomena such as charge ordering, insulator-metal transition, or superconductivity. The ability to locally write and erase DWs is highly desirable, as it allows one to design material functionality by patterning DWs in specific configurations. We demonstrate such capability at room temperature in a charge density wave (CDW), a macroscopic condensate of electrons and phonons, in ultrathin 1T-TaS2_2. A single femtosecond light pulse is shown to locally inject or remove mirror DWs in the CDW condensate, with probabilities tunable by pulse energy and temperature. Using time-resolved electron diffraction, we are able to simultaneously track anti-synchronized CDW amplitude oscillations from both the lattice and the condensate, where photo-injected DWs lead to a red-shifted frequency. Our demonstration of reversible DW manipulation may pave new ways for engineering correlated material systems with light

    Iterative Programming of Noisy Memory Cells

    Get PDF
    In this paper, we study a model, which was first presented by Bunte and Lapidoth, that mimics the programming operation of memory cells. Under this paradigm we assume that cells are programmed sequentially and individually. The programming process is modeled as transmission over a channel, while it is possible to read the cell state in order to determine its programming success, and in case of programming failure, to reprogram the cell again. Reprogramming a cell can reduce the bit error rate, however this comes with the price of increasing the overall programming time and thereby affecting the writing speed of the memory. An iterative programming scheme is an algorithm which specifies the number of attempts to program each cell. Given the programming channel and constraints on the average and maximum number of attempts to program a cell, we study programming schemes which maximize the number of bits that can be reliably stored in the memory. We extend the results by Bunte and Lapidoth and study this problem when the programming channel is either the BSC, BEC, or Z channel. For the BSC and the BEC our analysis is also extended for the case where the error probabilities on consecutive writes are not necessarily the same. Lastly, we also study a related model which is motivated by the synthesis process of DNA molecules

    A Tutorial on Coding Methods for DNA-based Molecular Communications and Storage

    Full text link
    Exponential increase of data has motivated advances of data storage technologies. As a promising storage media, DeoxyriboNucleic Acid (DNA) storage provides a much higher data density and superior durability, compared with state-of-the-art media. In this paper, we provide a tutorial on DNA storage and its role in molecular communications. Firstly, we introduce fundamentals of DNA-based molecular communications and storage (MCS), discussing the basic process of performing DNA storage in MCS. Furthermore, we provide tutorials on how conventional coding schemes that are used in wireless communications can be applied to DNA-based MCS, along with numerical results. Finally, promising research directions on DNA-based data storage in molecular communications are introduced and discussed in this paper
    • …
    corecore