4,621 research outputs found

    Remembering Forward: Neural Correlates of Memory and Prediction in Human Motor Adaptation

    Get PDF
    We used functional MR imaging (FMRI), a robotic manipulandum and systems identification techniques to examine neural correlates of predictive compensation for spring-like loads during goal-directed wrist movements in neurologically-intact humans. Although load changed unpredictably from one trial to the next, subjects nevertheless used sensorimotor memories from recent movements to predict and compensate upcoming loads. Prediction enabled subjects to adapt performance so that the task was accomplished with minimum effort. Population analyses of functional images revealed a distributed, bilateral network of cortical and subcortical activity supporting predictive load compensation during visual target capture. Cortical regions – including prefrontal, parietal and hippocampal cortices – exhibited trial-by-trial fluctuations in BOLD signal consistent with the storage and recall of sensorimotor memories or “states” important for spatial working memory. Bilateral activations in associative regions of the striatum demonstrated temporal correlation with the magnitude of kinematic performance error (a signal that could drive reward-optimizing reinforcement learning and the prospective scaling of previously learned motor programs). BOLD signal correlations with load prediction were observed in the cerebellar cortex and red nuclei (consistent with the idea that these structures generate adaptive fusimotor signals facilitating cancelation of expected proprioceptive feedback, as required for conditional feedback adjustments to ongoing motor commands and feedback error learning). Analysis of single subject images revealed that predictive activity was at least as likely to be observed in more than one of these neural systems as in just one. We conclude therefore that motor adaptation is mediated by predictive compensations supported by multiple, distributed, cortical and subcortical structures

    Inside the brain of an elite athlete: The neural processes that support high achievement in sports

    Get PDF
    Events like the World Championships in athletics and the Olympic Games raise the public profile of competitive sports. They may also leave us wondering what sets the competitors in these events apart from those of us who simply watch. Here we attempt to link neural and cognitive processes that have been found to be important for elite performance with computational and physiological theories inspired by much simpler laboratory tasks. In this way we hope to inspire neuroscientists to consider how their basic research might help to explain sporting skill at the highest levels of performance

    Neural Coordination of Distinct Motor Learning Strategies: Latent Neurofunctional Mechanisms Elucidated via Computational Modeling

    Get PDF
    In this dissertation, a neurofunctional theory of learning is presented as an extension of functional analysis. This new theory clarifies the distinction— via applied quantitative analysis— between functionally intrinsic (essential) mechanistic structures and irrelevant structural details. This thesis is supported by a review of the relevant literature to provide historical context and sufficient scientific background. Further, the scope of this thesis is elucidated by two questions that are posed from a neurofunctional perspective— (1) how can specialized neuromorphology contribute to the functional dynamics of neural learning processes? (2) Can large-scale neurofunctional pathways emerge via inter-network communication between disparate neural circuits? These questions motivate the specific aims of this dissertation. Each aim is addressed by posing a relevant hypothesis, which is then tested via a neurocomputational experiment. In each experiment, computational techniques are leveraged to elucidate specific mechanisms that underlie neurofunctional learning processes. For instance, the role of specialized neuromorphology is investigated via the development of a computational model that replicates the neurophysiological mechanisms that underlie cholinergic interneurons’ regulation of dopamine in the striatum during reinforcement learning. Another research direction focuses on the emergence of large-scale neurofunctional pathways that connect the cerebellum and basal ganglia— this study also involves the construction of a neurocomputational model. The results of each study illustrate the capability of neurocomputational models to replicate functional learning dynamics of human subjects during a variety of motor adaptation tasks. Finally, the significance— and some potential applications— of neurofunctional theory are discussed

    A Local Circuit Model of Learned Striatal and Dopamine Cell Responses under Probabilistic Schedules of Reward

    Full text link
    Before choosing, it helps to know both the expected value signaled by a predictive cue and the associated uncertainty that the reward will be forthcoming. Recently, Fiorillo et al. (2003) found the dopamine (DA) neurons of the SNc exhibit sustained responses related to the uncertainty that a cure will be followed by reward, in addition to phasic responses related to reward prediction errors (RPEs). This suggests that cue-dependent anticipations of the timing, magnitude, and uncertainty of rewards are learned and reflected in components of the DA signals broadcast by SNc neurons. What is the minimal local circuit model that can explain such multifaceted reward-related learning? A new computational model shows how learned uncertainty responses emerge robustly on single trial along with phasic RPE responses, such that both types of DA responses exhibit the empirically observed dependence on conditional probability, expected value of reward, and time since onset of the reward-predicting cue. The model includes three major pathways for computing: immediate expected values of cures, timed predictions of reward magnitudes (and RPEs), and the uncertainty associated with these predictions. The first two model pathways refine those previously modeled by Brown et al. (1999). A third, newly modeled, pathway is formed by medium spiny projection neurons (MSPNs) of the matrix compartment of the striatum, whose axons co-release GABA and a neuropeptide, substance P, both at synapses with GABAergic neurons in the SNr and with the dendrites (in SNr) of DA neurons whose somas are in ventral SNc. Co-release enables efficient computation of sustained DA uncertainty responses that are a non-monotonic function of the conditonal probability that a reward will follow the cue. The new model's incorporation of a striatal microcircuit allowed it to reveals that variability in striatal cholinergic transmission can explain observed difference, between monkeys, in the amplitutude of the non-monotonic uncertainty function. Involvement of matriceal MSPNs and striatal cholinergic transmission implpies a relation between uncertainty in the cue-reward contigency and action-selection functions of the basal ganglia. The model synthesizes anatomical, electrophysiological and behavioral data regarding the midbrain DA system in a novel way, by relating the ability to compute uncertainty, in parallel with other aspects of reward contingencies, to the unique distribution of SP inputs in ventral SN.National Science Foundation (SBE-354378); Higher Educational Council of Turkey; Canakkale Onsekiz Mart University of Turke

    How Laminar Frontal Cortex and Basal Ganglia Circuits Interact to Control Planned and Reactive Saccades

    Full text link
    The basal ganglia and frontal cortex together allow animals to learn adaptive responses that acquire rewards when prepotent reflexive responses are insufficient. Anatomical studies show a rich pattern of interactions between the basal ganglia and distinct frontal cortical layers. Analysis of the laminar circuitry of the frontal cortex, together with its interactions with the basal ganglia, motor thalamus, superior colliculus, and inferotemporal and parietal cortices, provides new insight into how these brain regions interact to learn and perform complexly conditioned behaviors. A neural model whose cortical component represents the frontal eye fields captures these interacting circuits. Simulations of the neural model illustrate how it provides a functional explanation of the dynamics of 17 physiologically identified cell types found in these areas. The model predicts how action planning or priming (in cortical layers III and VI) is dissociated from execution (in layer V), how a cue may serve either as a movement target or as a discriminative cue to move elsewhere, and how the basal ganglia help choose among competing actions. The model simulates neurophysiological, anatomical, and behavioral data about how monkeys perform saccadic eye movement tasks, including fixation; single saccade, overlap, gap, and memory-guided saccades; anti-saccades; and parallel search among distractors.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-l-0409, N00014-92-J-1309, N00014-95-1-0657); National Science Foundation (IRI-97-20333)

    Dopamine and the development of executive dysfunction in autism spectrum disorders.

    Get PDF
    Persons with autism regularly exhibit executive dysfunction (ED), including problems with deliberate goal-directed behavior, planning, and flexible responding in changing environments. Indeed, this array of deficits is sufficiently prominent to have prompted a theory that executive dysfunction is at the heart of these disorders. A more detailed examination of these behaviors reveals, however, that some aspects of executive function remain developmentaly appropriate. In particular, while people with autism often have difficulty with tasks requiring cognitive flexibility, their fundamental cognitive control capabilities, such as those involved in inhibiting an inappropriate but relatively automatic response, show no significant impairment on many tasks. In this article, an existing computational model of the prefrontal cortex and its role in executive control is shown to explain this dichotomous pattern of behavior by positing abnormalities in the dopamine-based modulation of frontal systems in individuals with autism. This model offers excellent qualitative and quantitative fits to performance on standard tests of cognitive control and cognitive flexibility in this clinical population. By simulating the development of the prefrontal cortex, the computational model also offers a potential explanation for an observed lack of executive dysfunction early in life

    Neural Dynamics Underlying Impaired Autonomic and Conditioned Responses Following Amygdala and Orbitofrontal Lesions

    Full text link
    A neural model is presented that explains how outcome-specific learning modulates affect, decision-making and Pavlovian conditioned approach responses. The model addresses how brain regions responsible for affective learning and habit learning interact, and answers a central question: What are the relative contributions of the amygdala and orbitofrontal cortex to emotion and behavior? In the model, the amygdala calculates outcome value while the orbitofrontal cortex influences attention and conditioned responding by assigning value information to stimuli. Model simulations replicate autonomic, electrophysiological, and behavioral data associated with three tasks commonly used to assay these phenomena: Food consumption, Pavlovian conditioning, and visual discrimination. Interactions of the basal ganglia and amygdala with sensory and orbitofrontal cortices enable the model to replicate the complex pattern of spared and impaired behavioral and emotional capacities seen following lesions of the amygdala and orbitofrontal cortex.National Science Foundation (SBE-0354378; IIS-97-20333); Office of Naval Research (N00014-01-1-0624); Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Institutes of Health (R29-DC02952

    Reward and punishment: the neural correlates of reinforcement feedback during motor learning

    Get PDF
    ‘By the carrot or the stick’ reward or punishment has been contemplated by instructors to motivate their pupils to learn a new motor skill. The reinforcements of reward and punishment have demonstrated dissociable effects on motor learning with punishment enhancing the learning rate and reward increasing retention of the motor task. However it is still unclear how the brain processes reward and punishment during motor learning. This study sought to investigate the role of reinforcement feedback in cortical neural activity associated with motor learning. A novel visuomotor rotation task was employed with reward punishment or null feedback as the participants adapted their movement to a 30-degree counter-clockwise rotation. We measured movement time and task accuracy throughout the task. Surface electroencephalography was utilized to record cortical neural activity throughout the learning and retention of the motor task. Event-related potentials (ERPs) were calculated to assess how the brain processes the reinforcement feedback and prepares for movement. Repeated measures ANOVAs were utilized to detect differences in the movement parameters and ERP amplitudes. This study found that reward and punishment feedback did not produce different effects on the rate of task learning. However punishment feedback impaired the retention (memory) of the motor task. These behavioral effects were accompanied by changes in the amplitude of ERPs during feedback presentation and movement preparation. These results suggest that punishment feedback alters brain processes involved in memory formation during motor learning
    • 

    corecore