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Abstract—Many storage channels admit reading and rewriting
of the content at a given cost. We consider rewritable channels
with a hidden state which models the unknown characteristics
of the memory cell. In addition to mitigating the effect of the
write noise, rewrites can help the write controller obtain a better
estimate of the hidden state. The paper has two contributions.
The first is a lower bound on the capacity of a general rewritable
channel with hidden state. The lower bound is obtained using
a coding scheme that combines Gelfand-Pinsker coding with
superposition coding. The rewritable AWGN channel is discussed
as an example. The second contribution is a simple coding scheme
for a rewritable channel where the write noise and hidden state
are both uniformly distributed. It is shown that this scheme is
asymptotically optimal as the number of rewrites gets large.

I. INTRODUCTION

In nonvolatile memory technologies, the write mechanism
is commonly impaired by write noise due to which the value
written on a cell is different from the one intended. An
important feature of many of these technologies such as Flash
[2], Phase Change Memory [3] and Resistive RAM [4], [5] is
that they allow rewriting, i.e. the value written on a memory
cell can be read and rewritten if necessary. Rewrites can
increase the storage capacity but are costly since they are
time consuming and degrade the memory. Hence there is a
fundamental trade-off between the number of writes and the
amount of information that can be stored in a memory cell.

Given a memory array of n cells, the goal is to maximize
the number of distinct messages that can be reliably encoded
in the array, subject to a constraint on the average or maximum
number of writes per cell. The cells are assumed to be
statistically independent. Rewritable channels were introduced
in [6] and subsequently studied in [7]–[10] under an average
cost constraint. Maximum cost constrained rewritable channels
were considered in [11]–[14].

In practice, a memory cell is an amalgam of physical
components which reacts to inputs in some way that designers
hope to model as well as possible. However, there are always
some unknown characteristics of the cell due, for example,
to fabrication variability. These characteristics, which may be
too costly to learn, introduce an extra degree of uncertainty
into the value written on the cell. In this paper, we model
this effect with the channel PY |X,S where X is the input
stimulus, S is a hidden (unknown) state parameter of the cell
and Y is the value stored in the cell. S is assumed to be have
known distribution PS . The alphabets of X,Y, S are denoted
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by X ,Y,S, respectively. We consider two canonical examples
of rewritable channels in this paper:

1) Uniform noise channel with state: The channel model is

Y = X +W + S. (1)

X ∈ [0, 1] is the input stimulus, the write noise W is
uniformly distributed in [−a/2, a/2], and the state S is
uniformly distributed in [0, B]. a,B are known positive
constants. The basic version of this channel (S = 0)
was introduced in [6] as a simple model that captures
some essential features of non-volatile memories such
as analog inputs and bounded write noise.

2) AWGN channel with state: The channel is again de-
scribed by the additive model (1). The write noise and
the state are Gaussian random variables: W is distributed
as N (0, N) and S is distributed as N (0, σ2

s).
1 The input

is constrained in terms of the either the average or peak
power per write.

A key feature of the state S is that it stays fixed across write
attempts in each cell. Conditioned on S = s, the value stored
in the cell after each attempt depends only on the most recent
input stimulus – it is determined according to PY |XS(.|X,S =
s), where X is the current input. In the additive model (1),
this means that each write attempt on a cell is affected with
an independent realization of the random variable W , while
S stays fixed across write attempts.

In this paper, we consider rewritable channels with a con-
straint on the the average number of writes per cell. Given a
constraint κ on the average write cost, the goal is to determine
the capacity C(κ) and design coding schemes to achieve rates
close to C(κ).

We consider the following class of coding schemes. To write
on cell i, the write controller applies stimuli X(1)

i , X
(2)
i , . . .

until the output falls within a target region Ti, where Ti is
a subset of the output space. The kth write stimulus X(k)

i

can depend on the outputs of the previous stimuli, denoted
Y

(1)
i , . . . , Y

(k−1)
i . Formally, a rewrite code of rate R over an

array of n cells is defined by:
• An encoder mapping which maps a message in
{1, . . . , 2nR} to a sequence ((X1, T1), . . . , (Xn, Tn)),
where Ti is the target region for cell i, and Xi =

(X
(1)
i , X

(2)
i , . . .) is the input strategy for cell i.

• A decoder which maps the output sequence (Y1, . . . Yn)
to {1, . . . , 2nR}.

1N (µ, σ2) is the Gaussian distribution with mean µ and variance σ2.
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For cell i, the number of writes needed for the output to
fall within region Ti is a random variable, denoted τi(Xi, Ti),
where Xi = (X

(1)
i , X

(2)
i , . . .) is the input strategy. The

average write-cost of the code is 1
n

∑n
i=1 Eτi(Xi, Ti). Due

to the statistical independence of the cells, the capacity for an
average cost constraint κ is [6], [9]

C(κ) = sup
X,T :Eτ(X,T )≤κ

I(XT ;Y ). (2)

The capacity formula in (2) is not easy to compute in
general. This is because the optimization is over adaptive
strategies where each input stimulus can depend on the
outcomes of the previous stimuli. Adaptive strategies are
particularly useful in channels with hidden state because we
get a better estimate of the state with each write, which can
be used to generate the next stimulus.2 For intuition, consider
two extreme cases:
• When κ = 1, we are allowed only one write attempt and

the hidden state is treated as an additional noise variable.
• When the average cost constraint κ → ∞, we can

spend a number of write attempts to get a very good
estimate of the state, and use the remaining writes to store
information by designing the input stimulus to nullify the
effect of the state. Thus we expect the storage rate to
approach the no-state capacity when κ is very large.

For 1 < κ < ∞, the challenge is to simultaneously learn the
state while attempting to store information at a high rate.

The main contributions of this paper are as follows.
1) In Section II, we derive a capacity lower bound for

continuous-output rewritable channels with state. The
scheme used to obtain this bound involves state estima-
tion phase followed by a coding phase. The writing strat-
egy in the coding phase combines two techniques from
multi-user information theory: Gelfand-Pinsker coding
[15], [16] and superposition coding [17]. The AWGN
rewritable channel is discussed as an example.

2) In Section III, we focus on the uniform noise channel
and present a coding scheme that is computationally
simple and amenable to practical implementation. The
scheme implicitly combines state estimation and coding,
and is shown to be asymptotically optimal as the number
of rewrites gets large.

The rewritable channel considered in this paper is a stylized
model relevant to technologies like Phase Change Memory
and Resistive RAM which have analog outputs. Both these
memory technologies are known to be affected by variability
across devices [3], [18], which to the first order can be
modeled as a hidden state. Though relaxing assumptions such
as noiseless reads would make the model more realistic, we
believe that the current model gives useful insights regarding
how rewrites can be harnessed to improve the storage density
of these memories.

2For memoryless rewritable channels without state, we can restrict the input
strategies to be non-adaptive, i.e. repeatedly apply the same stimulus to a cell
until the target region is hit. See [9], [10].

Notation: We use upper-case letters to denote random vari-
ables and bold-face notation for random vectors. Entropy and
mutual information are measured in bits, and logarithms are
with base 2 unless otherwise mentioned.

II. LOWER BOUND ON THE REWRITE CAPACITY

For an average write cost κ, we design a scheme consisting
of two phases: an estimation phase of l (< κ) writes to learn
the state S, and a coding phase requiring an average of κ− l
writes. For the coding phase, we combine two techniques: 1)
Gelfand-Pinsker coding [15] which achieves the optimal rate
given the state estimate if we are allowed only a single write
for the coding phase (i.e., κ − l = 1), and 2) Superposition
coding [17] to store an additional log(κ − l) bits/cell when
κ > l + 1.

Before presenting the general result, we describe the coding
scheme for the AWGN rewritable channel to highlight the
main ideas.

A. The AWGN channel with hidden state

The channel is defined by (1) with the write noise W ∼
N (0, N) and the state S ∼ N (0, σ2

s). We assume that there
is an average power-constraint P , i.e., in each write attempt
the average power of the input stimulus across the n cells is
at most P .

State Estimation: The first step is to construct an estimate
of the state of each cell using l writes. Due to the symmetry
of the channel model, this can be done by applying any input,
say c, for l writes and recording the outputs Y (1), . . . , Y (l)

which are generated according to

Y (1) = c+W (1) + S

...

Y (l) = c+W (l) + S

(3)

where W (1), . . . ,W (l) are independent N (0, N) random vari-
ables. The minimum-mean squared error (MMSE) estimate of
S given the observations Y (1), . . . , Y (l) is

Ŝ(l) = E[S | Y (1), . . . , Y (l)] =
σ2
s

lσ2
s +N

l∑
j=1

(Y (i) − c). (4)

Encoding: The write channel for the (l+ 1)th write can be
expressed as

Y (l+1) = X(l+1) + Ŝ(l) + (S − Ŝ(l)) +W (l+1). (5)

The estimate Ŝ(l) is known to the encoder prior to the (l +
1)th write. Further, (S − Ŝ(l)) is independent of Ŝ(l) due to
the orthogonality principle [19] and the joint Gaussianity of
(S, Ŝ(l)).

Let us first consider the case where we use only a single
write after the estimation period. For write l+1, (5) describes
a channel with state Ŝ(l) known to the encoder and effective
channel noise S−Ŝ(l)+W (l+1) which is independent of Ŝ(l).



The effective channel noise is a Gaussian random variable
distributed as N (0, Neff,l) where

Neff,l = E[(S − Ŝ(l) +W (l+1))2]

= E[(S − Ŝ(l))2] + E[(W (l+1))2] =
σ2
sN

lσ2
s +N

+N.

(6)

The optimal coding scheme for this channel is the ‘writing
on dirty-paper’ scheme of Costa [16]. The key idea is to
incorporate part of the known state Ŝ(l) into the codeword.
This is done by building a codebook over an auxiliary random
variable U ∼ N (0, P + α2σ2

s,l) where

α =
P

P +Neff,l
, (7)

σ2
s,l = E[Ŝ(l)2] =

lσ4
s

lσ2
s +N

. (8)

Let the storage rate be R bits/cell. We build a U -codebook
with 2nR1 codewords whose elements are generated i.i.d
according to N (0, P + α2σ2

s,l). The value of R1 > R will be
specified below. The codebook is divided into 2nR bins, with
each bin containing 2n(R1−R) codewords. Each bin represents
a message in the set {1, . . . , 2nR}. To transmit message m,
the encoder attempts to find a codeword U within bin m such
that (U − αŜ(l)) is nearly orthogonal to Ŝ(l). Formally, the
encoder finds a codeword U that is jointly typical3 [20] with
Ŝ(l) according to the distribution described by

U = X + αŜ(l) (9)

where X ∼ N (0, P ) and Ŝ(l) ∼ N (0, σ2
s,l) are indepen-

dent Gaussians. From rate-distortion theory, this step will be
successful if the number of sequences in each bin 2n(R1−R)

is larger than 2nI(U ;Ŝ(l)), where the mutual information
computed using the joint distribution described by (9). The
codeword written on the n cells is

X(l+1) = U− αŜ(l). (10)

Note that X(l+1) has average power nearly P , due to (9). The
sequence stored on the cells is

Y(l+1) = X(l+1) + S+W(l+1). (11)

The decoder’s task is to decode the codeword U from
Y(l+1). The corresponding bin index then gives the message.
If the encoding operation is successful, (U,Y(l+1)) are jointly
typical according to

U = X + αŜ(l),

Y = X + Ŝ(l) + (S − Ŝ(l) +W ),
(12)

where X ∼ N (0, P ), Ŝ(l) ∼ N (0, σ2
s,l), and (S − Ŝ(l) +

W ) ∼ N (0, Neff,l) are mutually independent random vari-
ables. If we use a maximum-likelihood or joint typicality

3Roughly speaking, sequences (U,S) are jointly typical according to
distribution P if their empirical joint distribution is close to i.i.d. P .

1 2 κ− l 1 2

δ

κ− l 1 2

Fig. 1: Target regions for superposition coding. The shaded regions
together form the target region for one message.

decoder [20], the codeword U can be successfully decoded
if R1 < I(U ;Y ).

Combining this with the earlier bound R1−R > I(U ; Ŝ(l)),
we conclude that rates

R < I(U ;Y )− I(U ; Ŝ(l)) (13)

are achievable. Computing this with the joint distribution
specified in (12), we obtain that any rate

R <
1

2
log

(
1 +

P

Neff,l

)
(14)

is achievable.
If we restrict ourselves to a single write after the estimation

period, (14) gives the optimal rate. This is because even when
the encoder and decoder both know Ŝ(l) a priori, the maximum
rate is given by (14). (The decoder can simply cancel off
any effect of Ŝ(l) from the stored value.) When Ŝ(l) is not
available at the decoder, the Costa coding scheme nullifies its
effect by incorporating part of it into the codeword U.

Superposition: When κ > l+1, we have available more than
one write after the estimation period. We use superposition
coding to store additional bits using the remaining writes. For
the sake of intuition, temporarily assume that κ is an integer.

The idea is to partition the output space (R for the AWGN
channel) into (κ− l) different regions such that the output is
equally likely to fall in each of these regions regardless of
the input. This is done in the following way. We divide the
real line into intervals of length δ, and assign to the intervals
labels 1, . . . , (κ−l) in succession, as shown in Figure 1. Target
region 1 is the union of the intervals marked 1, target region
2 is the union of the intervals marked 2, and so on. Formally,
we define the target regions Tj for j = 1, . . . , κ− l as

Ti = ∪i∈Z
[
((κ− l)i+ j)δ − δ, ((κ− l)i+ j)δ

)
. (15)

We let δ → 0 for reasons explained below.
For each cell i ∈ {1, . . . , n}, the additional information

stored is represented by a message mi drawn uniformly from
the set ∈ {1, . . . , κ− l}. At the end of estimation period, the
controller uses the state sequence estimate Ŝ(l) to determine
the codeword U = (U1, . . . , Un) of the Costa scheme. It then
repeatedly applies stimulus Xi to cell i until the output falls
in the target region mi. Recall that

Xi = Ui − αŜi(l).
In each write attempt, the noise realization is an independent

realization of a N (0, N) random variable. However, the state
estimation error S − Ŝ(l) remains constant across attempts
and is unknown to the decoder. Defining each target region as
a collection of disjoint infinitesimal intervals ensures that the



output in each write attempt is equally likely to lie in each of
the (κ− l) target regions, regardless of the value of S− Ŝ(l).
Thus the number of writes required to obtain an output in the
desired region mi is a geometric random variable with mean
(κ− l).

The total number of writes (including the estimation period)
for cell i is denoted τi and the final value stored in cell i is
Y

(τi)
i . The discussion above shows that

E[τi] = l + κ− l = κ. (16)

Decoding: The decoder observes the stored sequence

Y(τ) = (Y
(τ1)
1 , . . . , Y (τn)

n )

and attempts to decode the codeword U. The key observation
is that (U,Y(l+1)) and (U,Y(τ)) have the same joint distribu-
tion. This is because for each cell i, the write stimulus and the
channel state remain the same for writes (l+1) through τi, and
the noise realizations W (l+1), . . . ,W (τi) are i.i.d. N (0, N).
Thus (U,Y(τ)) is jointly typical according to (12), and the
codeword U can be reliably decoded if R satisfies (14). The
target region containing the output of cell i directly gives the
message mi ∈ {1, . . . , κ−l} stored in the superposition phase.

When κ is not an integer, we can vary the number of target
regions across the cells in order to achieve a write-cost of κ.
For example, if κ = 1 + λ, for λ ∈ (1, 2), we can code a
fraction λ of the n cells at average cost 2 and the remaining
n(1 − λ) cells at average cost 1 to obtain an overall cost of
κ = 1+λ. Thus the straight line joining the value of the lower
bound at κ = 1 and κ = 2 is a lower bound for κ ∈ (1, 2).
In general, the convex hull of the rates achieved at the integer
points can be achieved through ‘cost-sharing’ between cells.

The performance achieved of two-step coding strategy de-
scribed above is summarized in the following proposition.

Proposition 1: Consider the channel described by (1) with
state S ∼ N (0, σ2

s), noise W ∼ N (0, N) and an average
power constraint P on the input. With average cost κ ≥ 1, the
rewrite capacity satisfies

C(κ) ≥

conv
(

max
l∈{0,1,...,bκc−1}

{
1

2
log

(
1 +

P

Neff,l

)
+ logbκ− lc

})
(17)

where conv denotes the convex hull and

Neff,l = N

(
1 +

σ2
s

lσ2
s +N

)
.

Figure 2 shows the capacity lower bound for P
N = 100 and

1 ≤ κ ≤ 10. Curves are plotted for σ2
s = N and σ2

s = 10N .
For the second case, the maximum in (17) is attained with an
estimation period of l = 0 for κ = 1, l = 1 for 2 ≤ κ ≤ 9,
and l = 2 for κ = 10.
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Fig. 2: Lower bound of Proposition 1 for P
N

= 100. The top curve
is for σ2

s = N and the bottom one for σ2
s = 10N .

B. Lower bound for General Channels

We consider channels whose output support is continuous
valued, i.e., for ∀(x, s) ∈ X × S, PY |XS(.|x, s) is absolutely
continuous with respect to the Lebesgue measure. This as-
sumption is necessary because the definition of target regions
for superposition coding in Section II-A implicitly assumes
continuous valued outputs. The superposition idea can be
extended to many discrete channels as well, but we do not
pursue this here in order to keep the exposition simple.

For a channel with average write cost κ, the two-step
strategy involves: a) Designing a suitable estimator to estimate
the state sequence using l writes, and b) storing information
in the remaining (κ− l) writes using Gelfand-Pinsker coding
and superposition. The Costa coding scheme for the AWGN
channel is a special case of the Gelfand-Pinsker scheme for
general memoryless channels with state, with the state known
a priori at the encoder.

Theorem 1: Consider a channel PY |XS(.|x, s) that is abso-
lutely continuous with respect to the Lebesgue measure for all
(x, s) ∈ X ×S . With average cost κ ≥ 1, the capacity satisfies

C(κ) ≥

conv
(

max
l∈{0,...,bκc−1}

max
P

{
I(U ;Y )− I(U ; Ŝ(l)) + logbκ− lc

})
(18)

where P is the set of joint distributions of (S, Ŝ(l), U,X, Y )
of the form

PS · PŜ(l)|S · PU |Ŝ(l) · 1X=f(U,Ŝ(l)) · PY |XS .

Proof: See Appendix.
Remarks:
1) In the set of joint distributions P the state distribution PS

and the channel law PY |XS are fixed. The maximization
over P is therefore over the choice of estimator Ŝ(l),
auxiliary distribution PU |Ŝ(l), and function f to generate
the channel input X from (U, Ŝ(l)).



2) The MMSE estimator is optimal for the AWGN average-
power constrained channel, but in general the optimal
estimator depends on the channel law and the input
constraints.

We conclude this section with a brief discussion of the
shortcomings of the two-step coding scheme discussed in
this section. First, dedicating l writes to estimating the state
and then coding is not optimal in general. A scheme that
simultaneously performs estimation and coding in each write
attempt is likely to yield higher rates, but such a scheme may
also be harder to analyze.

The information is stored in the cell array in coded in
two ways: through Gelfand-Pinsker coding and superposition
coding. Each of these poses a different challenge for practical
implementation. In the Costa/Gelfand-Pinsker scheme we used
joint typicality or maximum-likelihood decoding, both of
which are computationally infeasible for a large array of n
cells. For the AWGN case, there has been has been progress
towards feasible decoders using structured codebooks such as
those based on lattices [21], [22].

For superposition coding, we need the reads to be very
accurate as the width δ of the intervals is made small (cf.
Figure 1). This is important during encoding (so that the
controller knows when to stop writing) as well as decoding
(for the decoder to know which target region the output lies
in). This problem can be handled by using an outer error-
correcting code to correct errors that arise due to imperfect
reads.

In the following section, we design a coding scheme that
addresses all the above issues for the uniform-noise channel.

III. UNIFORM NOISE CHANNEL WITH HIDDEN STATE

The channel is described by (1) with the write noise W
is uniformly distributed in [−a/2, a/2], and the state S is
uniformly distributed in [0, B]. a,B are assumed to be known
positive constants. For ease of analysis, we will assume that
B < a.

We present two code constructions, each of which gives a
lower bound on the rewrite capacity. The first is sub-optimal
but gives insight into features of good coding strategies. The
second construction yields a better lower bound which is
asymptotically optimal, i.e., it is arbitrarily close to the no-
state capacity for sufficiently large cost constraint. The second
scheme implicitly performs simultaneous state estimation and
coding; further, it is computationally simple and robust to
small inaccuracies in the reading process.

A. Code Construction 1

For the uniform noise rewrite channel without state given
by Y = X+W , the basic coding idea is that with an average
of κ rewrites, we can shrink the effective width of the noise
interval to a/κ. The average-cost capacity was obtained in [9].

−a/2 a/2 +B 3a/2 +B . . . 1 + a/2 +B

−a
2

a
2 a

2 + b
a
2 +B

1 2 3 4 5 1 2 3

0

Fig. 3: Each interval of width a + B is divided into κ = 5 target
regions. The target regions in the interval (−a/2, a/2+B) are shown.
To write on a region in this interval, the stimulus 0 is applied. The
dashed lines indicate the part of the interval accessible with S = b.

Fact 1: [9] For κ ≥ κ0 , d 1+aa e/
(
1+a
a

)
, the rewrite

capacity with average cost constraint κ is

C(κ) = log

(
1 + a

a
κ

)
.

When 1+a
a κ is an integer, the capacity is achieved by simply

dividing the space [−a/2, 1 + a/2] into equal-sized intervals
of length a/κ and choosing the target region T to be one
of these intervals with equal probability. The input X is any
point which maximizes the probability of the output falling
in the region T . When 1+a

a κ is not an integer, the capacity
is achieved by a careful generalization of the above idea,
described in [9].

When there is an unknown state offset S ∈ [0, B], the idea
is to define each target region such that there is exactly one
subset of width a/κ that can be accessed with a fixed input
and an average of κ writes, irrespective of the offset.

Proposition 2: For the uniform noise rewrite channel with
hidden state and average cost κ ≥ 2,

C(κ) ≥ log

(
κ

⌊
1 + a+B

a+B

⌋)
. (19)

Proof: The target regions: Refer Figure 3. The output
space [−a/2, 1 + a/2 + B] is first divided into intervals of
length (a+B) each. There are N = b 1+a+Ba+B c such intervals,
denoted Zi, 0 ≤ i ≤ N − 1. If 1+a+B

a+B is not an integer, the
remaining output space (N(a+B), 1 + a

2 +B] is discarded.
For clarity, consider the case where κ is an integer. Divide

each interval Zi into κ target regions. The target regions for the
first interval are defined as shown in Figure 3. Target region 1
is the interval [−a2 ,−a2+ a

κ ]∪[a2 , a2+ a
κ ]; region 2 is the interval

[−a2 + a
κ ,−a2 + 2a

κ ] ∪ [a2 + a
κ ,

a
2 + 2a

κ ], and so on. Similarly,
κ target regions are defined for each of the N intervals.

Encoding: To reach target region t in interval Zi for t ∈
{1, . . . , κ}, i ∈ {0, . . . , N−1}, apply input X = (a+B)i until
the output falls within region t in interval i. With this input,
the accessible part of the target region has width exactly a/κ
for any value of S ∈ [0, B]. This is illustrated in the bottom
part of Figure 3. Regardless of the offset, the probability of
the output falling within the target region on any write attempt
is a/κ

a . The average number of rewrites is therefore κ.



−a
2

−a
2
+B 1 + a

2
+B1 + a

2

1 2 1 2

Interior

2m 2m

x x+Dx+D − a/2 x+ a/2

x+D − a/2 +B

x x+D

Fig. 4: Construction 2: The output space is divided into interior and exterior target regions. The bottom figure shows the an interior target
region [x, x+D]. The state shifts the input x+D− a/2 to the right by an amount at most B. For all b ∈ [0, B], the probability of hitting
the target region in each write attempt is D/a as long as D < a−B.

The total number of target regions is Nκ and by assigning
them equal probability, the rate is

I(XT ;Y ) = I(T ;Y ) = H(T ) = log(Nκ) (20)

where the first equality holds because the input X is a function
of the target region T , and the second equality is due to T
being uniquely determined by Y .

The general case where κ is not an integer can be handled
by an extension of the above scheme using the techniques in
[9].

Remark: When 1+a+B
a+B is an integer, (19) can be written as

C(κ) ≥ log

(
κ
1 + a

a

)
− log

(
1 +B/a

1 +B/(1 + a)

)
(21)

The first term above is the capacity when S = 0, or when S
is precisely known at the encoder. The second term is the loss
incurred by the coding scheme due the state being unknown.

In the above construction, we designed the target regions so
that each one can be accessed with equal probability regardless
of the value of S. We did not use the rewrites to do any
state estimation. The sub-optimality of this strategy is seen by
observing that even when the number of rewrites κ is very
large, the lower bound of Proposition 2 is strictly less than
the capacity with S = 0, given by the first term in (21). The
next construction remedies this deficiency.

B. Code Construction 2

As shown in Figure 4, divide the output space [−a/2, 1 +
a/2 + B] into two regions: the interval [−a/2 + B, 1 + a/2]
called the ‘interior’, and the remaining space [−a/2,−a/2 +
B] ∪ [1 + a/2, 1 + a/2 +B] called the ‘exterior’.

Interior target regions: Divide the interior into intervals
(target regions) of width D. The key observation is that if
D < a − B, regardless of the value of S, each interior
target region is fully accessible with an average of a/D write
attempts with a fixed input. As illustrated in the bottom part of
Figure 4, to access the interior target region [x, x+D], apply
the stimulus (x+D− a/2)+. To fully access the region with
offset b, we need

(x+D − a/2)+ + b− a/2 < x

which holds for all b ∈ [0, B] as long as D < a−B.
Exterior target regions: As shown in Figure 4, define 2m ex-

terior target regions for an integer m ≥ 1. For i = 1, . . . , 2m,
the ith exterior target region, labeled Ei, is[

−a
2
+ (i− 1)

B

2m
, −a

2
+ i

B

2m

]
⋃[

1 +
a

2
+ (i− 1)

B

2m
, 1 +

a

2
+ i

B

2m

]
.

With this construction, we present a coding scheme that
achieves the following lower bound on the rewrite capacity.

Theorem 2: For κ ≥ 2

C(κ) ≥ max
p,D,m

h(p) + p log

⌊
1 + a−B

D

⌋
+ (1− p) log 2m

where the maximum is over p ∈ [0, 1], D ∈ (0, a − B) and
integers m ≥ 1 that satisfy

(1− p) a
B

[
2m+ 1 +

1

m

m∑
i=1

(
ln

i− δi
(1− δi)2

+
δi

1− δi
ln δi

)]
+ p

a

D
≤ κ

(22)

where the optimal δi ∈ [0, 1) for i = 1, 2, . . . ,m is determined
by the following equation:

2(1− δi)2 + 3(i− 1)(1− δi) + (i− δi) ln δi = 0. (23)

The optimal δi for a few values of i are listed in Table I.
Remark: The δi in the above theorem can chosen to be

arbitrary values in [0,1). Picking δi that satisfy (23) minimizes
the number of rewrites, given by the left side of (22). For
example, (22) can be replaced by a simpler condition obtained
by setting δi = 0 for all i:

p
a

D
+ (1− p) a

B

(
2m+ 1 +

lnm!

m

)
≤ κ. (24)

The proof of the theorem is given in the next section. Figure
5 shows the lower bound of Theorem 2 with a = 1/3 and
B = a/2 for various values of κ.



We now show that the above lower bound converges to the
no-state capacity as the rewrite constraint κ→∞.

Corollary 1: The rate R(κ) achieved by Theorem 2 satisfies∣∣∣∣log(1 + a

a
κ

)
−R(κ)

∣∣∣∣→ 0 as κ→∞

Proof: Choose D = a/κ and m = B
2D = κ B2a . Note that

for all B < a, D = a/κ < (a − B) for sufficiently large
κ. With this choice and setting δi = 0 for all i, the average
number of rewrites given by the left-side of (24) becomes

pκ+ (1− p)κ
2

(
2 +

1

m
+

lnm!

m2

)
= κ(1 + εκ),

where εκ = O( log κκ ) goes to 0 as κ → ∞. Then with p =
1+a−B
1+a , we see that

R(κ(1 + εκ)) = log

(
1 + a

a
κ

)
.

Therefore R(κ) = log
(

1+a
a

κ
1+εκ

)
.

Remarks :
1) The coding scheme for the uniform noise channel (de-

scribed in Section IV) stores information cell-by-cell,
and therefore has low computational complexity. In con-
trast, each codeword in the Gelfand-Pinsker scheme of
Section II is defined over a large array of n cells, which
makes the encoding and decoding computationally hard.

2) All results in this section generalize to the case where
the hidden state uniformly distributed over a different
support set of width B that is different from [0, B].

3) The coding scheme of construction 1 can directly be
used when B > a. Construction 2 needs modification –
the interior target region will not completely lie within
the noise support when B > a. This can be addressed
by shifting the input stimulus by an appropriate amount
if it is determined that the offset b > a. This is similar in
principle to the switching strategy used for the exterior
regions.

IV. PROOF OF THEOREM 2

To highlight the main ideas, we start with a simplified
coding scheme for the case of m = 1, i.e., two exterior target
regions.

A. Two Exterior Target Regions

Coding Scheme: Fix p ∈ [0, 1]. For each cell, an interior
target region is picked with probability p and an exterior region
is picked with probability (1 − p). All interior target regions
are equally likely, as are the exterior regions. Formally, each
interior region has probability p D

1+a−B and the two exterior
regions each have probability (1 − p)/2. Refer Figure 6. To
write on interior region [x, x+D], repeatedly apply stimulus
(x+D − a/2)+ until the output falls within the region.

To write on exterior region E1: Apply stimulus 1 until either
the output falls in (1+ a/2, 1+ a/2+B/2), or it is less than
1 − a/2 + B/2. If the former occurs, stop. Otherwise, apply

TABLE I: Optimal value of δi for 1 ≤ i ≤ m

i 1 2 3 4 5 6
δi 0.2032 0.1038 0.0858 0.0782 0.0740 0.0713

stimulus 0 until the output falls in (−a/2,−a/2+B/2). The
intuition is that the right bin of E1 is fully accessible with
stimulus 1 if the offset lies in the interval [B/2, 1]. We switch
to the left bin of E1 if we detect that the offset lies outside
this interval.

To write on exterior region E2: Apply stimulus 0 until either
the output falls in (−a/2 + B/2,−a/2 + B) or it is greater
than a/2+B/2. If the former occurs, stop. Otherwise, switch
to applying stimulus 1 until the output falls in (1 + a/2 +
B/2, 1 + a/2 + B). If the offset lies in the interval [0, B/2],
the left bin of E2 is fully accessible with stimulus 0. We switch
to the right bin of E2 if we detect that the offset lies outside
this interval.

Analysis: Since we have two exterior target regions with
probability (1−p)/2, and b 1+a−BD c interior regions each with
probability p/b 1+a−BD c, the rate of information stored in each
cell is calculated to be

H(T ) = h(p) + p logb1 + a−B
D

c+ (1− p) log 2. (25)

Next we compute the average number of writes and set it
equal to κ.

κ = p E[# writes | interior] + (1− p)E[# writes | exterior]

= p
a

D
+ (1− p)E[#writes | exterior].

(26)

By symmetry,

E[# writes | exterior] = E[# writes | ext. region E1]

=

∫ B

0

E[# writes | E1, S = b]
1

B
db

=

∫ B/2

0

E[# writes | E1, S = b]
1

B
db+

∫ B

B
2

a

B/2

1

B
db

(27)

since the right bin of E1 is fully accessible with stimulus 1
when S ∈ [B/2, B]. We now show that for all b ∈ [0, B/2),

E[# writes | E1, S = b] = 4a/B. (28)

Recall that for E1, we first apply stimulus 1 until either the
output falls in either (1+a/2, 1+a/2+B/2) or it is less than
1 − a/2 + B/2. For b ∈ [0, B/2), the probability of the first
event occurring in any write attempt is b/a, and that of the
second event occurring is (B/2− b)/a. Hence the probability
of the first step being completed in each write attempt, is

b

a
+
B/2− b

a
=
B

2a
. (29)

Therefore the average number of writes for the first step of
E1 is 2a/B for all b ∈ [0, B/2). The probability of the first
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Fig. 5: Achievable rate of Theorem 2 with noise width a = 1/3 and
S uniformly distributed in [0, B] with B = a/2.

step ending by obtaining an output less than 1 − a/2 + B/2
is

(B/2− b)/a
b/a+ (B/2− b)/a =

B/2− b
B/2

.

When this event occurs, the average number of additional
writes required (by applying stimulus 0) is a/(B/2−b). Thus
for b ∈ [0, B/2), the average number of writes for writing on
E1 is

E[# writes | E1, S = b] =
2a

B
+
B/2− b
B/2

· a

B/2− b =
4a

B
.

(30)
Substituting in (27), we obtain

E[# writes | exterior] =
4a

B

1

2
+

2a

B

1

2
=

3a

B
. (31)

Using this in (26), we get

κ = p
a

D
+ (1− p)3a

B
(32)

which corresponds to (22) with m = 1 and δ1 = 0. We now
modify the scheme slightly to reduce the average number of
rewrites to the level stated in Theorem 2:

κ = p
a

D
+ (1− p)

(
3a

B
+ ln

1

1− δ1
+

δ1
1− δ1

ln δ1

)
(33)

with δ1 given by Table I.
Optimizing the Switching Strategy: To write on exterior

region 1 in Figure 6, the above coding scheme switches from
stimulus 1 to stimulus 0 when an output less than 1− a

2 + B
2

is obtained. Such an output indicates that the value of the
hidden state S is less than B

2 which implies that the right bin
of E1 – the region [1+ a

2 , 1+
a
2 +

B
2 ] – is not fully accessible

with stimulus 1; so the schemes switches to targeting the left
bin of E1 with stimulus 0. This switching strategy is not
optimal. Consider a more general switching strategy of the
following form: switch from stimulus 1 to 0 once you obtain
an output less than 1 − a

2 + B
2 (1 − δ1) for some δ1 ∈ [0, 1).

This corresponds to switching once you detect that S is less
than B(1−δ1)

2 . We now determine the optimum value of δ1

−a
2

−a
2
+B 1 + a

2
+B−a

2
+ B

2 1 + a
2

E1 E2 E1 E2

Interior

x x+D

Fig. 6: Construction 2 with two exterior target regions.

that minimizes the average number of rewrites. By symmetry,
the switching strategy for exterior regions E2 is to switch
from stimulus 0 to 1 when you get an output greater than
a
2 + B

2 (1 + δ1).
The average number of rewrites for region E1 is

E[# writes | region E1] =

∫ B

0

E[# writes | E1, S = b]
1

B
db

(34)

where E[# writes | E1, S = b] with the new switching
strategy can be calculated to be

2ma/B for B
2 ≤ b ≤ B,

a/b for B
2 (1− δ1) ≤ b < B

2 ,

2a
B(1−δ1)

(
1 + (1−δ1)B−2b

B−2b

)
for 0 ≤ b < B

2 (1− δ1).
(35)

Substituting this in (34) and calculating the integral, we obtain

E[# writes | E1] =
a

B

(
3 + ln

1

1− δ1
+

δ1
1− δ1

ln δ1

)
.

(36)
Using (36) in (26) completes the proof for m = 1.

B. 2m Exterior Target Regions

Coding Scheme: Refer Figure 4. Writing on the interior
regions is the same as before: For interior region [x, x +D],
repeatedly apply stimulus (x+D−a/2)+. To write on exterior
region i, 1 ≤ i ≤ 2m:

• If 1 ≤ i ≤ m, write 1 until the output falls in region Ei
or it is less than 1− a

2 + B(i−δi)
2m , In the first case, stop.

In the second case, switch to writing 0 until the output
falls in the left bin of region i.

• If m+1 ≤ i ≤ 2m, write 0 until the output falls in region
Ei or it is greater than a

2 + B(i−1+δ2m+1−i)
2m . In the first

case, stop. In the second case, switch to writing 1 until
the output falls in the right bin of region i.

Analysis: The rate calculation is straightforward, the only
change from the previous subsection being that each of the
exterior target regions now represents log 2m bits of informa-
tion. The average number of writes for an interior target region
is a/D. For an exterior region, we calculate it separately for
each Ei, i = 1, . . . ,m as follows. Note that by symmetry, Ei
and E2m+1−i have the same average cost. We have

E[# writes | region Ei] =
∫ B

0

E[# writes | Ei, S = b]
1

B
db

(37)



where E[# writes | Ei, S = b] can be calculated to be

2ma/B for Bi
2m ≤ b ≤ B,

2ma
2mb−(i−1)B for B(i−δi)

2m ≤ b < Bi
2m ,

2ma
B(1−δi)

(
1 + (i−δi)B−2mb

iB−2mb

)
for B(i−1)

2m ≤ b < B(i−δi)
2m ,

2ma
(i−δi)B−2mb +

2ma
B for 0 ≤ b < B(i−1)

2m .
(38)

Using this in (34) and calculating the integral, we obtain that
for 1 ≤ i ≤ m:

E[# writes | Ei] =
a

B

(
2m+ 1 + ln

i− δi
(1− δi)2

− δi
1− δi

ln
1

δi

)
.

(39)
The average number of write attempts for an exterior region

is therefore

a

B

[
2m+ 1 +

1

m

m∑
i=1

(
ln

i− δi
(1− δi)2

− δi
1− δi

ln
1

δi

)]
.

For each i ∈ {1, . . . ,m}, it is easily verified that the δi ∈ [0, 1)
that minimizes (39) satisfies (23). This completes the proof.

V. CONCLUSION

In a channel with unknown parameters (modeled by a
hidden state), rewrites increase the capacity in two ways: 1)
by mitigating the effect of write noise, and 2) by enabling
the write controller to get progressively better estimates of
the state. For the uniform noise channel, one of the key
observations was that the hidden state does not affect coding
in the interior region. This idea could be generalized to other
channels where the output has bounded support.

There are many open questions to be explored. One is
obtaining a capacity upper bound, which is challenging as
we need to consider all adaptive input strategies. The general
capacity lower bound can be improved via a scheme that
does simultaneous coding and estimation; the challenge here
lies in analyzing such a coding scheme to get a computable
expression for the achieved rate. Another goal is to modify
the superposition scheme so that it robust to small amounts of
read noise. As discussed at the end of Section II, the current
scheme requires the reads to be highly accurate.

The channel model analyzed here is motivated by non-
volatile memories such as Phase Change Memory and Re-
sistive RAM. The coding schemes illustrate how information-
theoretic techniques like superposition can be used to increase
the storage density. Though the schemes presented are for
analog storage channels, the ideas can be extended to finite
alphabet channels which arise in technologies such as Mag-
netic RAM [23]. A more sophisticated channel model for real
memories is one where the value written on the cell depends
on the stimulus as well as the previous value stored in the
cell. Another interesting possibility is extending the model to
account for stochastic variation of the cell contents over time, a
phenomenon which is encountered in most memory technolo-
gies and which manifests as a read noise at the “receiver”.

We believe that developing efficient rewritable schemes for
such realistic models will have a significant impact on several
non-volatile memory technologies.

APPENDIX

Proof of Theorem 1:
Fix an estimation period l ∈ {0, . . . , bκ− 1c}, an estimator

Ŝ(l), a distribution PU |Ŝ(l), and a function f to generate the
channel input X = f(U, Ŝ(l)). This defines a joint distribution
of (S, Ŝ(l), U,X, Y ) in the set P .

Construct a codebook consisting of 2nR1 codewords, whose
elements are picked i.i.d. according to PU , the marginal
distribution of the auxiliary random variable U . This codebook
is partitioned in 2nR bins where

R < I(U ;Y )− I(U ; Ŝ(l)). (40)

R1 > R will be specified later.
The output space of each cell is divided into bκ− lc target

regions, as described in Section II-A (see Figure 1).
Encoding: The message to be stored in the n-cell array

consists of two parts (m1,m2), where m1 ∈ {1, . . . , 2nR}
and m2 ∈ {1, . . . , (bκ− lc)n}. Let Ŝ(l) be the state estimate
obtained using the first l writes. To encode the first part of
the message, we choose a codeword U from the m1th bin
such that the pair (U, Ŝ(l)) is jointly typical [20, Section 8.2]
according to the distribution described by the following joint
density:

PU,Ŝ(l)(u, ŝ) =

∫
S
PS(s)PŜ(l)|S(ŝ|s)PU |Ŝ(l)(u|ŝ)ds. (41)

From rate-distortion theory [20], such a codeword U can be
found with high probability if

R1 −R > I(U ; Ŝ(l)). (42)

(42) gives a lower bound on the minimum number of code-
words in each bin (2n(R1−R)) required for successful encod-
ing. The input stimulus X = {Xi}ni=1 is generated symbol by
symbol as Xi = f(Ui, Ŝi(l)).

The second part of the message is conveyed through super-
position coding. For cell i, apply stimulus Xi until the output
falls in the appropriate target region. For any realization of the
input stimulus and state, the output is equally likely to fall in
each of the target regions with probability 1

bκ−lc . Hence the
average number of writes required after the estimation period
is bκ− lc, and the average total writes per cell is l+ bκ− lc.

Decoding: The decoder attempts to find a codeword Û that
is jointly typical with the stored sequence Y according to
(41). If there is a unique such codeword, its bin is decoded
as the message m1. The target region containing the output
of each cell gives the message m2. The codeword U can be
successfully decoded if the rate of the codebook satisfies

R1 < I(U ;Y ). (43)

Combining (42) and (43), we conclude that U can be success-
fully encoded and decoded if (40) is satisfied.



We have thus shown that a total of R+ logbκ− lc bits/cell
can be reliably stored and decoded with average write cost
l + bκ− lc as long as R satisfies (40).
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