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LATENT NEUROFUNCTIONAL MECHANISMS ELUCIDATED VIA

COMPUTATIONAL MODELING

by

ROBERT A. CAPPS

Under the Direction of Yaroslav I. Molkov

ABSTRACT

In this dissertation, a neurofunctional theory of learning is presented as an extension

of functional analysis. This new theory clarifies the distinction— via applied quantitative

analysis— between functionally intrinsic (essential) mechanistic structures and irrelevant

structural details. This thesis is supported by a review of the relevant literature to provide

historical context and sufficient scientific background. Further, the scope of this thesis is



elucidated by two questions that are posed from a neurofunctional perspective— (1) how

can specialized neuromorphology contribute to the functional dynamics of neural learning

processes? (2) Can large-scale neurofunctional pathways emerge via inter-network communi-

cation between disparate neural circuits? These questions motivate the specific aims of this

dissertation. Each aim is addressed by posing a relevant hypothesis, which is then tested

via a neurocomputational experiment. In each experiment, computational techniques are

leveraged to elucidate specific mechanisms that underlie neurofunctional learning processes.

For instance, the role of specialized neuromorphology is investigated via the development

of a computational model that replicates the neurophysiological mechanisms that under-

lie cholinergic interneurons’ regulation of dopamine in the striatum during reinforcement

learning. Another research direction focuses on the emergence of large-scale neurofunctional

pathways that connect the cerebellum and basal ganglia— this study also involves the con-

struction of a neurocomputational model. The results of each study illustrate the capability

of neurocomputational models to replicate functional learning dynamics of human subjects

during a variety of motor adaptation tasks. Finally, the significance— and some potential

applications— of neurofunctional theory are discussed.

INDEX WORDS: Motor learning, Motor adaptation, Neurofunction, Basal ganglia, Cere-
bellum, Reinforcement learning, Model-free learning, Model-based
learning, Striatal cholinergic interneurons, Tonically active neurons,
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1

INTRODUCTION

1.1 Neurofunctional theory

In this report, a new theory— a ”complete” neurofunctional theory of learning— is

introduced. This new theory originated as an extension of functional analysis, a concept

borrowed from analytical psychology (see: section 2.6). In [Piccinini and Craver, 2011] func-

tional analyses are defined as “sketches of mechanisms, in which some structural aspects of

a mechanistic explanation are omitted.” The goal of the present work is to optimally dis-

tinguish between functionally intrinsic (i.e. essential) mechanistic structures and irrelevant

structural details. In this report, a theoretical framework is derived from several indepen-

dent strands of evidence. This framework generally aims to define the minimum amount of

mechanistic detail that could explain the observed operation of a particular behavior or set

of behaviors.

Neurofunctional theory can be understood in terms of semantic structure— i.e. the

biological and physical models from which neurofunctional theory is derived. An important

advantage of neurofunctionalism is the potential benefit for empirical analysis of a wide vari-

ety of neurobehavioral phenomena. This practical advantage originates with the antecedent

theory of Behaviorism (section 2.5). For example, a behavioral study of stress response

in expectant mothers could be considered from a neurofunctional perspective, as could a

molecular study of serotonin transporter expression in the hypothalamus.

The advantages provided by a neurofunctional perspective can also be explained in se-

mantic terms. Key among these advantages is the concept of neurofunction, which is defined

as the operation of (neuro)behavioral processes in terms of minimum description length. The

term “neurofunction” is derived from the meaning of ”function” in “functional analysis,”

an approach in behavioral psychology that aims to connect psychological consequences (e.g.
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mood, cognition) to specific causative mechanisms (e.g. neurophysiology). Thus, neurofunc-

tionalism can be partially understood from an analytical psychology perspective. Moreover,

the definition of neurofunction also has roots in a well-known neurocomputational principle—

the ”minimum description length” (MDL), which is a formalization of Occam’s razor that

originates from computational learning theory [Rissanen, 1978, Peter Grünwald, 1998]. As

stated in the 1978 publication that first introduced MDL,

[MDL can be utilized as] a criterion for estimation of parameters, including the

structure parameters, in a model for a random time series has been derived from

the single and natural principle: minimize the number of bus it takes to write

down the observed sequence.

(Rissanen, 1978)

This description as well as the formal definition of MDL supports the central observa-

tion of neurofunctional theory: Any observed neurofunction (i.e. neurofunctional or neu-

rofunctional unit)— including neurofunctionals with nonlinear temporal dynamics— can be

expressed quantitatively, e.g. as a Bayesian inference problem [Molkov et al., 2009]. More-

over, this realization could be used to derive a neurofunctional conservation law— briefly

discussed in subsection 6.4.1 as a future research direction.

Thus, neurofunctional theory is derived from a rich body of existing work in the cogni-

tive sciences that incorporates principles from fields such as computational learning theory,

psychology, neurobiology, and linguistics. In general, this theory aims to integrate existing

models, theories of neurobiological systems. In this report, these models and theories are

presented as evidence, which is integrated to justify the development of a new theory. The

majority of the evidence presented in the present work focuses on the neurocomputational

underpinnings of learning and behavior, and specifically motor adaptation. In chapter 4 and

chapter 5, experimental results are presented and later discussed from a neurofunctional per-

spective chapter 6. The semantic relationship between computation and neural adaptation

is a key takeaway from this dissertation— the interrelated history of these interdependent
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concepts is summarized in chapter 2. Moreover, relevant experimental results are presented

in chapter 4 and chapter 5. In chapter 6, this topic is further expounded upon, and the

significance of the experimental results are briefly described.

1.2 Neural differentiation: Striatal cholinergic interneurons

In chapter 4, neurocomputational techniques are utilized to test the hypothesis that

population-specific characteristics of striatal cholinergic interneurons— often termed ton-

ically active neurons (TANs)— can subtly influence the timing of striatal reinforcement-

based encoding of reward. These unique neuronal characteristics are the result of neural

differentiation— a process that occurs during early development— that results in maturation

of neuronal stem cells into specialized neural species (e.g. ion channels, mechanical/chemical

receptors). A complete report of this work has been published and is publicly available as

an open-access journal article [Kim et al., 2019].

1.3 Emergence of large-scale networks: Cortico-cerebro-striatal pathways

In chapter 5, neurocomputational techniques are employed to investigate the neuro-

physiological mechanisms that could be responsible for coordinating between distinct learn-

ing strategies during motor adaptation— namely, the existence of a cortico-cerebro-striatal

pathway that could be responsible for mediating between error-based learning in the cere-

bellum and non-error-based reinforcement learning in the basal ganglia. A complete report

of this work has been published and is publicly available as an open-access journal article

[Todorov et al., 2019].



4

2

LITERATURE REVIEW

Here, the relevant literature is reviewed to provide sufficient evidence to justify the

development of a new neurofunctional theory. Further, this review summarizes the essential

scientific concepts to ensure that the present work is accessible to a non-expert audience.

The review culminates in a description of the specific aims of this project, which focus on

two of the author’s publications that serve to illustrate the utility of computational methods

to neurofunctionally define neural substrates with respect to specific motor adaptation tasks.

In the following sections, historical examples of relevant experimental protocols and

theoretical paradigms are summarized. Each historical example is seated in the context of

neurofunctional theory. Further, each section includes an explicit statement explaining how

the discussed scientific innovation relates to the author’s publications (full-text in chapter 4

& chapter 5).

2.1 Early perspectives: The evolution of learning theory

This section introduces a chronological narrative that summarizes important events

across several scientific periods (1900-2000s) that shaped the development of modern learn-

ing theory. A plethora of experimental methods and scientific theories that have proven

essential to the study of learning were developed during the discussed historical eras. Per-

haps surprisingly, many of these important theories and techniques were not formalized—

at least in the literature— until the late-1800s/early-1900s.

At the dawn of the 20th century, physiologists increasingly sought to elucidate the

mechanisms underlying behavior, introspection, and learning through the development and

application of new scientific methods, many of which left a lasting impact on the field. A

particularly important consequence of these scientific innovations— including the formal-
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ization of experimental protocols— was the standardization of experimental measurements

of behavior, which enhanced interdisciplinary collaboration and eased the interpretation of

behavioral experiments.

The behavioral experiments during this era (early 1900s) began to address new prob-

lems that were previously intractable— e.g. the classification of distinct behavior patterns

into categories, which scholars accomplished by inventing new quantitative methods for pre-

cise comparison between experimental groups (i.e. population statistics). Spearman’s rank

correlation coefficient is a particularly notable statistical method developed during this era

[Lovie and S, 1996]. These and other innovations were essential to the evolution of cognitive

science and the formalization of modern learning theory.

2.2 Behavioral conditioning

Behavioral conditioning (i.e. “conditioning”) is a fundamental principle of modern learn-

ing theory, which can be summarized as, “any learning procedure that involves behavioral

modification through the presentation of stimuli.”

As practical terminology, “conditioning” often refers to a set of experimental procedures

that attempt to modify (e.g. strengthen/weaken) internal associations between the presented

stimuli, environmental cues, and specific behaviors.

The concept of behavioral conditioning plays an important role in the semantic structure

of neurofunctional theory. Moreover, this brief explanation of “conditioning” is included

to assist the reader in understanding behavioral conditioning more broadly and in specific

contexts— e.g. the behavioral psychology movement in the mid-20th century. In section 2.5,

these nuances are introduced in the context of specific scientific discoveries. Throughout

this dissertation, the historical narrative serves as a natural segue to introduce the author’s

publications as described in the Introduction chapter 1 and Specific Aims chapter 3.
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2.3 Reinforcement & conditioning

“Reinforcement,” another important concept in learning theory, is a learning process

that occurs when an experimental subject receives a rewarding stimulus as a consequence of

performing a specific action, thereby increasing the probability that the subject will repeat

that specific behavior [Schultz, 2015]. “Reinforcement learning” (RL) is then the process

of repeated reinforcement to induce behavioral modification by strengthening or weakening

(i.e. “conditioning”) the subject’s internal reward-behavior associations.

The concept of “reinforcement” originates with the work of the psychologist Edward

Thorndike, who is best known for his contributions to educational psychology and learning

theory. Thorndike conducted behavioral experiments to test the ability of dogs, cats and

other animals to escape from “puzzle boxes.” In these experiments, fasted animals were

placed in an enclosure from which they could escape— e.g. by pressing a lever. A food reward

was also placed outside the enclosure [Thorndike, 1898]. Moreover, Thorndike speculated

that animals must form “...associations of sense-impressions and ideas with impulses to act,

muscular innervations,” thus predicting the existence of an internal biological mechanism

by which animals can associate specific behaviors— e.g. the series of muscle activations

necessary to press a lever— with the expectation of receiving an intrinsically rewarding

stimulus (e.g. food). This idea paved the way for further investigation into “association”

and “reinforcement” as psychological— and eventually neurobehavioral— concepts.

The work of Thorndike and contemporaries such as the Russian physiologist Ivan Pavlov

inspired the next generation of psychological endeavors, including Watson’s fear-conditioning

experiments [Watson and Rayner, 1920] and B.F. Skinner’s formalization of “operant con-

ditioning,” a type of associative learning procedure in which reinforcement and punishment

are used to modify the strength of a behavior. These ideas also play an important role in

framing neurofunctionalism, especially in the context of the reversal-learning and learning-

perturbation experiments discussed in chapter 4 and chapter 5.
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2.4 Classical conditioning

Despite being best known for his contributions to educational psychology, the Russian

physiologist Ivan Pavlov was— like Thorndike— originally interested in animal behavior and

physiology. Pavlov notably discovered the “conditioned reflex” (i.e. “reflex at a distance”) as

a result of his experiments in which dogs were trained to salivate in response to the ringing

of a bell. These experiments led to the development of “classical conditioning,” a learning

procedure in which an unconditioned stimulus (e.g. food) is paired with a conditioned

stimulus (e.g. ringing of a bell) to elicit an unconditioned reflex/response (e.g. salivation)

[Pavlov, 2010].

Despite some conceptual overlap, the distinction between classical and operant condi-

tioning is a key nuance. In classical conditioning, a previously neutral stimulus— one that

would not ordinarily trigger a reflex— is paired with an unconditioned stimulus that natu-

rally elicits an unconditioned reflex— an innate, involuntary response. This pairing causes

the previously neutral stimulus to become associated with the unconditioned stimulus, and

thus is now a conditioned stimulus that does elicit the unconditioned response. In contrast,

operant conditioning induces behavior modification by reinforcing voluntary actions (e.g.

arm-reaching movements) through the presentation of innately appetitive (e.g. a pleasant

sound) or aversive (e.g. an unpleasant sound) stimuli, which respectively serve as rewards

or punishments to strengthen or weaken a specific behavior.

2.5 Behaviorism

In the 1920s and ‘30s, Thorndike and Pavlov’s successors sought to establish more

concrete theoretical frameworks of learning and behavior. The psychologists John Watson

and B.F. Skinner formalized several key hypotheses and experimental observations, from

which the psychological theory of behaviorism was born.

In his “Behaviorist Manifesto,” Watson describes the fundamental tenets of behaviorism,

stating that the study of psychology should be purely objective— and therefore should
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not attempt to interpret internal cognition or “introspective processes,” as an individual’s

internal cognitive experience cannot be empirically observed. Moreover, the “Manifesto”

notably states that psychology should aim to predict and control behavior, rather than to

describe mental states [Watson, 1913]. Watson also stated his belief that human behavior

is no different than other animal behavior— only differing in complexity. Although much of

the core philosophy would later be challenged, Watson and Skinner’s behaviorism spawned

innovative new methods and psychological concepts.

Notably, Skinner expounded on Pavlov and Thorndike’s theories of learning and con-

ditioning. Whereas classical conditioning focused on learned associations between specific

involuntary behavioral responses (i.e. “stimulus-response” pairs), Skinner developed a new

experimental procedure, termed “operant conditioning,” which incorporated voluntary ac-

tions, i.e. “operants.” Importantly, Skinner defined “operants” as emergent behaviors that

can be independent of any external stimulus. Therefore, as units of learning, operants have

the key advantage of generalizability— especially in comparison to Pavlov and Thorndike’s

stimulus-reflex pairs, which require the context of a specific stimulus in order to be studied

[Skinner, 1958].

Because of this shift in focus to a more generalizable framing of behavior, operant

conditioning continues to be an important part of behavioral science. As an experimen-

tal procedure, operant conditioning is adaptable and leads to interpretable results across

a range of behavioral and environmental learning contexts— the dependence of learning

on environmental contexts became an important topic toward the development of behavior

therapy, which is discussed in further detail below [Antony and Roemer, 2003]. Moreover,

the formalization of operant conditioning enabled the behaviorists to study nuanced learning

characteristics including the temporal dependence of learning rate on the timing of reward

presentation— these reward-timing protocols were termed “reinforcement schedules” [Skin-

ner, 1969].

Other notable contributions of behaviorism include the concept of “chaining,” a concept

formulated by Skinner to explain complex behavior as a combined sequence of simpler behav-
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iors, which could be viewed as an extension of Watson’s— originally, Darwin’s— assertion

that human behavior is simply animal behavior, only more complex [Skinner, 1969].

The development of cognitive-behavioral therapy (CBT)— a common type of psycho-

logical intervention that involves challenging and altering unhelpful thoughts, cognitive dis-

tortions, and behaviors to improve mental health— is possibly the longest-lasting applied

psychological technique that originates with the work of behaviorists, namely “behavior ther-

apy,” which was heavily based on results from Watson and Rayner’s emotion conditioning

experiments in the 1920s [Corsini et al., 2008, Watson and Rayner, 1920]. Behavior therapy

was a necessary step toward the development of CBT. However, the development of modern

CBT was heavily influenced by cognitive psychology, a field that competed with and eventu-

ally replaced behaviorism as the psychological mainstream during the “cognitive revolution”

of the 1970s and early ‘80s.

As mentioned in chapter 1, many of the core tenets of Behaviorism play important

roles in the semantic structure of neurofunctional theory. The “reinforcement schedule” is

a particularly notable concept. In the following sections, adaptive reinforcement/reward

scheduling is described in specific experimental contexts. Moreover, adaptive learning is

central to the investigations detailed in the author’s included publications.

2.6 Relational frame theory

Although the mainstream focus on behaviorism waned in favor of cognitive approaches,

psychological theory continues to be shaped by behaviorist influences. One such theory,

relational frame theory, extends some of Skinner’s ideas to account for nuances of verbal

learning that had previously eluded behaviorists. In relational frame theory, responses can

be formulated and interpreted relative to the function of a stimulus— i.e. a word (stimulus)

in English can have a different meaning (function) depending on the context [Hayes, 1991].

As a concept, the contextual dependency of language functionality has found applica-

tions in functional analytic psychotherapy (i.e. functional analysis), a type of psychothera-

peutic approach in which the clinician identifies “clinically relevant behaviors” during therapy
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sessions that could be important for understanding the client’s interpersonal relationships

in the real world [Tsai et al., 2009]. Furthermore, the analysis of “function” is an important

component of the present study.

The analysis of “function” is a particularly important concept in modern learning theory.

(chapter 1). In mathematical terms, a function is defined to be an operation that maps any

number of inputs to a single output. Similarly, in neurofunctional theory, a function or

neurofunction can be defined in terms of a causal hierarchy— i.e. mechanism(s)— that

define the dynamic relationship between a physiological input (e.g. taste sensation) and a

neurobehavioral output (e.g. feeding behavior).

2.7 The cognitive revolution

By most accounts, the “cognitive revolution” began in 1959 with Noam Chomsky’s

scathing review of Skinner’s book Verbal Behavior [Chomsky, 1959]. Skinner intended the

book to address linguistics and language acquisition from a behavioral perspective, topics

that had previously been ignored by behaviorism— primarily because the formation of lan-

guage is not easily interpretable as a sequence of behaviors. Chomsky and other cognitive

psychologists, including the French developmental psychologist Jean Piaget, observed that

the human capacity for creating or learning new vocabulary is infinite and independent of

any stimulus conditioning— e.g. humans demonstrate the ability to speak and understand

sentences that they have never heard before [Piaget et al., 1980]. To account for human

language ability, an analysis of internal learning processes is necessary— this focus on in-

trospection is incompatible with the core principles of behaviorism. Overall, Chomsky’s

criticisms of behaviorism focused on the lack of experimental evidence for many of Skinner’s

claims. Moreover, Chomsky argued that the cited experiments failed to generalize to hu-

man verbal learning— in particular because no animals are known to possess comparable

linguistic skills.

The cognitive revolution gave rise to many ideas that continue to influence the cognitive

sciences today. One of these ideas is the “modularity of the mind,” which states that distinct
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systems of the mind must cooperate to generate thought or a sequence of actions— i.e.

distinct processes have different specific missions that coalesce to accomplish a common goal

[Fodor, 1983]. Another key idea in cognitive psychology is “innateness,” which surmises

that humans must be born with some innate ability to learn language without any formal

teaching— a concept that was introduced by Chomsky to explain how humans could know

so much with relatively limited sensory input [Kasher, 1998].

Along with these new ideas, the cognitive revolution spawned a renewed interest in sci-

entific questions related to introspection and cognition— e.g. “What is the origin, nature of

thought?” These questions were explored by careful documentation of clinical observations,

case studies, and new experimental approaches that focused on understanding the internal

processes that held the keys to understanding the complexities underlying human cognition.

Despite the surplus of new psychological approaches, one of the most influential of these new

techniques only came to fruition as a result of advances in mathematics and engineering—

the use of computational experiments and the birth of Artificial Intelligence (AI).

2.8 Early AI: Analytical linguistics & cognition

In the mid-20th century, several globewide socio-political events— e.g. the Second

World War, Vietnam War, Korean War, Cold War— and monumental scientific discoveries—

e.g. Watson and Crick’s discovery of DNA’s double-helix structure— catalyzed the study

of computer automation, resulting in numerous breakthroughs. During this period, applied

computational research was profoundly influenced by the cognitive sciences— namely psy-

chology and computational neuroscience [Miller, 2003].

Particularly of note are Noam Chomsky’s contributions to the linguistic theories of

“universal grammar” and “transformational-generative grammar.” The former establishes

the genetic component of the human language faculty. In the latter, verbal syntax is ana-

lyzed as a structured ruleset (i.e. language) from which word combinations are generated

to produce meaningful sentences, and via the application of “operations” (i.e. transforma-

tions) new sentences can be produced in the same language. These linguistic concepts are
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often cited as being key inspirations for the development of some of the earliest computer

programming languages— including LISP, LOGO, and TeX [Knuth, 2002]. In a sense, the

development of human-readable programming languages was bidirectionally dependent on

cognitive— especially linguistic— sciences.

Neuroscience is another of the cognitive sciences that influenced early research efforts in

AI. In particular, the formulation of the first computational neuron model by McCulloch and

Pitts— and the electrophysiological experiments by Hodgkin and Huxley that later yielded

the conductance-based Hodgkin-Huxley model— guaranteed that the earliest computational

theories and implementations of AI were correlated with— if not caused by— advances in

neuroscience [Hodgkin and Huxley, 1952, McCulloch and Pitts, 1943].

2.9 Early AI: General problem solving

Within this initial ”proving period” for AI, the socio-political influences of the second

World War significantly catalyzed the academic focus on AI. As part of the war effort, na-

tional governments increased funding for AI research, which centered on gaining a deeper

understanding of the internal processes that underlie human cognition and learning. The in-

tended applications of this AI research included the optimization of military personnel train-

ing, and the creation of computer-automated general problem-solving systems, specifically

for use in codebreaking to decrypt enemy communications, and for statistical optimization

of battlefield decision-making, e.g. predicting enemy movement on the battlefield [McCor-

duck, 2004]. Of note are Alan Turing’s many contributions to AI, including neuromimetic

implementations of computer automata and the popularization of reaction-diffusion systems,

which he modeled as time-coupled systems of partial differential equations [Turing, 1951].

During the 1940s and early ‘50s, applied outcomes in AI research were mostly limited

to the development of “expert systems” that could solve well-defined, highly constrained

problems— e.g. the German tank problem, an example of frequentist statistical inference

being used to estimate the discrete population distribution [Ruggles and Brodie, 1947]. The

system itself could be defined as a computational algorithm that takes as input the observed



13

frequency distribution, then performs a series of computations that produce an output rele-

vant to the stated problem.

Another canonical example of an artificial learning system from this era is the General

Problem Solver, a computer program implemented in the late 1950s [Newell et al., 1959]. The

General Problem Solver was in part motivated by a desire to characterize human problem

solving in terms of algorithmic procedures. The resulting computational experiments con-

cluded that two generic forms of problem-solving exist— planning and means-ends analysis.

The former takes advantage of human-like abstract reasoning, which offers interpretability

at the cost of computational tractability. In contrast, means-ends analysis is essentially an

iterative optimization technique that leverages sensory feedback to constrain the solution—

this technique is useful for AI systems but is typically impractical as a human reasoning

method.

2.10 Modern AI: Specialized (neuro-)computational models

Up to this point in the history of learning theory, AI research sought to characterize

and replicate algorithmic, procedural mechanisms of learning and behavior. Much of this re-

search focused on abstract thought experiments with little-to-no consideration of biophysics

or practical implementation. Moreover, some AI research during this period was essentially

an engineering effort moreso than scientific endeavor— i.e. was heavily goal-oriented, fo-

cused on specific predetermined outcomes (e.g. military, educational applications). But by

the 1960s and ‘70s, the study of AI— and computer science in general— began to shift

away from toy models and the military industrial complex. Instead this new generation of

computationalists expounded on existing cognitive and behavioral theory, posing specific

experimental hypotheses via specialized computer simulations.

2.11 Modern AI: Temporal difference learning

In the early 1980s, specialized computational experiments increasingly focused on the

characterization of biological reinforcement learning (RL) experiments, generally adhering
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to an experimental architecture similar to Skinner’s operant conditioning protocols. These

computational RL experiments attempt to replicate the ability— that many organisms pos-

sess innately— to learn a pattern despite incomplete knowledge of the pattern-generating

system— i.e. “model-free learning.” As in operant conditioning, the learning procedure can

be summarized as, “Generate, test, repeat.” This distinguishing characteristic of RL directly

contrasts with “supervised” learning— e.g. General Problem Solver— in which learning oc-

curs by direct comparison between the “current pattern” and the “target pattern” [Sutton,

1984].

An important conclusion of these computational RL simulations is that “model-free”

predictive learning is made possible by comparison between temporally successive predic-

tions, termed “temporal-difference methods” [Barto et al., 1981, Sutton, 1988, Sutton, 1984].

Moreover, Barto et al. noted some key limitations to temporal-differencing as a method for

predictive learning. RL systems that rely on temporal-differencing do not require prior

knowledge of the pattern-generation system. However, these simple RL systems can only

learn when explicitly provided with a complete map of pattern-reward pairings— i.e. a com-

plete prior understanding of the reward to be received for each pattern— in the literature,

this reward-pattern mapping is referred to as a “teacher” signal [Sutton and Barto, 1981].

Despite this limitation, computationalists demonstrated that temporal-differencing

methods can provide the advantage of computational efficiency— e.g. reduced memory

requirements, improved accuracy, convergence speed— over the existing supervised learn-

ing algorithms [Sutton and Barto, 1981]. These discoveries found lasting utility in logisti-

cal control processes— enabling global solutions to previously intractable optimal control

problems— such as real-time optimization of supply chain management and processes related

to industrial manufacturing [Barto et al., 1982, Bowersox and Closs, 1989]. Beyond these

engineering applications, the computational learning experiments of the ‘80s and ‘90s in-

spired a wave of multidisciplinary collaboration in the cognitive sciences, yielding a plethora

of contributions to learning theory, creative new methodologies, and computational network

architectures.



15

2.12 Modern AI: Ensemble methods

A notable product of this multidisciplinary research effort is the advent of “ensem-

ble learning methods,” a type of computational learning algorithm that combines procedu-

ral elements of several distinct learning approaches, often characterized by some form of

“meta-learning.” As an example, a supervised learning algorithm could optimize the amount

or timing of reward (i.e. the reward schedule) to maximize accuracy with respect to a

statistically-defined distribution of reinforcement learning contexts [Schiff et al., 1996].

Ensemble methods aim to overcome the known disadvantages of a particular learning

technique by combining multiple algorithms that possess complementary advantages and

disadvantages. This can be accomplished by quantitatively updating model parameters,

leveraging heterogeneous statistical information shared between distinct, nested learning

processes. For example, consider a hypothetical scenario in which two individuals (“Steven”,

and “Rachel”) cooperate to find a route to the library by relying on communication, thereby

accounting for any empirical deficits of each individual learner.

In this scenario, “Steven” is colorblind, and “Rachel” is dyslexic. Steven and Rachel

are given a map that contains the necessary information to navigate to the library. Un-

fortunately, the map is not to-scale and distinguishes between roads by color— i.e. Steven

cannot determine the extent of individual roads. Furthermore because the map is not to-

scale, navigation is only possible by matching the street names on the map with street signs

along the route— i.e. alone, Rachel cannot accurately determine when she should make a

turn. Despite these obstacles, the pair can still successfully navigate the route by combining

forces. Before setting out, Rachel could identify the road extents, then draw a symbolic

representation in black-and-white to assist Steven’s interpretation of the map. Steven could

then confirm the street names that correspond to turns along the route. Individually, nei-

ther Rachel nor Steven could use this unconventional map to reach the library. But through

cooperative communication, the pair manage to integrate their heterogeneous observations

(e.g. street names, extents) to effectively function as an ensemble.
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2.13 Modern AI: Neurocomputational learning models

The specialization of computational learning experiments and the development of ensem-

ble methods are among the most notable outcomes produced by this era of multidisciplinary

collaboration in cognitive science, effectively bridging theoretical gaps between cognitive psy-

chology, neuroscience, biophysics, and computer science. These specialized computational

experiments of the late-70s, ‘80s and ‘90s were predicated on previous work by the behav-

iorists in the early-to-mid-20th century, and subsequently the linguistic theory developed

during the cognitive revolution. Notably, the multidisciplinary influences in the cognitive

sciences became increasingly interdependent, with bidirectional information flow between ex-

perimental biologists and computationalists [Barto, 1995, Sutton and Barto, 1981, Williams,

1992].

Thus, computational modeling techniques gained newfound utility— computationalists

could design simulations to make statistically sound experimental predictions. Specifically,

these virtual learning simulations could be interpreted to predict whether or not a specific

neurocomputational mechanism could account for an empirically observed behavior or learn-

ing characteristic. These computational predictions garnered the attention of experimental

neurobiologists, who could then conduct their own experiments to validate any functional

mechanisms that could be inferred by computationally replicating experimental observations.

In this way, new avenues in the neurobiological study of learning continue to be directed by

previously abstract concepts in computer science and control theory.

2.14 Modern AI: Adaptive learning systems

The collaborative atmosphere among cognitive scientists during the 1980s and ‘90s

spawned an assortment of advances in learning theory— namely the exploration of the neuro-

computational mechanisms underlying animal intelligence, and the implementation of corre-

sponding neuromimetic controller architectures. Of these neuromimetic control systems, the

“associative search network” is particularly relevant to the present work. The “associative
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search network” is an artificial learning system composed of adaptive components— some

of which provide specialized RL capabilities— that extends temporal-differencing to enable

robust learning in contexts that were previously computationally intractable [Barto et al.,

1981].

Significantly, “associative search networks” can learn without explicit prior knowledge

of the pattern-reward mapping (i.e. “teacher”) while being robust to statistical noise, i.e.

unexplained variability). In contrast to simple temporal-differencing, the associative search

network— designed as a closed-loop— can rely on limited knowledge of the reinforcement

landscape that is gained during exploration of the environment. This is possible by lever-

aging specialized network components that can each perform a different learning strategy.

Thus, the network can perform an “adaptive search.” The system can choose among multiple

learning strategies before performing an action, then intelligently encode feedback (i.e. pun-

ishments, rewards) relative to a combination of the current environmental context and the

chosen learning strategy. Thus, the network can leverage hierarchical, contextual memory

of the environment, enabling adaptation to variable pattern-reward schedules— or noise—

and informing the selection of future learning strategies. Moreover, this enables the system

to intelligently strategize in real-time [Barto and Sutton, 1981, Sutton and Barto, 1981].

2.15 Computational neuroscience: Quantification of neurofunctional substrate

Although the exploration of adaptive learning in silico— e.g. the use of computer

simulations— arguably provided limited empirical evidence, these virtual learning experi-

ments notably identified a key gap in understanding— “What latent neural mechanisms or

neurofunctional units can explain the unparalleled learning capabilities of neurobiological

systems?”

Despite limited experimental evidence, neurobiologists of the era generally accepted that

individual cells could perform simple associative learning— e.g. Pavlovian stimulus-response

associations in classical conditioning. Pavlov himself speculated that self-organizing neuronal

populations in the cerebral cortex could be responsible for these simple associative learning
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tasks [Pavlov, 2010]. These neurobiological insights inspired further speculation as to the

mechanisms that populations of neurons utilize to perform more complex adaptation tasks.

Hebbian learning theory is cited as another key inspiration— a theory often summarized as,

“Cells that fire together wire together,” which implicates synaptic plasticity as a potential

mechanism for associative learning in neuronal populations.

Klopf’s “Heterostatic Theory” was an essential impetus for reinvestigating the role of

neuronal differentiation in adaptation and learning. Klopf observed that individual neurons

can have specialized biophysical characteristics— e.g. differentiated receptor types, ion chan-

nels, dendritic morphology. Moreover, Klopf speculated that interactions between heteroge-

neous populations of specialized neurons could explain the sophisticated adaptive learning

faculties demonstrated in vivo by neurobiological systems [Klopf, 1979, Klopf, 1972]. These

hypotheses heavily influenced Sutton and Barto’s design of the “associative search network”

with specialized components— i.e. the “adaptive search” and “adaptive critic” elements—

that coordinate as a sophisticated computational ensemble to enhance the robustness of

learning by adaptation.

Thus, despite limited empirical evidence, a sufficiently complex neural control system

such as the one introduced by Barto et al. could play a role in neurobiology, coordinating be-

tween distinct learning strategies. Such a mechanism could operate by leveraging large-scale

inter-network pathways that connect distinct populations of specialized neurofunctional sub-

systems (e.g. dopaminergic neurons in the striatum, nuclei of the cerebellum). Such a neural

control system could be interpreted as the neurophysiological analogue of the “associative

search network” (i.e. “adaptive critic”) [Barto, 1995]. Initially these speculations were re-

garded with caution by mainstream cognitive science, as little empirical evidence existed to

pinpoint a specific neural substrate [Houk and Barto, 1992, Klopf, 1982, Wickens, 1980].

2.16 Computational neuroscience: Recent work

This section ties together the experimental and computational results of the early and

mid-20th century by describing more recent findings that are particularly important to the
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present work.

2.16.1 Basal ganglia: The neurofunctional role of dopamine in RL

By the mid ‘90s, significant experimental evidence demonstrated that the basal ganglia

play a key neurofunctional role in operant reinforcement— i.e. the basal ganglia was shown

to be involved in RL [Aosaki et al., 1994b, Barto, 1995, Graybiel, 1995, Houk and Wise,

1995, Mirenowicz and Schultz, 1996, Montague et al., 1996, Schultz et al., 1997, Toni and

Passingham, 1999]. Dopamine activity in the basal ganglia was correlated with the timing

of subjects receiving a reward. From this evidence, it was concluded that (reinforcement)

learning (RL) occurs in the basal ganglia within dopaminergic populations. This system

continues to be studied as a key site of RL. Moreover, this system can be framed from

a neurocomputational perspective as a neurobiological analogue of the temporal-difference

learning method proposed by Barto and Sutton, et al. [Barto, 1995].

Electrophysiological evidence further confirmed that dopamine neurons can adapt their

firing pattern to optimize the reward expectation, essentially predicting the magnitude and

timing of future rewards. The corresponding neurofunctional concept is termed the “reward

prediction error” (RPE), now a fundamental principle in modern RL research. In computer

models of the basal ganglia, the RPE is calculated as the difference between the expected

and actual reward received [Schultz et al., 1997]. Importantly, the RPE is computed as a

directional error that indicates whether the current expectation of reward is higher or lower

than the actual reward value.

Furthermore, in correspondence with Kopf’s “Heterostatic Theory,” the basal ganglia’s

learning neurofunctionality depends on the heterogeneous activity of a variety of different

neuronal species— e.g. striatal cholinergic interneurons [Aosaki et al., 1994b, Klopf, 1972].

2.16.2 Basal ganglia: Neurocomputational models

Many computational RL models that focus on specific neural dynamics in the basal

ganglia have since been developed. Some have focused on engineering milestones— e.g. effi-
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cient optimization of learning parameters for use as a robotic control system [Doya, 1996]—

while other computational models quantitatively replicate behavioral phenomena [Suri and

Schultz, 2001], or quantitative biophysical relationships inferred from experimental data

[Doya, 2002, Frank, 2006, Frank et al., 2007, Franklin and Frank, 2015a, O’Reilly and Frank,

2006].

In relation to the present work, the author co-authored a publication that describes

a neurofunctional model of the basal ganglia [Kim et al., 2017a]. The initially published

version of this model incorporates essential features of the direct and indirect pathways,

which are functionally distinct mechanisms of RL in the basal ganglia. By incorporating

both pathways, this neurofunctional model replicates essential adaptive learning properties

observed in behavioral experiments— specifically, the indirect pathway functions to suppress

previously encoded reward-pattern associations [Kim et al., 2017a].

Further biophysical details of this model are described in a 2017 publication by Teka et

al., in which a computational model of neural motor control is defined. This biomechanical

model produces goal-directed reaching movements by computationally replicating the motor

control pathway from the motor cortex— through spinal cord circuits— to the muscles,

which produce arm movements [Teka et al., 2017a].

Importantly, this biomechanical arm-reaching model is a key component of the neu-

rocomputational models developed in the current study. The model defines a neurophysi-

ologically accurate biomechanical arm that incorporates neurofunction-relevant features of

motor control, including direction-specific motoneurons in the primary motor cortex (M1),

which serve as cortical controllers that produce directionally-tuned motor commands to the

muscle fibers, and receive afferent feedback from the muscles via the spinal cord. Moreover,

the authors made conclusions regarding the role of specific motor control circuitry— namely

that motoneurons and afferent feedback modulate the directional tuning behavior of cortical

neurons to produce functional goal-oriented reaching behavior. The incorporation of this

biomechanical model can therefore provide additional biophysical detail that could elucidate

essential dynamical characteristics of real-world motor adaptation tasks.
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This computational neurofunctional framework is further expounded upon in the middle

chapters of the current report— the author’s included publications.

2.16.3 Cerebellum: A neural substrate for error-based learning

Interest in motor learning was not limited to RL in the basal ganglia during the ‘90s

and early 2000s. A mounting supply of new empirical evidence implicated the cerebellum as

not only being involved in low-level motor control but also as a sophisticated neurofunctional

learning pathway. Before the discoveries of the ‘90s, neurobiologists and computationalists

had previously speculated the cerebellum was primarily a simple feedforward controller that

integrated sensory feedback to produce real-time neural motor control via synapses with

descending projections from motor cortex [Ivry et al., 2002, Kheradmand and Zee, 2011,

Paulin, 1993].

However, the most recent consensus holds that the cerebellum is involved in more sophis-

ticated motor adaptation and learning tasks [Bastian, 2006, Caligiore et al., 2016a]. Current

experimental challenges center on establishing a complete neurofunctional description of the

highly interconnected neural pathways in the cerebellum. Experimental evidence shows that

the cerebellum can function as a closed-loop control mechanism that adaptively “corrects”

descending motor commands by leveraging sensory feedback [Bastian, 2006].

2.16.4 Cerebellum: Computational models

Numerous existing computational models describe some functional supervised learning

capabilities of the cerebellum [Doya, 2000a, Houk et al., 1996, Miall et al., 1993]. These

models vary in their level of detail and the specific adaptive properties that are described.

Moreover, computational models of cerebellar learning increasingly focus on the cere-

bellum’s ability to adaptively relinquish or acquire control of descending motor commands

depending on the degree of certainty that a particular motor adaptation task is tractable

using error-based learning [Caligiore et al., 2016a, Todorov et al., 2019].



22

2.16.5 Neural coordination of distinct learning strategies

Recent evidence supports the notion that a neurofunctional mechanism could explic-

itly coordinate between RL in the basal ganglia and supervised learning (error-based learn-

ing) in the cerebellum to intelligently alternate between these functionally distinct learning

strategies [Caligiore et al., 2016a]. A common hypothesis— supported by a growing body

of evidence— proposes the existence of a cerebral-cortico-striatal closed-loop neural circuit

from which large-scale, inter-network neural communication pathways could emerge [Cali-

giore et al., 2016a, Doya, 2000a, Houk and Wise, 1995, Todorov et al., 2019]. Such a circuit

could play a role in producing generalized motor adaptation, a faculty that humans and other

complex neurobiological organisms possess innately. For a visual diagram of the proposed

circuit, see 1 below.

Moreover, behavioral experiments have been conducted to elucidate the distinct learning

strategies that could be involved during different motor adaptation tasks, some of which have

been further validated by neurocomputational models that replicate essential neurofunctional

features of the behavioral data [Doyon et al., 2003, Galea et al., 2011, Gao et al., 1996,

Hikosaka et al., 2002, Penhune and Steele, 2012]. This line of thought is further expounded

upon in the following chapters.
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Figure 1 Semi-artistic network diagram of the complete motor adaptation model. Depicted is
the proposed neurofunctional substrate that is hypothesized to coordinate between distinct motor
adaptation strategies. The relevant substrate includes cortical structures such as the prefrontal
cortex (PFC), the pre-motor cortex (PMC), thalamus, and the primary motor cortex (M1). As
described in [Kim et al., 2017a], the PFC provides integrated sensory signals to the basal ganglia.
The basal ganglia then further integrates this cortical input with dopaminergic reward to enable
a reinforcement learning cascade. Also included in the diagram are the cerebellum (CB) and the
”critic” (i.e. ”adaptive critic”). The CB adaptively corrects the motor commands provided by
M1 to the musculature (”Arm”), effectively combining cortical input with sensory feedback from
the brainstem. The integrated motor program descends via the spinal cord. In parallel, the critic
adaptively switches between distinct learning mechanisms by selectively facilitating or depressing
the basal ganglia (reinforcement learning)and CB (model-based/error-based learning).
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3

SPECIFIC AIMS

The specific aims of this project are described in this section, and experimental solu-

tions for each aim are summarized. In each experiment, neurocomputational models are

constructed to quantitatively define the neurofunctional mechanisms underlying specific mo-

tor adaptation processes.

3.1 Investigate the neurofunctional role of striatal cholinergic interneurons in

reinforcement learning.

In this specific aim, the goal is to determine the neurofunctional role of striatal cholin-

ergic interneurons (TANs) in the striatum (a nucleus of the basal ganglia). For this investi-

gation, the hypothesis— that TANs can affect the timing and encoding of reward during RL

tasks by selectively modulating dopamine release from D2 neurons— is posed by construction

of a computational model.

From a neurofunctional perspective, the results of this investigation illustrate an exam-

ple of neural differentiation, which can subtly influence adaptive learning processes in the

basal ganglia. Moreover, the authors validate the underlying neurofunctional hypothesis by

constructing a computational model of the relevant neural circuitry— effectively demonstrat-

ing the utility of neurocomputational methods in posing complex neurofunctional hypotheses.

3.2 Describe the interplay between cerebellum and basal ganglia during motor

adaptation.

For this specific aim, the neurofunctional role of cortico-cerebro-striatal pathways is

investigated. The underlying hypothesis for this investigation is that this pathway plays a

role in coordinating between distinct learning strategies. This hypothesis is validated by a
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computational model that is described in further detail in later chapters. These findings

could have clinical applications— namely, the development of a robust quantitative method

to distinguish between different neurofunctional motor disorders, even those with similar

symptomatology.

3.3 Summarize the history, evolution of learning theory.

A specific aim of the literature review is to provide an adequate summary of the history

and evolution of learning theory in the 20th century. Specifically, this review is intended to

contextualize some fundamental principles of the proposed neurofunctional theory of learn-

ing, including the interdependence of behavior and cognition. The review emphasizes the

development and utility of important neurocomputational methods— historical context is

provided through a description of relevant discoveries, theories, and hypotheses.

Notably, a summary of the cognitive revolution is presented here as an intellectual

movement that catalyzed the development of AI and cemented the cognitive sciences as

a multidisciplinary field of research that necessarily incorporates psychology, neuroscience,

and computation— all of which provide unique perspectives that are required to formulate

a complete neurofunctional theory of learning.

Specific computational and experimental discoveries— such as the development of the

General Problem Solver and the advent of temporal-difference methods— are summarized

to contextualize some distinct neurofunctional learning principles, and to illustrate how

these principles can be— and have since been— integrated into modern learning theory.

Furthermore, summarization of these innovations also lends itself to contextualizing a variety

of important psychological, neurobehavioral, and neurocomputational methods, many of

which continue to have lasting impact in the cognitive sciences.

3.4 Describe the significance of a complete neurofunctional theory.

This dissertation aims to introduce a ”complete” neurofunctional theory of learning.

Thus, the present work aims to define ”complete” in this context by explicitly referencing
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historic experimental results that motivate the development of a ”complete” neurofunctional

theory— and which illustrate some important advantages of the theory’s semantic structure.

This goal is to some extent accomplished in the literature review, as described in the

previous aim (section 3.3). Computational methods— e.g. the adaptive critic— are seated

in a neurofunctional context via the literature review. The significance of a complete neu-

rofunctional theory is also described in terms of potential clinical applications— e.g. quan-

titative prognosis of motor diseases by identification of the neurofunctional characteristics

that uniquely define a particular disease (e.g. Parkinson’s, Huntington’s, cerebellar ataxia).

The potential applications and general implications of a complete neurofunctional theory are

further expounded upon in the Discussion.
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4

THE FUNCTIONAL ROLE OF STRIATAL CHOLINERGIC

INTERNEURONS IN REINFORCEMENT LEARNING FROM

COMPUTATIONAL PERSPECTIVE

4.1 Background & Significance

4.1.1 Background

In this study, we explore the functional role of striatal cholinergic interneurons, here-

inafter referred to as tonically active neurons (TANs), via computational modeling; specifi-

cally, we investigate the mechanistic relationship between TAN activity and dopamine vari-

ations and how changes in this relationship affect reinforcement learning in the striatum.

TANs pause their tonic firing activity after excitatory stimuli from thalamic and cortical

neurons in response to a sensory event or reward information. During the pause striatal

dopamine concentration excursions are observed. However, functional interactions between

the TAN pause and striatal dopamine release are poorly understood. Here we propose a

TAN activity-dopamine relationship model and demonstrate that the TAN pause is likely

a time window to gate phasic dopamine release and dopamine variations reciprocally mod-

ulate the TAN pause duration. Furthermore, this model is integrated into our previously

published model of reward-based motor adaptation to demonstrate how phasic dopamine

release is gated by the TAN pause to deliver reward information for reinforcement learning

in a timely manner. We also show how TAN-dopamine interactions are affected by striatal

dopamine deficiency to produce poor performance of motor adaptation.

4.1.2 Significance

It is widely accepted that the basal ganglia play an important role in action selection,

the process by which contextually appropriate actions are chosen in response to presented
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stimuli. To determine the appropriateness of an action the basal ganglia perform reinforce-

ment learning to establish action-stimulus associations. This learning process is facilitated

by dopaminergic activity in the striatum, where a reward prediction error is encoded by

the dopamine concentration excursion from its baseline level. When a subject performs

context-appropriate actions, there is a phasic increase in striatal dopamine if the received

reward is above the expectation, which means a positive reward prediction error is computed.

Over time, the synapses that correspond to appropriate stimulus-action association in the

striatal network are strengthened by long-term potentiation, and inappropriate actions are

suppressed by long-term depression [Graybiel, 2008, Frank, 2005]. Although this process

is well understood from a behavioral perspective, there are still open questions about the

underlying neural circuitry.

The neural populations within the striatum consist of GABAergic medium spiny neu-

rons (MSNs), cholinergic interneurons, and GABAergic interneurons [Kita, 1993, Koós and

Tepper, 1999, Tepper et al., 2010, Yager et al., 2015, Dautan et al., 2014]. Many previous

computational studies have focused on MSNs, which comprise a vast majority of the striatum

and are heavily implicated in basal ganglia reinforcement learning [Kreitzer and Malenka,

2008, Wall et al., 2013, Smith et al., 1998]. In contrast, cholinergic interneurons—also known

as tonically active neurons (TANs)—comprise a small fraction of the striatal neurons and

their functional role is not well understood. In this study, we integrate the results of pre-

vious studies into a computational model that includes TANs and highlight their role in

propagating reward information during reinforcement learning.

Tonically active neurons (TANs) are so-called because they exhibit tonic firing activity

(5 10Hz) [Schulz and Reynolds, 2013, Tan and Bullock, 2008]. TANs receive glutamatergic

inputs from the cortex and thalamus [Yager et al., 2015, Ding et al., 2010, Kosillo et al., 2016].

These excitatory inputs convey sensory information during a salient event or the presentation

of a reward [Cragg, 2006, Schultz, 2016]. When a salient event occurs, TANs generate a

short burst of action potentials, which is followed by a pause in TAN activity for several

hundred milliseconds. After this pause, TANs undergo a postinhibitory rebound before
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returning to normal levels of activity [Aosaki et al., 1994a, Morris et al., 2004, Apicella et al.,

2011, Joshua et al., 2008, Schulz and Reynolds, 2013, Doig et al., 2014]. TANs project to

various neighboring striatal neurons and affect them by releasing acetylcholine which binds to

muscarinic and nicotinic cholinergic receptors present on postsynaptic neurons. Muscarinic

receptors are widely expressed in the striatal medium spiny neurons [Galarraga et al., 1999,

Franklin and Frank, 2015b]. The nicotinic receptors are present in striatal GABAergic

interneurons and axon terminals of the dopaminergic substantia nigra pars compacta (SNc)

neurons [Cragg, 2006, Franklin and Frank, 2015b, Shin et al., 2017, Zhang et al., 2018].

The characteristic pause in TAN activity was previously suggested to be important

for conveying reward information during reinforcement learning. The TAN pause duration

depends on a change in striatal dopamine concentration, which is induced by dopaminergic

inputs from SNc [Maurice, 2004, Straub et al., 2014]. This dependence exists because TANs

express type 2 dopamine receptors (D2) that have an inhibitory effect on TAN activity when

activated [Deng et al., 2007, Ding et al., 2010].

After a stimulus, TANs develop a slow after hyperpolarization (sAHP) that is mainly

controlled by apamin-sensitive calcium dependent potassium current (IsAHP). The sAHP

lasts several seconds and induces a pause in tonic firing [Bennett et al., 2000, Reynolds, 2004,

Wilson, 2005]. Another current, the hyperpolarization-activated cation (h-) current (Ih), is

involved in quick recovery from sAHP. Deng et al. showed that partially blocking Ih resulted

in a prolonged TAN pause duration, and that Ih was modulated by dopamine primarily

via D2 inhibitory receptors [Deng et al., 2007]. Thus, the duration of the TAN pause is

modulated by Ih activation, which in turn is dependent on striatal dopamine concentration.

In this study, we revisit previous experimental results to formulate the following inter-

pretations. During baseline tonic firing TANs release acetylcholine, which binds to nicotinic

receptors on dopaminergic axon terminals. Thus, during their tonic firing regime, TANs ex-

clusively define the baseline concentration of dopamine in the striatum, independently of the

firing frequency of dopaminergic neurons [Rice and Cragg, 2004, Cragg, 2006]. This base-

line dopamine concentration corresponds to the expected reward in the determination of the
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reward prediction error. Furthermore, during the TAN pause, TANs stop releasing acetyl-

choline, thereby temporarily returning control of striatal dopamine release to dopaminergic

neurons. This phasic shift in dopamine concentration corresponds to the received reward;

the reward prediction error is represented as the phasic increase/decrease in dopamine con-

centration from the TAN-defined baseline [Cragg, 2006]. Importantly, this suggests that the

TAN pause serves as a time window, during which the phasic release of dopamine encodes

the reward prediction error.

In this paper, we introduce a mathematical model of the TAN activity-dopamine rela-

tionship that incorporates the sAHP- and h-currents in a rate-based description of the striatal

TAN population. In the model, the Ih is modulated by striatal dopamine through D2 receptor

activation. Our model provides a mechanistic interpretation of the TAN activity-dopamine

concentration relationship; we use our model to elucidate the mechanism by which striatal

dopamine modulates the TAN pause duration, and how TAN activity regulates dopamine

release. Previously, we implemented a model of reward-based motor adaptation for reaching

movements that incorporated reinforcement learning mechanisms in the basal ganglia [Kim

et al., 2017b, Teka et al., 2017b]. With that model, we reproduced several behavioral exper-

iments that involved basal ganglia-focused motor adaptation [Kim et al., 2017b]. Presently,

we integrate our new model of the TAN-dopamine relationship into our previous reinforce-

ment learning model. We use the integrated model to simulate striatal dopamine deficiency,

as occurs in Parkinson’s Disease. Even though TANs are known to send cholinergic projec-

tions to other striatal neurons, e. g. medium spiny neurons, the model does not account for

these projections and focuses exclusively on the implications of interactions between TAN

activity and dopamine release in striatum.
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4.2 Methods

4.2.1 The model of TAN activity

Our model describes the collective dynamics of a population of striatal tonically active

neurons (TANs). The model represents the aggregate firing rate (activity) of the population

treated as a smooth function of time t with TAN activity denoted by VTAN(t). The following

differential equation governs its dynamics:

τTAN
dVTAN(t)

dt
+ VTAN(t) = σ (ITAN(t)) (1)

where τTAN is a time constant, σ(x) = Θ(x) · tanh(x) is a sigmoid function, Θ(x) is

Heaviside’s function, and ITAN(t) is a term representing an aggregate input composed of

intrinsic current inputs and synaptic inputs to the TAN population:

ITAN(t) = WT hal · VThal (t) +DrvTAN + IsµHP (t) + IH(t) (2)

Here VThal (t) is a thala mic stimulus equal to 1 during stimulation and 0 otherwise,

WThal is a synaptic weight of the thalamic input, DrvIAN is a constant drive that defines

the baseline firing rate, IsAHP (t) is a slow after-hyperpolarization cur rent input, and IH(t)

is an h-current input.

The slow after-hyperpolarization current IsAHP (t) is a hyperpolarizing current activated

when the TAN activity exceeds certain threshold; the dynamics of this current are defined

as
τsAHP

dIsAHP (t)

dt
+ IsAHP (t) =− gsAHP · (VIAN(t)− θsAHP )

·Θ(VTAN(t)− θsAHP )

(3)

where τsAHP is a time constant, gsAHP is the activation gain, an θsAHP is the threshold

for activation.

In contrast to IsAHP , the depolarizing h -current IH(t) activated when the TAN activity

is below certain threshold, and its activation is modulated by the dopamine concentration.
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Its dynamics are defined by the following equation.

τH
dIH(t)

dt
+ IH(t) =− gH · exp (−WDA · [DA](t))

(VTAN(t)− θH) ·Θ(θH − VTAN(t))

(4)

where τH is a time constant, gH is the activation gain, WDA is the dopamine weight

coefficient, [DA] is the concentration of striata dopamine, and θH is the h -current activation

threshold.

The temporal dynamics of striatal dopamine are defined by

τDA
d[DA](t)

dt
+ [DA](t) =[DA]0 +RPE ·

(
1− VTAN(t)

θDA

)
Θ(θDA − VTAN(t))

(5)

where τDA is the time constant, RPE is the reward prediction error, θDA is the nicotinic

receptor threshold, [DA]0 is the baseline dopamine concentration.

To calibrate the model, we replicated experimental data published by Ding et al. (2010)

who recorded TAN activity from sagittal slices of mice brains while stimulating either tha-

lamic or cortical neurons while blocking D2 receptors with sulpiride or increasing dopamine

levels by cocaine (Figure 3). All parameters were tuned to fit the experimental data and

their values are listed below:

τTAN = 20ms,WThal = 4, DrvTAN = 0.3, τsAHP = 700ms

gsAHP = 5, θsAHP = 0.3, τH = 700ms

gH = 20, θH = 0.2,WDA = 1

τDA = 20, θDA = 0.01, [DA]0 = 1

To simulate the effect of sulpiride (Figure 3 B) we set WDA = 0 as sulpiride is a selective

antagonist of dopamine D2 receptors. To simulate the effect of suppressed dopamine reuptake

by cocaine (Figure 3C) we set [DA]0 to three times its control value [DA]0 = 3. We simulated

blocking h -current (Figure 3D) by setting gH = 0.
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4.2.2 Simulation of behavioral experiments

Integration of TAN-dopamine interactions into the model of reward-based motor adap-

tation Previously, we published a model able to reproduce key experiments concerned with

non-error-based motor adaptation in the context of center-out reaching movements [Kim

et al., 2017b]. The model included 3 modules: a 2 pathway (direct and indirect) BG mod-

ule, a lower level spinal cord circuit module that integrated supra-spinal inputs with feedback

from muscles, and a virtual biomechanical arm module executing 2D reaching movements

in a horizontal plane [Kim et al., 2017b] for the details). The BG module was responsible

for selection and reinforcement of the reaching movement based on reward provided. To

study effects of TAN activities on dopaminergic signaling in the striatum, we integrated the

model of TAN-dopamine interaction described above into the model of [Kim et al., 2017b].

A schematic of the integrated model is shown in Figure 7.

The model of reinforcement learning in basal ganglia we used in this study was previ-

ously published and is described in details in [Kim et al., 2017b]. Here, we only provide short

qualitative description. Behavioral experiments studying reinforcement learning mechanisms

assume that a choice must be made between several differentially rewarding behavioral op-

tions. Unlike decision-making tasks, motor learning does not imply a small or finite number

of possible choices. The only constraint is the context of the task, e.g. reaching from a fixed

initial position to an unknown destination. Our model has unlimited number of possible

actions. As the context, we used center-out reaching movements performed in a horizon-

tal plane. To calculate cortical activity corresponding to different movements, we explicitly

solved an inverse problem based on the given arm kinematics. Accordingly, for every possible

reaching movement we could calculate the corresponding motor program represented by the

activity profiles of cortical inputs responsible for activation of different muscles. To describe

different experiments, we define corresponding (arbitrarily large) sets of motor programs

that define all possible behavioral choices (actions) in each experimental context.

The classical view of action selection is that different motor actions are gated by tha-

lamocortical relay neurons. In the presented model, we assume that relay neurons can be
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activated at different firing rates, and their firing rates define contributions of different motor

programs to the resulting motor response. More specifically, in our model cortical input to

the spinal network is implemented as a linear combination of all possible motor programs

in the given context with coefficients defined by the firing rates of corresponding thalamo-

cortical relay neurons. This linear combination can be viewed as an aggregate input to the

spinal network from the cortical motoneurons exhibiting activity profiles corresponding to

different motor behaviors, e.g. reaching movements in different directions.

The classical concept of BG function is that the BG network performs behavioral choice

that maximizes reward. This action selection process results in activation of thalamic relay

neurons corresponding to the selected action and suppression of neurons gating other behav-

iors. Per this concept, each action is dedicated to specific neurons in different BG nuclei.

Their focused interconnections form action-related loops which start at the cortex, bifurcate

in the striatum into direct and indirect pathways converging on the internal Globus Pallidus

(GPi), and feed back to the cortex through the thalamus. Action preference is facilitated by

increased excitatory projections from sensory cortical neurons representing the stimulus to

direct pathway striatal neurons (D1 MSNs). Suppression of unwanted competing actions is

assumed to occur because of lateral inhibition among the loops at some level of the network

in a winner-takes-all manner.

In the model, novel cue-action associations are formed based on reinforcement learning

in the striatum. Eventually, the preferable behavior is reliably selected due to potentiated

projections from the neurons in prefrontal cortex (PFC), activated by the provided stimulus,

to D1 MSNs, corresponding to the preferred behavior. In technical terms, the output of

basal ganglia model is the activation levels of thalamocortical relay neurons in response

to the input from PFC neurons activated by visual cues. Each cure represents one of the

possible reaching targets. These levels are used as coefficients of the linear combination of all

possible actions which represents the motor program selected for execution. The resulting

motor program is used to calculate the endpoint of the movement using neuro-mechanical

arm model [Teka et al., 2017b]. Depending on the distance between the movement endpoint
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and the target position, the reward is calculated as dictated by the experimental context.

This reward value is used to calculate the reward prediction error as a temporal difference

between the current and previous reward values. The reward prediction error is used as

the reinforcement signal (positive or negative deviation of dopamine concentration from its

baseline levels) to potentiate or depress synaptic projections from PFC neurons, activated

by the visual cue provided, to the striatal neurons, representing the selected actions. See

details in [Kim et al., 2017b].

In [Kim et al., 2017b], the reinforcement learning is described as a trial-to-trial change

in the synaptic weights of prefrontal cortico-striatal projections as follows:

∆W 1
ji = λ1 · Cj ·D1

i ·RPE − dw ·W 1
ji (6)

∆W 2
ji = −λ2 · Cj ·D2

i ·RPE − dw ·W 2
ji (7)

where: ∆W 1
ji and ∆W 2

ji are the changes in synaptic weights between PFC neuron j

and D1− and D2 − MSNsi, respectively, λ1 and λ2 are the learning rates, RPE is the

reinforcement signal equal to the reward prediction error, Cj is the firing rate of PFC neuron

j;D1
i and D2

i are the firing rate of D1− and D2−MSNs i, respectively, and dw is a degradation

rate.

In the integrated model, we assume that learning in the striatum is a continuous process

defined by the deviation of dopamine concentration from its baseline value. Therefore, we

replace the difference equations above with their differential analogs with reward prediction

error replaced with the phasic component of the dopamine level:

d

dt
W 1

ji = λ̄1 · Cj ·D1
i · ([DA](t)− [DA]0)− d̄w ·W 1

ji (8)
d

dt
W 2

ji = −λ̄2 · Cj ·D2
i · ([DA](t)− [DA]0)− d̄w ·W 2

ji (9)

Considering that dopamine concentration ( [DA] ) excurses from the baseline ([DA]0)

during a short pause in TAN activity only, while the degradation process occurs continuously
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on a lot longer timescale, we can approximately rewrite these equations in a difference form

by integrating over the pause duration:

∆W 1
ji = λ̄1 · Cj ·D1

i ·
∫

([DA](t)− [DA]0) dt− dw ·W 1
ji (10)

∆W 2
ji = −λ̄2 · Cj ·D2

i ·
∫

([DA](t)− [DA]0) dt− dw ·W 2
ji (11)

Where λ1,2 = λ1,2 · 0.00125 if [DA] ≥ [DA]0 or λ1,2 = λ1,2 · 0.0025 if [DA] < [DA]o All

other parameters of BG model remain unchanged and can be found in Kim et al. (2017).
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Figure 1 Schematic diagram of two-pathway of basal ganglia integrated with TAN model.
Dopaminergic Substantia Nigra pars compacta signal represents the reward prediction error (re-
ward prediction error). PFC (PreFrontal Cortex); M1 (Primary Motor Cortex); PMC (PreMotor
Cortex); MSN (Medium Spiny Neuron); SNr (Substantia Nigra pars Reticulata); GPi (Globus Pal-
lidus internal); GPe (Globus Pallidus external); Substantia Nigra pars compacta (Substantia Nigra
pars Compacta); STN (SubThalamic Nucleus).
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4.2.3 Dopamine deficiency simulation

Striatal dopamine deficiency is caused by degeneration of dopamine producing neurons

as observed in Parkinson’s Disease patients. Parkinson’s Disease is a long-term neurode-

generative disorder of the central nervous system that mainly affects the motor system.

Shaking, rigidity, slowness of movements and difficulty with walking are the most obvious

Parkinson’s Disease symptoms so called parkinsonism or parkinsonian syndrome [Kalia and

Lang, 2015]. Motor learning is also impaired [Gutierrez-Garralda et al., 2013]. Aging is also

often accompanied by death of midbrain Substantia Nigra pars compacta neurons which

causes parkinsonism-like motor disorders [Kalia and Lang, 2015]. Based on the above, we

assume that dopamine deficiency results from a reduced number of dopamine neurons which

produce proportionally smaller amount of dopamine. To simulate this condition, we multiply

the right-hand side of the equation describing dopamine concentration dynamics

τDA
d[DA](t)

dt
+ [DA](t) = α

(
RPE ·

(
1− VTAN(t)

θDA

)
·Θ(θDA − VTAN(t)) + [DA]0)

(12)

by a coefficient α between 0 and 1 with α = 1 corresponding to 0% dopamine deficiency and

α = 0 meaning 100% dopamine deficiency, i.e., no dopamine is produced at all. Fifty percent

dopamine deficiency used in our simulations assumes that the coefficient used is α = 0.5, 30%

deficiency corresponds to α = 0.7, etc.

4.2.4 Levodopa medication simulation

Levodopa is an amino acid made by biosynthesis from the amino acid L-tyrosine

[Knowles, 1986]. Levodopa can cross the blood brain barrier whereas dopamine itself cannot

and so it is naturally transferred into the brain via blood circulation [Wade and Katzman,

1975]. Then levodopa as a precursor to dopamine is converted to dopamine by the enzyme

called DOPA decarboxylase (aromatic L-amino acid decarboxylase) in the central nervous

system [Hyland and Clayton, 1992]. Thus, levodopa application increases overall dopamine
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concentrations in the brain. Levodopa medication is a clinical treatment for Parkinson’s

Disease patients as dopamine replacement to compensate for the dopamine deficiency. It is

unclear whether levodopa improves the function of remaining dopamine neurons or affects

baseline levels of dopamine in the brain only.

Our objective was to investigate if increasing the baseline dopamine concentration by

levodopa without affecting the phasic dopamine release can improve learning performance

in simulated Parkinson’s Disease conditions. Thus we mathematically describe the effect of

levodopa medication by adding a constant term to the right-hand side of the equation for

dopamine concentration

τDA
d[DA](t)

dt
+ [DA]0 = α

(
RPE ·

(
1− VTAN(t)

θDA

)
·Θ(θDA − VTAN(t)) + [DA]0) + LDOPA

(13)

where LDOPA is an increase in the baseline dopamine concentration due to levodopa

administration. Correspondingly, to calculate the phasic component of dopamine dynamics

in conditions of dopamine deficiency and/or levodopa medication for the baseline dopamine

concentration, we use α[DA]0 + LDOPA instead of [DA]0.

4.2.5 Simulation environment

Our basic TAN activity-DA release interaction model was developed and simulated in

Matlab. Then the model was implemented in C++ to integrate it into our previous model of

reward-based motor adaptation described in detail in [Kim et al., 2017b]. All simulations for

behavioral experiments were performed using custom software in C++. The simulated data

were processed in Matlab to produce figures. For behavioral experiments, we performed 75

simulations (25 before perturbation, 25 with perturbation, 25 after perturbation) per session

and results of 8 sessions were averaged (see [Kim et al., 2017b] for more details).
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4.3 Experimental Results

4.3.1 Model of the TAN-dopamine relationship

Here we provide a short conceptual description of the model, sufficient for the qualitative

understanding of the system dynamics. For equations and details please see Methods.

Figure 2 Diagram of the mechanisms involved in interactions between TANs and dopamine-
release. Thalamic or cortical excitation leads to membrane depolarization in TANs. In response
to depolarization, calcium ions enter through voltage dependent calcium channels, and the slow
afterhyperpolarization current (IsAHP) is activated via the efflux of potassium ions through cal-
cium dependent potassium channels. Once the cortical/thalamic excitatory input ends, the efflux of
potassium ions causes the membrane to hyperpolarize, which in turn activates the inward dopamine-
dependent h-current (Ih) that increases the membrane potential. Furthermore, dopamine (DA)
from dopaminergic neurons (DANs) in substantia nigra pars compacta (SNc) binds to D2 receptors
on TANs, downregulating the h-current. In concert, TANs produce acetylcholine (ACh), which
binds to nicotinic acetylcholine (nACh) receptors on DAN axonal terminals. This cholinergic path-
way enables TANs to modulate the release of dopamine into the synaptic cleft. Importantly— since
the h-current is downregulated via activation of dopamine D2 receptors— the DA concentration
affects the refractory period of TANs.
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Rate-based TAN population In the model, we assume that TANs comprise a ho-

mogeneous neuronal population, whose activity is described by a single variable representing

the normalized firing rate of the population. We also assume that ACh release and the

activation of all cholinergic receptors in the model are proportional to TAN activity.

TANs receive excitatory inputs from the cortex and thalamus [Ding et al., 2010, Kosillo

et al., 2016, Yager et al., 2015]. These inputs are implemented in the model as a binary

input that—when activated—initiates a burst, followed by a pause in TAN activity.

TAN activity is attenuated by the slow afterhyperpolarization (sAHP) current. The

sAHP current is activated by TAN depolarization—represented in the model as TAN activity

in excess of a specified threshold. The kinetics of this current are defined on a timescale of

hundreds of milliseconds. This mechanism—intrinsic to the TAN population—is responsible

for generating the pause in TAN activity, following a stimulus from the cortex/thalamus.

TAN activity is also affected by a depolarizing hyperpolarization-activated h-current.

This inward current activates when TANs are hyperpolarized, and the timescale of its kinetics

is similar to the sAHP current. The h-current thus contributes to the recovery of TANs from

the pause in activity. In the model, the h-current deactivates in response to an increase in

the concentration of dopamine—an implementation of D2-receptor agonism, which serves as

a dopamine-based modulation of TAN activity [Deng et al., 2007]. This mechanism provides

the basis for a positive correlation between TAN pause duration and dopamine concentration.

Dynamics of striatal dopamine concentration In the model, the release of

dopamine in striatum depends on the firing rate of SNc dopaminergic neurons, which receive

cholinergic inputs through TAN-released acetylcholine. In the absence of acetylcholine—

which occurs during a TAN pause—dopamine release is proportional to the firing rate

of dopaminergic neurons. In contrast—during TAN tonic firing regimes—the release of

dopamine is constant and corresponds to the baseline extracellular concentration of stri-

atal dopamine. With increasing values of the cholinergic input to dopaminergic neurons,

dopamine release becomes less dependent on the firing rate of dopaminergic neurons, and
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increasingly dependent on the magnitude of the TAN-provided cholinergic modulation (see

Methods for mathematical description).

We also assume that the deviation of the firing rate of dopaminergic neurons from its

baseline encodes the difference between the expected and received reward—the reward pre-

diction error [Morris et al., 2004]. Positive reward prediction errors correspond to increases in

the firing rate of dopaminergic neurons, and negative reward prediction errors correspond to

decreases in the firing rate of the dopaminergic neuron population. To constrain the model,

we require that the baseline dopamine concentration is the same, whether it is defined by the

baseline firing of the SNc neurons in absence of cholinergic inputs during the pause in TAN

activity, or when controlled by those inputs during tonic TAN firing. We refer to deviations

from the baseline dopamine concentration as “phasic dopamine release”.

As follows from the above, for striatal dopamine dynamics to encode the reward pre-

diction error—i.e. for reward information to be processed in the striatum [Zhou et al.,

2002, Calabresi et al., 2000, Centonze et al., 2003, Pisani, 2003, Cragg, 2006, Joshua et al.,

2008]—a pause in TAN activity must occur. In the model (see Fig. 2), a thalamic stim-

ulus produces an initial increase in the TAN firing rate. When the stimulus ends, due to

activation of the sAHP current the TAN pause begins. During the pause, TANs stop releas-

ing acetylcholine, resulting in a phasic dopamine release—proportional to the firing rate of

dopaminergic neurons. While TAN activity is paused, the sAHP current slowly deactivates,

and eventually TAN activity returns to baseline [Cragg, 2006, Aosaki et al., 2010].

Figure 2 depicts the dynamics of TAN activity and dopamine concentration in cases of

positive, zero and negative reward prediction error, as generated by the model. If the reward

prediction error is positive, the dopamine concentration increases above the baseline during

the TAN pause (Figure 2A). Since the h-current in TANs is inactivated via D2 agonism, the

increase in dopamine release during the TAN pause prolongs the pause by suppressing the

h-current. If the reward prediction error is zero, the dopamine concentration does not change

during the TAN pause (Figure 2B), which means the pause is shorter than in the case of a

positive reward prediction error. Finally, when the reward prediction error is negative, the
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dopamine concentration falls below the baseline during the TAN pause (Figure 2C), which

upregulates the h-current and thus results in an even shorter pause duration. In summary,

the TAN pause duration positively correlates with the reward prediction error in the model.

Figure 3 The TAN pause duration positively correlates with the reward prediction error (RPE).
Thalamic stimulus induces an initial burst of TAN activity, followed by a TAN pause. The blue
curve is TAN activity; the orange curve is dopamine (DA) concentration; the purple curve is the
slow afterhyperpolarization current IsAHP and the green curve is the h-current Ih. (A) RPE=1,
the dopamine concentration increases during the TAN pause as a result of the positive RPE, which
slows down Ih activation and thus prolong the pause. (B) For RPE=0, the TAN pause is shorter,
because there is no phasic change in dopamine release, so the concentration of dopamine remains
at baseline during the TAN pause. (C) RPE=-1, the TAN pause is even shorter than for RPE=0
because there is a net decrease in dopamine concentration during the pause, which provides the
fastest Ih activation and hence, the shortest pause in TAN activity. Thalamic stimulation duration
was 300ms. TP stands for TAN pause duration in milliseconds.

4.3.2 Calibration of the model

To calibrate the model, we first simulated the condition without phasic dopamine release

and compared the results to those obtained by Ding et al. [Ding et al., 2010]. They exper-

imentally studied changes in TAN activity, which were modulated pharmacologically with

drugs affecting dopamine release, reuptake, and binding (Figure 3). We varied the model

parameters to reproduce the experimental time course of TAN activity in control conditions

as well as after application of sulpiride and cocaine (blue traces in Figure 3). Sulpiride is a

selective D2 receptor antagonist; thus, in the model administration of sulpiride corresponds

to maximal activation of h-current in TANs (see Methods), which in turn shortens the pause
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duration. Then—because cocaine is a dopamine transporter antagonist, which results in

an increase in extracellular dopamine—we simulated the cocaine condition by increasing

the tonic dopamine concentration in the model until the TAN pause duration matched the

experimental results.

Figure 4 TAN activity as simulated by the model against experimental data. (A-C) Peristimulus
time histogram (PSTH) and raster plot from striatal cholinergic interneurons in response to a train
(50Hz, ten pulses) of thalamic stimulation. The background figures were reproduced from Ding et
al. (2010) with permission. For easier comparison, all simulation results (blue lines) were rescaled
down at the same ratio and overlaid on the figures of experiment results. (A) Simulation (blue)
and data (gray bars) for control condition. (B) Simulation and data for sulpiride (D2 receptor
blockade) condition. (C) Simulation and data for cocaine (dopamine reuptake blockade) condition.
(D) Simulation of the hypothetical blockade of h-current. TP stands for TAN pause duration.

Additionally, we performed simulations of complete suppression of h-current (see Figure

3D) by setting the conductance of h-current to zero. This simulation qualitatively corre-

sponds to the experimental results concerned with h-current blockade as described by Deng

et al. [Deng et al., 2007].
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4.3.3 Striatal dopamine deficiency

Having calibrated the model, we further investigated the implications of the proposed

TAN-dopamine interactions. We first simulated the condition of striatal dopamine defi-

ciency, which may be caused, for example, by the degeneration of dopaminergic neurons in

the Substantia Nigra pars compacta that occurs in Parkinson’s Disease. Because dopamin-

ergic signaling is critical for action selection and learning in the basal ganglia, dopamine

deficiency adversely affects those functions. We assumed that the degenerated Substan-

tia Nigra pars compacta neuronal population releases less dopamine during both tonic and

phasic modes. Accordingly, dopamine deficiency conditions were simulated by reducing the

tonic dopamine concentration by a factor less than 1 and reducing the reward prediction

error by the same factor (see Materials and Methods). Thus, both tonic (baseline) and pha-

sic dopamine levels are decreased by the same factor; Figure 4A and 4B show changes in

TAN pause and dopamine dynamics in dopamine deficiency conditions. Noteworthy, in the

dopamine deficiency conditions, the duration of the TAN pause decreases in response to the

reduction in dopamine concentration (Figure 4).

4.3.4 Effects of levodopa medication

Using the model, we investigated the mechanisms of levodopa-based treatments for

dopamine deficiency. Levodopa (L-DOPA) is a common medication for Parkinson’s Dis-

ease patients to increase overall dopamine concentration in the brain [Brooks, 2008, Kalia

and Lang, 2015]. Levodopa readily passes across the blood brain barrier and converted to

dopamine [Wade and Katzman, 1975, Hyland and Clayton, 1992]. This additional extracel-

lular dopamine propagates nonspecifically throughout the brain. When simulating levodopa

treatment conditions, we assume that levodopa administration increases the tonic (baseline)

dopamine concentration but does not affect the phasic dopamine release. In the model, the

concentration of levodopa is represented as a constant added to the baseline dopamine con-

centration. Figure 4C shows the corresponding simulation results. Importantly, although

phasic dopamine release is unaffected by levodopa, the increase in tonic dopamine prolongs



46

the TAN pause duration.
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Figure 5 Effects of dopamine deficiency on TAN pause duration (TP, area between two dotted
blue lines) and changes in dopamine concentration (orange) with/without levodopa (L-DOPA).
In these simulations, a 50% dopamine deficiency (DA Def) causes both the baseline dopamine
concentration and the phasic dopamine release to decrease. (A1-2) RPE=1 and -1, no dopamine
deficiency for reference. (B1) RPE=1, 50% dopamine deficiency. Normally, the baseline concen-
tration of dopamine would be 1.0. With a deficiency of 50% of dopaminergic inputs, the baseline
dopamine concentration is exactly halved; additionally, the phasic release of dopamine decreases in
magnitude by 50%, and therefore the duration of the TAN pause also decreases. (B2) RPE=-1. The
tonic and phasic release of dopamine are both reduced by the 50% due to dopamine deficiency. Dur-
ing the pause, dopamine concentration converges to zero, so the pause is similar (slightly shorter) to
A2. (C1) RPE=1. When levodopa (0.5) is applied, the baseline concentration of dopamine returns
to normal (1.0) and the duration of the TAN pause duration increases, but it remains smaller than
the one with no DA deficiency (A1). This is because the magnitude of phasic dopamine release is
unaffected by levodopa. (C2) RPE=-1. When levodopa (0.5) is applied, the baseline concentration
of dopamine returns to normal (1.0) as for RPE=1, but the duration of the TAN pause exceeds the
one with no DA deficiency (A2). This is due to the increased (non zero) dopamine concentration
during the pause.
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4.3.5 Non-error-based motor adaptation during dopamine deficiency

In addition to our analysis of the local effects of dopamine deficiency on the striatal

dopamine concentration, we also simulated the effects of dopamine deficiency on motor

adaptation by incorporating the current model of TAN-dopamine interactions into our pre-

viously published model of reward-based motor adaptation [Kim et al., 2017b] (see Materials

and Methods for details). Using this integrated BG model—including the TAN-dopamine

interactions—we reproduced the non-error based motor adaptation experiments of Gutierrez-

Garralda et al. (2013). In these experiments, healthy subjects, Parkinson’s Disease patients,

and Huntington’s Disease patients threw a ball at a target under dffierent visual perturba-

tion scenarios. In one scenario, each subject’s vision was horizontally reversed using a Dove

prism so that missing the target to the right was percived as missing to the left, and vice

versa—corresponding to a sign change in the percieved error vs the actual error. This per-

turbation rendered error-based motor adaptation useless. In these experiments, each session

was comprized of 75 trials (25 trials before the perturbation, 25 trials with the pertubation,

and 25 trials after the perturbation). 8 sessions per subject were performed and averaged.

Subjects in the control group gradually overcame the visual perturbation and reduced the

distance error, but Parkinson’s Disease subjects showed poor learning performance (distance

errors fluctuated without any sign of adaptation in 25 trials, Figure 5A). In our simulations,

we assumed that dopamine deficiency was the cause of Parkinson’s Disease symptoms [Kalia

and Lang, 2015]. To see how much dopamine deficiency affects learning performance in

the model, we performed multiple simulations with changing dopamine deficiency conditions

from 0 to 90% (see Methods for details). The simulation of 0% dopamine deficiency (Figure

5B, control) shows a trend of decreasing errors, which accurately reproduces the experimen-

tal results of control subjects in [Gutierrez-Garralda et al., 2013] (Figure 5A, control). As

we can see in Figure 5B (Dopamine Deficiency), at 50% dopamine deficiency, learning per-

formance is poor and is similar to the experimental results in Parkinson’s Disease patients

(Figure 5A, PD). For over 50% dopamine deficiency, average distance error remains at the

initial level for all 25 trials, while error fluctuation and standard distance error decrease
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(result not shown). In summary, almost no learning occurs in the model when dopamine

deficiency exceeds 50%.

Figure 6 Non-Error based motor adaptation in 50% of dopamine (DA) deficiency condition
with/without levodopa medication. (A) Results of ball throwing tasks performed by healthy people
and Parkinson’s Disease (PD) patients. During experiment, a dove prism was used to horizontally
flip subjects’ vision as perturbation. This figure was adapted from Gutierrez-Garralda et al. (2013)
with permission. (B) Simulation results with levodopa medication. Levodopa means the condition
of 50% dopamine deficiency with levodopa medication ([LDOPA]=1.0). Colored center markers
(triangle or circle) are average error values of 8 sessions and error bars represent standard errors.
1 session = 75 trials (Baseline = 25 trials, Prism (visual perturbation) = 25 trials and Aftereffects
= 25 trials).

4.3.6 Recovery of non-error-based motor adaptation with levodopa

To investigate the effects of levodopa medication on reinforcement learning in the stria-

tum, again we simulated the same experimental settings. In the model, dopamine deficiency

was set at 50% to simulate Parkinson’s Disease conditions and simulations were performed

with varying levodopa values representing additional striatal dopamine converted from lev-

odopa medication. Figure 5B (Levodopa) shows the simulation results.

At levodopa values corresponding to 100 recovery of the baseline dopamine concentra-

tion, the average error decreases siginificantly at the end of the perturbation trials (Figure

5B, Levodopa). Thus, the overall learning perfomance of the model significantly improves

as a result of levodopa administration.

However—although the learning performance improves—the performance of levodopa-
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medicated patients is still noticably worse than in control subject simulations. This perfor-

mance difference can be easily understood in the context of our model of TAN-dopamine

interactions. In the model, when levodopa is introduced, the tonic concentration of dopamine

returns to healthy baseline levels, but the amplitude of phasic dopamine release is not re-

covered (compare Figure 4A1 with 4C1). Therefore, our integrated model simulations sug-

gest that Parkinson’s patients can partially regain learning performance following levodopa

administration—due to the increase in tonic dopamine concentration—but a full recovery is

impossible without a corresponding increase in phasic dopamine release.

4.4 Observations & Conclusions

In this study we investigated the relationship between striatal dopamine and TAN activ-

ity; specifically, we elucidated the mechanism by which this interaction affects reinforcement

learning in the striatum. Striatal TANs temporarily pause their tonic firing activity during

sensory or reward events. During tonic firing regimes, TAN activity defines the baseline stri-

atal dopamine concentration via nicotinic ACh receptors (nAChR) activation on dopamin-

ergic axon terminals [Rice and Cragg, 2004]; thus, the TAN pause enables a temporary

variation of dopamine release. The duration of the TAN pause is important as it creates

a window of opportunity for the dopaminergic neurons to transmit information about the

reward prediction error by phasically modulating the dopamine concentration in the stria-

tum. In turn, the concentration of dopamine determines the duration of the TAN pause by

modulating the h-current via D2 receptors in TANs [Deng et al., 2007]. Accordingly, in our

model, the TAN pause enables the phasic release of dopamine, and the duration of the TAN

pause varies with dopamine concentration.

One of the objectives of this study was to extend our previous model by adding details

of the striatal circuit concerned with cholinergic modulation of dopamine release. By doing

so, we were able to investigate how TAN activity contributes to reinforcement learning

mechanisms in simulated behavioral experiments.

In the model, phasic dopamine levels are defined by the activity of dopaminergic neurons,
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which codes the reward prediction error. Deviations of striatal dopamine concentration from

its baseline underlie the plasticity of cortico-striatal projections to medium spiny neurons,

representing a basis for reinforcement learning in the striatum. These deviations last for the

duration of the pause in TAN activity. Therefore, the magnitude of long-term potentiation

or depression of cortico-striatal projections depends on the pause duration, which may affect

learning performance.

TANs express D2 dopamine receptors, which are inhibitory. Through this mechanism,

the duration of the pause in TAN activity positively correlates with striatal dopamine con-

centration. In conditions of dopamine deficiency, the baseline dopamine concentration is

reduced, which also shortens the duration of the TAN pause.

Based on our model predictions, we speculate that levodopa medication improves learn-

ing performance in Parkinson’s patients by increasing the baseline dopamine concentra-

tion and thus prolonging the pause in TAN activity—even though the magnitude of phasic

dopamine excursions may be not affected by this medication.

4.4.1 Dopamine release and cholinergic regulation

Within the Substantia Nigra pars compacta—a structure in the midbrain—are dopamin-

ergic neurons that project to the striatum. These dopaminergic neurons are known to encode

reward-related information by deviating from tonic baseline activity [Schultz, 1986, Hyland

et al., 2002]. Striatal dopamine release occurs via vesicles at local dopaminergic axon termi-

nals [Sulzer et al., 2016].

However, the amount of dopamine released is likely to be not always defined by the

firing rate of the presynaptic neuron. Cholinergic activity plays a major role in modulation

of dopamine release in the striatum. For example, synchronized activity of striatal TANs

directly evokes dopamine release at the terminals—regardless of the activity of dopaminer-

gic neurons [Cachope et al., 2012, Threlfell et al., 2012]. TANs release acetylcholine (ACh),

which binds to nicotinic receptors on the axons of dopaminergic neurons—and when these

cholinergic inputs are activated, dopamine release is independent of electrical stimulation
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frequency [Rice and Cragg, 2004]. However, when these nicotinic receptors (nAChRs) are

blocked, the magnitude of dopamine release becomes proportional to the stimulation fre-

quency [Rice and Cragg, 2004]. Therefore, it is necessary for the cholinergic inputs to

dopaminergic neurons to cease so that dopamine release reflects the firing activity of the

presynaptic neurons.

Our model assimilates the above observations via the following assumptions. Baseline

striatal dopamine concentration is determined by the presynaptic action of ACh on dopamin-

ergic terminals [Threlfell et al., 2012] through nAChR desensitization. With no cholinergic

inputs, e.g. when TAN activity ceases or nAChRs are blocked, the firing rates of dopaminer-

gic neurons define the dopamine release. In other words, the phasic component of dopamine

release is determined by Substantia Nigra pars compacta activity, which codes the reward

prediction error. Therefore, the functional role of the pause in TAN activity is to allow the

striatal dopamine concentration to vary, thus creating a window of opportunity for dopamin-

ergic neurons to deliver the reward information to and enable reinforcement learning in the

striatum.

Variations in the phasic release of dopamine reflect the reward prediction error [Holler-

man and Schultz, 1998, Schultz, 1999]; thus, in the case that the reward received is exactly

the same as the expected reward—reward prediction error is zero—the dopamine concen-

tration should not change during the TAN pause. In the model, as explained above, the

baseline dopamine concentration is constrained by cholinergic inputs from TANs, and dur-

ing the pause, dopamine release is controlled by the firing rate of dopaminergic neurons

in the Substantia Nigra pars compacta. Therefore, we constrained the model by requiring

that Substantia Nigra pars compacta firing corresponding to a reward prediction error value

of zero (RPE=0)—in absence of cholinergic input during the pause—leads to exactly the

same dopamine release as during normal TAN activity. The exact homeostatic mechanisms

responsible for such tuning remain open for speculation.

In our model, we did not differentiate between different parts of striatum in terms

of cholinergic regulation of dopamine release. However, it was reported that the nucleus
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accumbens shell, the most ventral part of striatum, has a distinctive modulation mechanism

of dopamine release with much higher activity of acetylcholinesterase minimizing nAChR

desensitization, which is different from nucleus accumbens core and dorsal striatum [Shin

et al., 2017]. There is also evidence that DA release in nucleus accumbens is modulated by

ACh not only through nicotinic but also via muscarinic receptors of several types activation

of which has different effects on DA concentration [Shin et al., 2015]. Our model does not

account for this.

In our model, we focused on the functional role of TAN activity-dopamine interactions

in reinforcement learning. Thus, we did not consider the effect of TANs on other striatal

neuron types. For example, MSNs are known to receive cholinergic inputs via muscarinic M1

and M2 receptors. Functional role of these projections was discussed elsewhere. In particu-

lar, other computational models proposed that TANs might have a timing control function

to hold and release MSNs [Ashby and Crossley, 2011, Franklin and Frank, 2015b]. Besides

TANs and MSNs, many other types of interneurons have been identified in striatum, such

as parvalbumin fast spiking interneurons, neuropeptide Y interneuron, calretinin interneu-

rons, Tyrosine Hydroxylase interneurons [Tepper et al., 2010, Xenias et al., 2015, Tepper

et al., 2018]. Functional roles of these interneurons and their relationships with cholinergic

interneurons are not clearly understood. However, this does not rule out the possibility, that

some of these neuron types interact with TANs and thus may play a role in TAN activity

regulation.

4.4.2 TAN pause duration

In the model, the pause in TAN activity is initiated by transient excitatory corticotha-

lamic inputs. Furthermore, the duration of the pause is dependent on the extracellular

dopamine concentration [Deng et al., 2007, Ding et al., 2010, Oswald et al., 2009]. To repli-

cate this dependence, we calibrated the duration of TAN pause in the model to in vitro

experimental data from Ding et al.

It is important to note that longer thalamic stimulation means stronger activation of
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the slow after-hyperpolarization (sAHP) current, and hence more time is required for its

subsequent deactivation. This prediction is consistent with the in vitro studies by Oswald

et al. In their experiments, a higher number of stimulation pulses did generate stronger

afterhyperpolarization in TANs below their resting potential—and accordingly evoked a

longer pause in TAN activity. In addition, several in vitro and in vivo experiments agree

that the magnitude of thalamic input positively correlates with the TAN pause duration

[Oswald et al., 2009, Doig et al., 2014, Schulz et al., 2011]. Although we cannot directly

compare our simulation results with their data, our TAN model exhibits a qualitatively

similar relationship between input duration and pause duration.

To illustrate this relationship, we performed simulations, varying the duration of tha-

lamic stimulation (from 100 to 400ms) as shown in Figure 6A. The duration of the TAN

pause increases non-linearly in response to increasing thalamic stimulation duration. Inter-

estingly, this increase in the pause duration is stronger for higher reward prediction error

values, which is because of the larger phasic dopamine concentration when the reward pre-

diction error increases. The reward prediction error is independent of the thalamic stimulus

duration, and the pause duration is sensitive to both variables. Thus, we manipulated each

variable independently to show the dependence of the pause duration on both.

Furthermore, the TAN pause duration is dependent on any change in the extracellular

dopamine concentration—not just the RPE-determined phasic dopamine release. Therefore,

we also produced simulations demonstrating the effects of dopamine deficiency as well as

the effect of levodopa administration on the TAN pause duration. Importantly, dopamine

deficiency has almost no effect on the TAN pause duration when the reward prediction

error is at a minimum (see the orange line in Figure 6B). This model behavior follows

from the observation that the reward prediction error correlates with the magnitude of

phasic dopamine release. If the reward prediction error is at its minimum possible value

(in our model, RPE=-1), then neither the amount of phasic dopamine nor the duration

of the TAN pause can be decreased by dopamine deficiency conditions. In contrast, the

administration of levodopa affects the TAN pause duration without any dependence on
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the reward prediction error. This follows from the fact that levodopa alters the baseline

concentration of dopamine—not the phasic dopamine release—which is not dependent on

the reward prediction error.

Figure 7 (A-C) The changes in TAN pause (TP) duration by three different factors: the duration
of thalamic stimulation, the percentage of dopamine (DA) deficiency, the L-DOPA level in 50 DA
deficiency condition when RPE (Reward Prediction Error) = 1 (phasic, reward), 0 (tonic baseline),
and -1 (phasic, aversive) respectively. (A) The changes in TP duration by the duration times of
thalamic stimulation. The increment of thalamic stimulation duration increases TP duration for
all RPE values. The difference of TP duration between RPE=1 and RPE=-1 keeps increasing
nonlinearly as increases in thalamic stimulation duration. (B) The changes in TP duration by the
percentages of DA deficiency. The increased percentage of DA deficiency decreases TP duration
when RPE=1 and 0. For RPE=-1, the TP duration is nearly independent of the amount of DA
deficiency, which is the result of RPE=-1 corresponding to the minimum possible DA concentra-
tion during the TP. Therefore, the TP duration for RPE=-1 is unaffected by the degradation of
dopaminergic inputs. The deviation difference of TP duration from RPE=0 between RPE=1 and
RPE=-1 keeps decreasing nonlinearly as increases in percentage of DA deficiency, which means
minimizing the time difference between reward and aversive conditions for reinforcement learning
and in turn deteriorating the learning performance. (C) The changes in TP duration by the levels
of L-DOPA in 50 DA deficiency condition. In response to the administration of L-DOPA, the TP
duration increases similarly for all RPE values. This follows from the fact that L-DOPA alters the
baseline concentration of dopamine, but does not affect the phasic dopamine release.

4.4.3 Comparisons with other models

The model presented here is not the first computational model of TAN activity. For

example, Tan and Bullock previously developed a computational model incorporated h-

current as an intrinsic property of TANs [Tan and Bullock, 2008]. Their model was also

a non-spiking model that focused on the generation mechanism of TAN-specific activity

patterns, which the authors attributed to intrinsic TAN properties. Even though their

model accounted for modulation of TAN activity by dopamine level, it did not include a
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mechanism that affects the dopamine release, which our model did.

Ashby and Crossley also developed a BG model that included Hodgkin-Huxley style

spiking TANs with h-current [Ashby and Crossley, 2011]. Their model emphasized the in-

hibitory effect of TAN activity on striatal medium spiny neurons (MSNs) through muscarinic

receptors. They proposed that tonic TAN activity normally suppresses MSN firing, which is

released during the TAN pause. Similar idea was exploited in the computational model of

BG circuits by [Franklin and Frank, 2015b] who proposed that the pause in TAN activity is

formed by local striatal inhibition to code the uncertainty and regulate learning rates through

cholinergic projections to MSNs. The model we propose significantly differs from these two

models with respect to the gating function of the pause in TAN activity. Our model focuses

on cholinergic dopamine regulation and does not incorporate direct cholinergic projections

to—or GABAergic projections from—MSNs.

To the best of our knowledge, the model proposed here is the first that incorporates

bidirectional effects of cholinergic and dopaminergic signaling in the striatum and explores

the implications of these interactions by simulating real and hypothetical behavioral exper-

iments in realistic settings. This was made possible by embedding our implementation of

TAN-dopamine interactions into the model of reward-based motor adaptation we previously

published [Kim et al., 2017b].

4.4.4 Impaired learning in Parkinsonians and the effect of levodopa medi-

cation

Striatal dopamine deficiency in Parkinson’s Disease is concerned with degeneration of

dopaminergic neurons which results in smaller amounts of dopamine released. This affects

both the baseline striatal dopamine concentration and phasic excursions of dopamine con-

centration that encode the reward prediction error. Our model predicts that lower dopamine

concentration also leads to shortening of the pause in TAN activity, during which the phasic

dopamine component drives reinforcement learning in the striatum. Using the model, we

find that dopamine deficiency influences learning performance in the BG not only due to
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smaller magnitude of the learning signal, but also by decreasing the duration of the pause

in TAN activity. From our simulation results, we found that 50% of dopamine deficiency

in the model is sufficient to induce as poor learning performance as observed in Parkinsoni-

ans. This finding is consistent with the experimental data on striatal dopamine deficiency in

Parkinson’s Disease patients [Scherman et al., 1989] where it was reported that Parkinsonian

symptoms appear when striatal dopamine deficiency exceeds 50%.

Levodopa is one of common treatments for early stage Parkinson’s Disease patients

[Brooks, 2008, Kalia and Lang, 2015]. Levodopa administration increases Parkinson’s Dis-

ease patient’s UPDRS (Unified Parkinson’s Disease Rating Scale) score by two or three

times [Brooks, 2008, Chen et al., 2016, Beigi et al., 2016]. In Gutierrez-Garralda et al.’s

experiments [Gutierrez-Garralda et al., 2013], Parkinson’s Disease patients were tested in

the morning before taking their levodopa medicine to avoid levodopa effects on the results.

According to a report, a standard dose of intravenous levodopa infusion increased the stri-

atal dopamine level by 5-6 times [Zsigmond et al., 2014]. Due to the lack of data, it is hard

to know by how much the oral intake of levodopa increases dopamine concentration in the

striatum. However, from the conventional dosage for Parkinson’s Disease patients [Brooks,

2008], we can infer that oral levodopa may take more time to increase striatal dopamine

levels and have less efficacy on striatal dopamine levels than intravenous levodopa infusion.

In our simulations, levodopa 1.0 (2 times higher than baseline dopamine in 50% dopamine

deficiency) caused the learning performance to recover close to the control levels (see Fig-

ure 5B). This effect is solely provided by the prolonged pause in TAN activity due to the

levodopa-induced increase in baseline dopamine concentration. Interestingly, the extended

pause duration at levodopa 1.0 is close to the one in control (no dopamine deficiency) con-

ditions (see Figure 6C). The required increase of the baseline dopamine concentration by

levodopa administration and the one predicted by the model is within a ballpark range.
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4.4.5 Alternative TAN pause mechanisms

In our model, the pause in TAN activity is induced by a cortico-thalamic excitatory

input which causes after-hyperpolarization. However, other mechanisms for TAN pause gen-

eration have been proposed. For example, there exist inhibitory projections from GABAergic

neurons in ventral tegmental area (VTA) to the cholinergic interneurons in nucleus accum-

bens [Brown et al., 2012]. Brown et al. (2012) were able to generate a pause of TANs in

nucleus accumbens by optogenetically activating VTA GABAergic projection neurons and

link this to potentiation of associative learning.

Interestingly, regardless of how the pause is generated, our model would exhibit the

same qualitative features of interactions between TAN activity and DA release. Indeed,

TAN recovery from the pause would still depend on activation of depolarizing h-current

negatively modulated by DA through D2 receptors. Therefore, TAN pause duration would

positively correlate with DA concentration thus providing the same basis for our conclusions.

On a side note, GABAergic inhibition of TANs has not been found in dorsal striatum

[Zhang and Cragg, 2017], which means that external inhibition cannot represents the primary

mechanism of the pause in dorsal striatal TAN activity. The same lab has recently provided

further evidence that the pause in TAN activity is associated with intrinsic properties of

striatal cholinergic interneurons, induced by an excitatory input, mediated by potassium

currents, and modulated by dopamine [Zhang et al., 2018].
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5

THE INTERPLAY BETWEEN CEREBELLUM AND BASAL GANGLIA IN

MOTOR ADAPTATION: A MODELING STUDY

5.1 Background & Significance

5.1.1 Background

Motor adaptation to perturbations is provided by learning mechanisms operating in the

cerebellum and basal ganglia. The cerebellum normally performs motor adaptation through

supervised learning using information about movement error provided by visual feedback.

However, if visual feedback is critically distorted, the system may disengage cerebellar error-

based learning and switch to reinforcement learning mechanisms mediated by basal ganglia.

Yet, the exact conditions and mechanisms of cerebellum and basal ganglia involvement in

motor adaptation remain unknown. We use mathematical modeling to simulate control of

planar reaching movements that relies on both error-based and non-error-based learning

mechanisms. We show that for learning to be efficient only one of these mechanisms should

be active at a time. We suggest that switching between the mechanisms is provided by a

special circuit that effectively suppresses the learning process in one structure and enables it

in the other. To do so, this circuit modulates learning rate in the cerebellum and dopamine

release in basal ganglia depending on error-based learning efficiency. We use the model to

explain and interpret experimental data on error- and non-error-based motor adaptation

under different conditions.

5.1.2 Significance

Motor learning is a process of acquiring skills to perform an appropriate motor task

in response to a sensory cue, e.g. precise reaching with a mouse pointer to a target spot

shown on the screen. Motor adaptation is a form of motor learning to overcome movement
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perturbations caused by novel environment or altered sensory feedback. During motor adap-

tation, future movements are corrected using error information acquired on previous trials

[Izawa et al., 2008]. Representation of the movement error depends on available sensory com-

ponents. For example, during reaching movements under unexpected perturbation, visual

feedback can provide a vector displacement of the movement endpoint relative to the target

position. This vector error may be used by the central nervous system to adjust motoneuron

activity and eliminate the effects of the perturbed environment. It has been suggested that

this process involves the cerebellum that adjusts the internal model of the body based on

information about movement error [Izawa et al., 2012]. This type of motor adaptation is

often referred to as supervised or error-based learning [Doya, 2000b].

Error-based learning fully relies on availability and correct representation of the move-

ment error. However, in certain conditions the necessary information about error is limited

or unavailable. Several related experimental conditions were proposed. For example, in

reaching experiments, the subject’s arm can be covered with a non-transparent screen and

visual feedback is transformed by rotating the image of the movement on a computer screen

[Galea et al., 2010], inverting the image with a Dove prism [Gutierrez-Garralda et al., 2013],

etc. When adequate visual feedback is not available, error-based learning becomes impossi-

ble. However, motor adaptation can still be observed if some other measure of the movement

inaccuracy is provided. This may include a score representing the distance from the move-

ment endpoint to the target, or a reward for a reach performed within a target spot [Izawa

and Shadmehr, 2011, Shmuelof et al., 2012]. This type of motor adaptation is referred to

as non-error-based learning and is mediated by the basal ganglia (BG) via reinforcement of

more successful movement attempts [Izawa et al., 2012, Doya, 2000b].

The emergent view is that motor adaptation can be simultaneously provided by two

distinct learning mechanisms: (1) an error-based learning mechanism performed by the cere-

bellum and (2) a non-error-based learning mechanism that operates in BG. Importantly,

these two learning mechanisms differ in their use of sensory information (vision, propriocep-

tion, etc.). In the error-based (supervised) learning mechanism, sensory input is explicitly
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used to compute a vector displacement between the final position and a given target position,

and the magnitude of this displacement is reduced with every trial. In contrast, the non-

error-based (reinforcement) learning mechanism does not explicitly calculate the distance to

a target and relies on whether the “reward” value for the performed movement is better than

for the previous ones.

Various experimental setups were implemented to experimentally distinguish between

error based and non-error-based learning. The most intriguing results were obtained in

experiments where visual feedback was so distorted that efficient error-based learning was

no longer possible. For example, Gutierrez-Garralda et al. [Gutierrez-Garralda et al., 2013]

used a Dove prism as a visual perturbation while the participants attempted to throw a ball

at a target, so that their perceived error was inverted. In these conditions, faulty cerebellar

error-based learning would cause participants to perform progressively worse at the task.

The control group of participants was still able to adapt to the perturbation, while the

groups with impaired basal ganglia function failed to adapt. Interestingly, in experiments

where instead of a Dove prism, a shifting wedge prism (that did not change perception of

the displacement) was used, participants adapted to the perturbation regardless of the basal

ganglia integrity. Because of this, Gutierrez-Garralda et al. [Gutierrez-Garralda et al., 2013]

suggested that participants suppressed malfunctioning error-based learning mechanisms and

engaged the BG-based reinforcement learning to successfully adapt to the visual distortion

used. However, it remains unclear what triggered one of the two mechanisms to operate or

disengage depending on conditions.

Previously, we suggested a mathematical model of reinforcement-based motor adapta-

tion [Kim et al., 2017b] for planar reaching movements [Teka et al., 2017b]. The objective of

the present study was to explain how supervised or reinforcement learning could be engaged

or suppressed during motor adaptation depending on the perturbation. To do so we aug-

mented the model by including a cerebellar compartment performing trial-to-trial movement

correction based on supervised learning. Using the extended model, we suggest a simple in-

trinsic mechanism that may orchestrate the involvement of error- or non-error-based learning



62

via regulating the cerebellar learning rate and dopaminergic signaling in basal ganglia.

5.2 Results

In this study, we modeled the neuromechanical control of reaching movements in humans

and used this model to reproduce and explain the results of previous experimental studies

demonstrating motor adaptation during reaching [Shmuelof et al., 2012, Schlerf et al., 2013].

In these experiments the participants did not have direct visual feedback from the arm. In-

stead, the arm endpoint was represented as a cursor on a display. During each experiment,

different targets appeared on the screen and the task was to move the arm so that the cursor

would reach the target. Such a setup allowed an experimenter to easily alter the visual feed-

back if needed. The applied perturbations included image rotations around the movement

starting point and reflection across to the vertical axis. In presence of the perturbation, the

participants had to learn to reach the target relying on the distorted visual feedback or other

available information. To prevent the subjects from making correction during the movement,

they were either forced to perform movements as quickly as possible or the cursor was only

shown on the screen when the movement was complete.

Previously we developed a model for neural control of goal-directed reaching movements

that simulated the entire pathway from the motor cortex through spinal cord circuits to the

muscles controlling arm movements [Teka et al., 2017b]. In that model, the arm consisted of

two joints (shoulder and elbow), whose movements were actuated by six muscles (4 single-

joint and 2 two-joint flexors and extensors). Cortical inputs were calculated by a cortical

“controller” based on (a) an internal model of the arm, (b) a proposed straight-line trajectory

to a target position, and (c) a predefined bell-shaped velocity profile. The neural controller

generated a motor program (six time-varying signals) producing a task-specific activation

of low-level spinal circuits that in turn induced the muscle activation pattern resulted in

the intended reaching movement. In our present study, the internal model of the body

used to calculate the motor program, or the perception of the target position could be

perturbed, resulting in an imprecise or completely faulty reaching movement. Therefore, we
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augment the model by sequentially adding structures responsible for different forms of motor

learning allowing us to reproduce the experimental data on motor adaptation to the applied

perturbations.

The overall organization of the Results section is as follows. First, we incorporate the

error-based learning mechanism performed by the cerebellum, in the model. The mech-

anism modifies the motor program based on supervised learning. Then, we show that if

the perception of movement error is strongly distorted, the error-based adaptation quickly

worsens the performance. Experimentally, it was found that the subjects switch to a differ-

ent non-error-based mechanism of motor adaptation mediated by BG in the latter situation

[Gutierrez-Garralda et al., 2013]. Following our previous publication [Kim et al., 2017b],

we add the BG network to the model which participates in forming the cortical motor pro-

gram based on reinforcement of previously successful reaching attempts or on suppression

of unsuccessful ones. Via simulations we show that if not orchestrated, the supervised and

reinforcement learning processes do not get along. To avoid their interference, we incorpo-

rate a simple mechanism which regulates the learning rate in cerebellum and dopaminergic

signaling in striatum and show its efficiency in endogenous switching between error-based

and non-error-based learning mechanisms. Finally, we compare our model performance with

existing literature data on the subject.

5.2.1 Supervised learning in cerebellum during reaching

In the present model we used the previous model [Teka et al., 2017b] as a basis, but

added a model of cerebellum as an artificial neural network with an input from the cortical

controller and the output to the spinal cord network (Fig 1), whose function was to alter

the motor program in order to correct the movement. The synaptic weights of the cerebellar

network were updated based on a classical error back propagation procedure [Dreyfus, 1990]

using a squared distance between the movement endpoint and the target (the squared error)

as a cost function (see Methods for details). Simply said, if the produced movement failed

to precisely reach the target, the model adjusted the weights in the cerebellar network
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proportionally to the derivatives of the squared error with respect to the weights. The

coefficient of proportionality is called the learning rate which defines how quickly the system

adapts to the perturbation. The model also accounted for a trial-to-trial degradation of the

cerebellar network weights which reflected “forgetting” process in the system and defined

how quickly the accumulated correction would wash out if visual feedback was disrupted.

Figure 1 General model structure. (A) To perform a reaching movement the brain creates a mo-
tor program and sends it as an input to the cerebellum implemented as an artificial neural network.
The cerebellum modifies the motor program and sends it as an input to the neuromechanical arm
model. The perceived displacement between the movement endpoint and the target position (the
vector error) is fed back to the cerebellum (visual feedback) and used to calculate the adjustment
of weights in the cerebellar network using error back propagation. (B) We simulated reaching
movements which started from a fixed initial position, aiming to reach a target located on a circle
centered at the starting point with a radius of 20 cm. The direction of the movement relative to
the body position was defined by the angle as shown.

To illustrate the process of error-based motor adaptation provided by the cerebellum,

we simulated reaching movements in conditions of two different visual perturbations. Each

simulation consisted of three consecutive phases. During the first phase, we simulated reach-

ing to a target located in 90 degrees direction (see Fig 1B for definition of directions) with

veridical feedback (i.e. the perceived endpoint position and expectation of where it should
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appear as a result of the movement coincided). During the second phase, a visual perturba-

tion was introduced. Here we used two different perturbations: a shift and a rotation. The

rotation perturbation mimicked the rotation of the image around the initial movement point

by 30 degrees counterclockwise so that the perceived target position was at 120 degrees (see

Fig 1B). Note, that during such a perturbation the perceived vector error (the perceived

displacement of the movement endpoint relative to the target) is rotated by the same angle

relative to the actual vector error. The shift perturbation consisted in parallel translation

of the image in such a way that the target was perceived at the same location as during the

rotation perturbation. The difference was in perception of the vector error which was not

perturbed during the shift perturbation. During the third phase, the veridical feedback was

restored.

Fig 2 depicts motor adaptation results to these two perturbations as generated by the

model. During the first “BASELINE” phase the model generated movements that reached

closely to the target within natural movement variability (see Methods for details). After

perturbation (see ADAPT in Fig 2), the model missed the target by the angle which initially

coincided with the magnitude of the perturbation of 30 degrees, but then the angular error

gradually reduced to below 10 degrees on subsequent trials as the cerebellum learned to

correct the movement. When the perturbation was removed (see POST in Fig 2), the

perceived and actual target positions coincided again. However, at the beginning of the

POST phase, the cerebellum network was primed to counteract the previous perturbation, so

it required certain number of trials for the system to come back to baseline. This phenomenon

is often referred to as an aftereffect of a perturbation.

Incomplete elimination of errors, observed in the end of ADAPT epoch of Fig 2 is well-

known effect [Vaswani et al., 2015], widely observed in experimental studies of motor learning.

To our knowledge so far there is no theory for the neural origin of it. Phenomenologically

it is usually interpreted as a result of the balance between learning and “forgetting”. In a

linear Kalman-filter like state space model of the CB it is implemented by adding a damping

term to the equation. Our model also has this damping term (which we call “degradation”)
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that leads the error to saturate at a non-zero level defined by the balance between learning

and degradation processes. See Methods section for implementation details.

Figure 2 Simulation of cerebellar-based adaptation to mild perturbations. The plot shows the
movement error in degrees versus trial number during simulation of the 3-phase experiment when
a visuomotor perturbation is introduced in the beginning of ADAPT phase and removed in the
beginning of POST phase. The perturbations are the shift (red line) and 30-deg visuomotor rotation
(blue line) (see text for details). Solid lines show the 32-run per trial average of the angle difference
between the perceived target position and the perceived hand/cursor position versus the trial
number. After the perturbation is introduced, the initial error is approximately equal to the
shift/rotation angle. Then it converges to the asymptote below 10 degrees. The asymptote is
nonzero due to “forgetting” effect presented in error-based learning, corresponding to the damping
term in the cerebellum model. After the perturbation is removed, the error changes its sign and
abruptly increases in magnitude again (perturbation aftereffect). Then it converges back to zero.

As mentioned above, the rotation perturbs the perception of movement error and thus

may adversely affect the supervised learning process relative to the shift. Interestingly, for a

perturbation of the magnitude used, the courses of adaptation to the shift and the rotation

were very similar. Thus, 30 degrees rotation did not distort the vector error to noticeably

impair the error-based motor adaptation.
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5.2.2 Model calibration

We used the experimental protocol and data from the study of Schlerf et al. [Schlerf

et al., 2013] to calibrate the model parameters (see Schlerf et al. context in Methods), and

reproduce some of their results. In short, in their experiments, the participants performed

slicing movements to reach the targets appearing on the screen at a 10 cm distance from the

starting location. The directions to the targets were uniformly randomly distributed within

the sector from 75-15 to 75+15 degrees (see Fig 1B for directions). The participants were

divided in two groups: healthy controls and cerebellar degeneration patients.

First, the participants had to adapt to visuomotor rotation introduced in 5-degree steps.

There were 4 incremental steps with successive rotations by 5, 10, 15, and 20 deg. The 20-

deg rotation was then repeated and followed by 5-deg decrements involving rotations by 15,

10, and 5 deg. Each step involved 16 trials. Next, there was an alternation between blocks

of trials with no rotation and blocks of trials with an imposed 20-deg rotation. The rotation

was introduced twice, with each block sandwiched between no-rotation blocks.

We used these data to calibrate the model by tuning the learning rate, the degradation

rate and the movement endpoint variability magnitude in both control and cerebellar patient

groups to fit the adaptation times and asymptotic errors in all cases. Fig 3 represents our

simulations which are remarkably similar to the experimental data in Fig 2 from [Schlerf

et al., 2013]. Fig 3A shows simulations of 650 trials (reaching movements) as deviations of

movement directions from the unperturbed target. The solid black line shows the pertur-

bation angle which changes from 0 to 20 deg and back again in stepwise manner between

trials 200 and 400, and abruptly between trials 450 and 600. In the model, after calculating

the movement endpoint, we add to it a random number with standard deviation character-

izing the magnitude of uncontrolled movement variability. This results in a significant noise

in movement direction as seen in Fig 3A. In Figs 3B and 3C to reduce the noise we show

the averages over 16 runs for the perturbation epochs only. In this representation, one can

clearly see the adaptation process with subsequent saturation of the error at a certain level

(the asymptotic error, see Fig 3C).
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The saturation of the error happens when balance is achieved between the learning and

degradation processes, i.e. when the change in weights due to learning in the cerebellar

network is precisely compensated by their decay. Therefore, the asymptotic error is a de-

creasing function of the learning rate and an increasing function of the degradation rate. In

contrast, the adaptation time (time to saturation) is decreasing with both rates which makes

it possible to infer the learning rate and the degradation rate from Schlerf et al. data with

high accuracy.

In study of Schlerf et al. [Schlerf et al., 2013] there was a striking difference between

the asymptotic errors in the control group and cerebellar ataxia patients (see Fig 3C for our

simulations reproducing the same). As explained above, greater asymptotic errors can result

from the lower learning rate or from faster degradation. Schlerf et al. used a simple Kalman

filter model to analyze the experimental data which showed that patients with cerebellar de-

generation had slightly higher learning rate and significantly shorter memory corresponding

to the higher degradation rate. Besides, the variability of movement endpoint in cerebellar

patients was significantly larger than in healthy controls. Our results are largely consistent

with Schlerf et al. conclusions. Specifically, the movement endpoint noise magnitude (mo-

tor noise hereinafter) was increased to replicate the larger movement variability observed in

ataxic patients. Motor noise magnitude per se hardly influenced the adaptation efficiency

(not shown). To reproduce data from ataxic patients, we have increased the cerebellar degra-

dation rate, which allowed the model to reproduce the asymptotic errors in this group (Fig

3).
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Figure 3 Simulations of adaptation to the visuomotor rotation perturbations. Each plot shows
reaching angle dynamics which is defined here as a difference between the perceived target position
and the movement direction. In this simulation (similar to Schlerf et al. [Schlerf et al., 2013]
experiments) a visuomotor rotation first was introduced and removed in a stepwise manner (Multi
Step phase), then it was introduced and removed abruptly (Single Step phase). The solid black
line shows the actual target position relative to the perceived target position (rotation angle); the
blue line shows simulation corresponding to the control group in Schlerf et al.; the red line shows
the simulation with increased degradation rate and increased noise in the movement endpoint to
mimic the cerebellar ataxia group data from Schlerf et al. (see text for details); the light grey areas
show the standard error of the mean (SEM) over 16 runs. (A) one trial simulation of the control
(blue) and ataxic (red) conditions; (B) 16-runs average multistep perturbation adaptation close-up
(C) 16-runs average single step perturbation adaptation close-up.
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5.2.3 Cerebellum model fails to adapt to strong perturbations.

After calibration, the model presented above provides motor adaptation closely re-

producing experimental data in the context of mild visual perturbations. However, as we

describe below, it failed to adapt to strong visual perception perturbations. As examples

of such perturbations we simulated the rotation by 90 degrees and reflection of the visual

field in horizontal direction (see Fig 4). Both perturbations not only required the model

to overcome a significant distance between the expected and perceived cursor location but

should also deal with strong distortions of the vector error.

Figure 4 (Lack of) Error-based adaptation to strong visuomotor perturbation. The plot shows
movement error in degrees versus trial number during simulation of the 3-phase experiment when
a visuomotor perturbation is introduced in the beginning of ADAPT phase and removed in the be-
ginning of POST phase. Solid lines show the 32-run average angle difference between the perceived
target position and the perceived hand/cursor position. (A) Simulation of adaptation to 90 degrees
visuomotor rotation (blue line) and 90 degrees shift (red line). (B) Simulation of adaptation to the
x-reflection perturbation. Note that the perturbation size is the same for the shift and rotation
perturbation in (A). However, the trial-to-trial dynamics of the error are very different, as well as
the magnitudes of the aftereffects.

Reflection perturbations were previously used in throwing experiments [Gutierrez-

Garralda et al., 2013] where a dove prism was used to horizontally reverse the visual field

and shift the target’s position. Under such a visual perturbation, the sign of x-coordinate
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of the vector error is reversed, and therefore when a participant misses the actual target to

the right, she observes the displacement of the movement to the left of the perceived target.

In case of error-based motor adaptation the correction should consist in throwing further to

the right, thereby increasing the magnitude of the error distance trial-to-trial. As this did

not happen in their experiments, the authors of [Gutierrez-Garralda et al., 2013] concluded

that error-based learning was not possible.

We simulated the model of cerebellar correction in strong rotation and reflection contexts

(see Methods for details). The simulation results in Fig 4 clearly show that the model

performance was much worse when the vector error was significantly perturbed compared

to mild perturbations. For the 90 deg rotation, the model produced oscillations instead

of gradually converging to the target (compare the shift and rotation cases in Fig 4A).

This behavior occurred because the x and y coordinates of the vector error received by CB

were transformed by the rotation in such a way, that a flawed correction produced by the

cerebellum model did not make the next reaching endpoint to become closer to the target.

During the reflection perturbation, the cerebellar corrections became so faulty that the

model diverged from the desired target (Fig 4B). This happened because the sign of the x

coordinate of the vector error was inversed. Thus, each adjustment of the cerebellar network

weights shifted the reaching endpoint along the x axis in the direction opposite to the desired

one. Additionally, since the error magnitude increased for each trial, these faulty corrections

became progressively stronger on consecutive trials. In the simulation shown in Fig 4B, the

direction of the movement diverges from the target.

Fig 5 illustrates that the performance of the cerebellum model deteriorates continuously

with the increase of the perturbation magnitude. In these simulations, we varied the angle

of visual rotation and observed the resulting changes in the model’s performance. In Fig

5, we show the adaptation phase dynamics. The model was able to successfully adapt

to rotations as large as 60 degrees. However, for stronger rotations, the trajectory of the

movement endpoint during adaptation started to curl as the vector error components became

increasingly distorted by the rotation, as the rotation angle increased. For moderate rotation
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angles (see 75 deg rotation in Fig 5) the model movement still converged to the desired target

in a manner known in ODE theory as “stable focus”. However, for rotation angles greater

than 80 deg, the convergence to the target no longer happened, and the endpoint trajectory

started to spiral around the target (Fig 5C) with progressively larger amplitude as the

rotation angle increased.

Figure 5 Adaptation to visuomotor rotation with increasing angle. The panels show successive
movement endpoints obtained from simulation during adaptation to rotation by 60, 75 and 85
degrees. The color of each point represents the trial number. The ‘+’ shows the target position.
Only the adaptation phases of individual simulations are plotted. To emphasize the effect, the
degradation rate in the cerebellum was set to zero. As the rotation angle increases, the trajectory
first starts spiraling while converging to the target (the middle panel) and then exhibits oscillations
around the target with non-decaying amplitude (right panel).

5.2.4 Combining error-based and non-error-based mechanisms

In the previous section, the supervised/error-based learning performed by the model of

cerebellum was the only motor adaptation mechanism. As we noted before, it was previously

suggested that when error-based learning becomes impossible (e.g. in case of strong visual

rotations/reflections, see above), reinforcement/non-error-based learning mechanisms pre-

sumably operating in BG are engaged. Thus, we added a model of BG that was responsible
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for action selection and reinforcement (Fig 6). In this model architecture, BG are involved

in action selection hence contribute to formation of the motor program sent downstream in

response to a visual cue representing the target position for reaching movements (Fig 6, see

[Kim et al., 2017b] for details).

Figure 6 General architecture of the model with cerebellum and basal ganglia. In this version of
the model basal ganglia select a motor program for execution among possible behaviors generated
in the motor cortex (M1). The cerebellum (CB) receives a copy of the motor program and modifies
it before the result is fed to the movement system.

After the movement was complete, the trial performance was evaluated based on how

close the movement endpoint was to the target which defined the reward amount. Depending

on experimental settings, the reward can be explicitly defined (e.g. fixed reward amount

was provided in the case when reaching ended within the target spot) or represented as
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a measure of satisfaction by the results of movement performed. In the latter case, to

calculate the reward amount we used a score monotonically decreasing with the distance

from the movement endpoint to the target position (see Methods for details).

The action selection process in BG was modulated by the reinforcement learning pro-

cedure. Reinforcement or suppression of the selected actions depended on the sign (and

magnitude) of the reward prediction error (RPE) which was implemented as a temporal

difference between the rewards obtained on the current and previous trials (see [Kim et al.,

2017b] for details). Positive RPE indicated that performance improved on the current trial,

and, therefore, the selected action was reinforced. Negative sign of the RPE indicated that

the performance worsened, so future selection of this action was suppressed which triggered

exploration process for more rewarding actions [Kim et al., 2017b].

Exploration due to negative reinforcement disables error-based motor adap-

tation in case of mild perturbations. Using the augmented model, we simulated the

mild perturbation contexts with the reward provided if the reaching endpoint is within a

fixed distance from the target. We found (see Fig 7) that after addition of BG, the model

could adapt to a visual shift and mild rotation (not shown), but the time course of this

adaptation was different (compare to Fig 4). When the perturbation was introduced at trial

50 (Fig 7), the model missed the target, and the reward was not provided. This resulted in

a negative reward prediction error (RPE) which led to a negative reinforcement of the pre-

viously performed movement. The BG network suppressed the selection of that movement

and initiated the exploration process (see increased variability of the errors between trials 40

and 50 in Fig 7). Eventually, the model generated a reaching movement with an endpoint

within the rewarding spot. The provided reward resulted in a positive RPE which reinforced

selection of the same movement on the subsequent trials.

Note that during exploration process, the CB network continued to generate corrections

of the motor program to reduce the movement error on subsequent trials expecting that the

same cortical input would be provided. However, these corrections were not efficient as a
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Figure 7 Adaptation to a mild perturbation in the model with cerebellum and basal ganglia.
The plot shows error magnitude versus trial number during simulation of the 3-phase experiment
when a visuomotor perturbation is introduced in the beginning of ADAPT phase and removed in
the beginning of POST phase. Solid line shows 32-runs average angle difference between perceived
target position and perceived hand/cursor position. Grey area shows SEMs. Blue dashed lines
show the rewarding range.

different action was selected on every trial during exploration. During the adaptation, the

accumulated change in the CB network synaptic weights appeared to be insignificant which

was evident from the very weak aftereffect as the perturbation was removed after trial 100

in Fig 7.

Faulty CB corrections destroy reinforcement-based adaptation in case of

strong perturbations. We have shown above that when the vector movement error is

distorted by a strong visual rotation or a reflection of the visual field, the error-based mech-

anisms lead to divergence of the movement endpoint from the target instead of adaptation

to the target. Here we show that the same effect is observed in presence of reinforcement-

based mechanisms, too. The simulations of the model with reinforcement and error-based

mechanisms combined are shown in Fig 8.
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This version of the model also produced oscillations after the rotation by 90 deg (Fig

8A). Similarly, in case of the reflection perturbation (Fig 8B), the time course of the error was

virtually identical to the one produced by the model with error-based adaptation mechanism

only (compare to Fig 4B). Fig 8B illustrates that the inverted x component of the vector

error produced growing cerebellar correction that ultimately resulted in the movement in

the direction opposite to the target regardless of the motor program selected by BG.

Figure 8 Adaptation to strong perturbations in the model with cerebellum and basal ganglia.
The plot shows error magnitude versus trial number during simulation of the 3-phase experiment
when a visuomotor perturbation is introduced in the beginning of the ADAPT phase and removed
in the beginning of the POST phase. The solid black line shows the 32 runs average angle difference
between the perceived target position and the perceived hand/cursor position during adaptation to
the 90-degree rotation (A) and the x-reflection (B) perturbations. Dashed lines show the rewarding
range. Grey area shows SEMs. BG addition neither improve adaptation to the strong rotation,
nor does it make the adaptation to the reflection perturbation possible.

Context-dependent control of error-based learning Results presented in the

paragraphs above suggest that visual perturbations, which strongly distort vector error feed-

back (e.g. visual reflections), make motor adaptation impossible. However, this prediction

contradicts the experimental evidence. Indeed, previous studies suggest that the motor con-

trol system stops relying on error-based learning mechanisms in situations when perception

is strongly perturbed [Gutierrez-Garralda et al., 2013, Telgen et al., 2014]. This can be

achieved if there is a mechanism that prevents the cerebellum from further adjusting the
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motor command given that previous adjustments did not lead to improvement in perfor-

mance.

As discussed in previous sections, cerebellar corrections become faulty when the vec-

tor error provided to CB is unreliable (e.g. x-reflection perturbations). In these situations,

the CB’s error based (supervised) learning mechanism cannot assist in reaching closer to

the target. When error feedback is adequate, it is possible to predict the reduction of the

movement error resulting from the adjustment of the CB synaptic weights (see Methods).

Therefore, a simple comparison between the predicted and actual changes of the movement

error can serve as a robust indicator of the error feedback reliability. Therefore, we propose

and implement the performance assessment component (the critic) that compares the pre-

dicted and actual vector error in the model (see Fig 9.A). If the two are consistent (i.e. the

difference between the predicted and observed errors is small), the critic increases the rate

of the supervised learning in CB on subsequent trials (see Methods). If the predicted and

actual error changes are inconsistent, the critic reduces the learning rate. Predicted and ac-

tual errors are considered consistent (inconsistent) if their difference is within (larger than) a

certain threshold. The threshold is proportional to the amplitude of the movement endpoint

noise, which is constant (in particular, it is not under the model control, see Methods for

details).
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Figure 9 Basal ganglia and cerebellum interaction through the critic and critic mechanism. Panel
A: In this version of the model the critic node controls the learning rate of the cerebellum (CB)
and offsets the reinforcement signal in basal ganglia. It increases or decreases its output depending
on whether the predicted error after correction corresponds to the observed one or not. The critic
output is used to set the CB learning rate and add to the dopamine release in striatum. In case
the error-based/cerebellar correction is successful, the CB learning rate is increased on the next
trial, and the striatal dopamine concentration is increased to prevent negative reinforcement of
the previously selected action. In case the error-based correction failed, the CB learning rate
is reduced, and the striatal dopamine concentration is not modified thus allowing for negative
reinforcement. Panel B: The diagram clarifies how the critic output is computed based on the
different pieces of information from the previous (n) and current (n+1) trials. After the previous
trial cerebellum modifies the synaptic weights and forms a prediction about the next error value
based on that modification. At the current (n+1) trial the actually observed error can differ from
the one predicted by the cerebellum due to influence of the factors that cerebellum cannot control
and detect directly: possible change of the motor program (e.g. because of basal ganglia activity),
perceptual perturbations and noise. If the observed error agrees with the predicted one, the critic
signal is increased. If it strongly disagrees, the signal is decreased. Otherwise it is left unchanged.
The critic output is used to set the future CB learning rate and add to the reward prediction error
when calculating the dopamine level in striatum.

The performance of the model for strong visual rotation and reflection of the visual field

is shown in Fig 10. At the baseline, the CB learning rate fluctuated around 3 (Figs 10A2 and

10B2). During the adaptation phase, the critic immediately diagnosed that CB corrections

did not produce the predicted effect and reduced the learning rate to near zero. After the

perturbation was removed, the CB learning rate returned towards the baseline value.
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Figure 10 Simulation of adaptation to strong perturbation with the critic-controlled learning
rate. The plot shows error size versus trial number during simulation of the 3-phase experiment
when a visuomotor perturbation is introduced in the beginning of ADAPT phase and removed in
the beginning of POST phase. Panels (A1), (B1) show the 32-runs average reaching error dynamics
for the adaptation to 90-deg rotation (A1, blue line) and x-reflection (B1, red line). Panels (A2),
(B2) show 32-runs average cerebellum (CB) learning rate dynamics for 90-deg rotation (A2, blue
line) and x-reflection (B2, red line). Dashed lines show basal ganglia (BG) target size. Grey area
shows SEMs. Critic control of the learning rate allows to adapt to both strong perturbations. Note
absence of aftereffects.

As mentioned above, the critic detects faulty cerebellar corrections to prevent further

adjustment of synaptic weights in the cerebellar network. Once the learning process is
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suppressed, the synaptic weights start decaying, which, in turn, gradually diminishes the

accumulated faulty correction by means of the cerebellar state degradation. In Fig 10, by

the end of the adaptation phase, the cerebellar correction almost fully vanished which is

evident from the lack of aftereffects after the perturbation is removed.

Context-dependent control of reinforcement learning Adding the critic com-

ponent controlling the learning rate in the cerebellum based on the performance assessment

helped to suppress faulty error-based adaptation in case of strong visual perturbations. How-

ever, in case of mild perturbations (e.g. a visual shift or rotation by a small angle), when

the error-based learning was supposed to be the operating adaptation mechanism, our model

failed (see Fig 11 and previous sections). Instead, it exhibited reinforcement-based adapta-

tion (triggered by negative reinforcement) and subsequent exploration when the perturbation

was introduced. Therefore, in case when the cerebellar correction is efficient, there should be

a mechanism that offsets the effect of negative reinforcement and thus prevents exploration.

Reducing BG-induced errors artificially corresponds to turning off BG learning com-

pletely – these are simulations shown on Fig 2. The automatic switch happens with the

help of the critic mechanism and is described in subsection “Error-based vs. non-error-

based learning and effects of neurodegeneration in BG” below. There the BG involvement is

suppressed during adaptation to the perturbation where cerebellum could perform without

problems.

We propose that the control signal generated by the critic regulates both supervised

learning in the cerebellum and reinforcement learning in BG. In the cerebellum, it defines

the learning rate as described above. In BG, it adds to the signal representing the reward

prediction error (see Fig 9 and Methods). In this manner, negative RPE resulting from the

perturbation combines with a positive input from the critic to form a positive reinforcement

signal. This provides an efficient mechanism to disable negative reinforcement and explo-

ration in case when cerebellar correction is adequate. In case when cerebellar correction

becomes faulty, the signal from the critic changes to zero, which removes positive offset
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of the reinforcement signal and thus reenables exploration and reinforcement-based motor

adaptation.

We explore the regime where BG and CB work together being regulated by the critic

in subsection “Error-based vs. non-error-based learning and effects of neurodegeneration

in BG”. We put this part of the manuscript in “Model validation” section because there

we reproduce the study [Gutierrez-Garralda et al., 2013] in the context similar to the ones

presented above.

5.2.5 Model validation

In this section we test our model performance against literature data that include ex-

perimental paradigms combining both error- and non-error-based motor adaptation.

Error-based vs. non-error-based learning and effects of neurodegeneration

in BG To study both the error-based and non-error-based motor adaptation and to test

how the BG related neurodegenerative diseases, such as Huntington’s (HD) and Parkinson’s

(PD) ones, affect the non-error based learning, Gutierrez-Garralda et al. [Gutierrez-Garralda

et al., 2013] used an experiment during which participants were required to throw balls at a

target. During the experiment, either a dove or a wedge prism was used to perturb visual

perception of the participants. The dove prism reflected the image about the vertical axis,

and wedge prism shifted the visual field horizontally. As mentioned above, the reflection

perturbation inverted the sign of the throw mismatch along the horizontal axis, while the

shift did not perturb the vector error. Correspondingly, Gutierrez-Garralda et al. assumed

that the mechanism of motor adaptation in case of the shift perturbation was an error-based

type, while in case of the reflection the participants used a non-error-based motor learning.
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Figure 11 Basal ganglia take over from cerebellum during adaptation to a mild perturbation
with the critic-controlled learning rate in cerebellum. The plot shows error magnitude versus trial
number during simulation of the 3-phase experiment when a visuomotor perturbation is introduced
in the beginning of ADAPT phase and removed in the beginning of POST phase. (A) Solid green
line shows 32-run average angle difference between the direction to the target and to the endpoint
of the reaching movement; (B) 32-run average CB learning rate dynamics. Dashed lines show the
rewarding range, dashed-dotted lines show endpoint noise amplitude. Grey area shows SEMs.
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Three subject groups participated in this experiment: the healthy control group, the

group of patients with Parkinson’s Disease (PD group), and the group with Huntington’s

Disease (HD group). All three groups were equally successful in adapting to the shift pertur-

bation (see Fig 4A in [Gutierrez-Garralda et al., 2013]) suggesting that PD and HD do not

affect error-based learning. However, PD and HD groups were not able to adapt to the reflec-

tion as opposed to the control group (Fig 4B in [Gutierrez-Garralda et al., 2013]). Therefore,

it was proposed that non-error-based motor adaptation is mediated by reinforcement learn-

ing in BG, while error-based learning occurs in some other brain structures, presumably in

cerebellum [Izawa et al., 2012, Doya, 2000b, Gutierrez-Garralda et al., 2013, Donchin et al.,

2012].

With our model, we simulated an analogous experiment involving reaching movements

[Kim et al., 2017b]. In Gutierrez-Garralda et al. experiments, the subjects were not provided

with an explicit reward. In our simulations, we assumed that the reward obtained at each

trial could be described by a score monotonically decreasing with the error (distance to the

target) (see Methods). Therefore, the closer the movement endpoint was to the target, the

higher was the reward. PD and HD conditions were simulated in the same way as in [Kim

et al., 2017b] (also described in Methods). In short, PD condition involved a reduced rate of

reinforcement learning in BG to mimic degeneration of dopaminergic neurons in substantia

nigra pars compacta (SNc). Huntington’s disease condition was simulated as a reduction in

output of the indirect pathway striatal medium spiny neuron population.

Our simulations shown in Fig 12 are in a good agreement with Gutierrez-Garralda et

al. experimental data (Fig 4 in [Gutierrez-Garralda et al., 2013]): (1) Simulated adaptation

time-course and aftereffects for control and both PD and HD conditions are very similar in

case of the visual shift/wedge prism perturbation (Fig 12A); (2) In all conditions there are

virtually no aftereffects following the reflection /dove prism perturbation (Fig 12B); (3) In

PD and HD conditions, unlike controls, there is no adaptation to the reflection perturbation

(Fig 12B).

The mechanistic interpretation provided by the model supports the idea that since
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visual shift does not perturb the vector of the movement error, all group of participants

in [Gutierrez-Garralda et al., 2013] successfully used a cerebellar error correction mecha-

nism (error-based learning [Gutierrez-Garralda et al., 2013]). After the perturbation was

removed, the correction, accumulated in the cerebellum, led to a significant aftereffect (Fig

12A). However, in case of reflection perturbation, the cerebellar learning mechanism became

inefficient, and, therefore, suppressed by the critic. The participants switch to reinforcement

mechanisms mediated by BG (non-error-based learning [Gutierrez-Garralda et al., 2013]).

This explains both the lack of the aftereffect and why the adaptation is not occurring in

BG-impaired subjects (Fig 12B).

Reinforcement-dependent memory retention In another recent publication by

Shmuelof et al. [Shmuelof et al., 2012], action reinforcement was implicated in motor memory

retention. The experimental setup used in that study provides an excellent test for our model.

In their experiments, human subjects performed fast reaching movements. They received

an explicit reward (via a tone) if they succeeded to reach a target within a predetermined

distance (see details in Methods, and in [Shmuelof et al., 2012]). Most of the time, they also

received complete visual feedback provided on a screen.

There were four slightly different versions of the protocol; all of them included 6 phases:

(1) during the baseline phase, participants reached to a target for 20 trials; (2) during the

adaptation phase, a 30-degree visual rotation was applied to the image on the screen for

60 trials; (3) during the phase they called “asymptote”, for 80 trials the rotation angle

remained the same for the participants to better learn this condition (protocols 1 and 2);

however, in some experiments the visual feedback was turned off (protocols 3 and 4); (4)

with both visual and reward feedback on, participants had to adapt to a larger 45-degree

rotation perturbation for 30 trials; (5) in the error clamp phase, during which false visual

feedback showed perfect performance, participants were provided with reward and visual

feedback; both indicated that the target was successfully reached regardless of the actual

arm movement direction either for 60 trials (protocols 1 and 3) or 100 trials (protocols 2
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and 4); (6) finally, in the washout phase, all perturbations were removed (as in the baseline

phase) for 40 trials.

Figure 12 Simulation of error-based and non-error-based adaptation with impaired basal ganglia
function. These simulations reproduce Gutierrez-Garralda et al [Gutierrez-Garralda et al., 2013]
data. (A1, B1) 16-run averaged reaching error for the adaptation to a 30-degree shift perturbation.
(A2, B2) 16-run averaged error for the adaptation to an x-reflection perturbation. Shape and
darkness of the makers code different conditions: light squares show the simulation of Huntington’s
Disease (HD) conditions, and light triangles are used for the simulation of Parkinson’s Disease
(PD) conditions. Dark circles and diamonds are used to show control conditions for HD (CHD),
and for PD (CPD), respectively. Green color is used for the shift perturbation which engages the
error-based learning (EBL). X-reflection perturbation simulation (where non-error-based learning
(NEBL) is involved) is shown in red. Error bars show SEMs. Controls reduce the error in both
conditions but show almost no aftereffects after x-reflection perturbation. In the shift perturbation
simulations (A1, B1), the error reduces equally for both control and PD/HD conditions. After the
x-reflection (A2, B2), adaptation occurs in control conditions, but not in PD and HD conditions.

The major difference between the described experiments was whether the visual feedback

was provided in phase (3) or not. Even though there was no significant difference in subject’s

performance during this phase (see Fig 2 in [Shmuelof et al., 2012]), there was a striking
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difference in behavior during the error-clamp phase (5). Specifically, the subjects that were

constantly provided with visual feedback during the asymptote phase (5), were gradually

converging their movements to the unperturbed target. In contrast, subjects who were not

provided with visual feedback during the asymptote phase, adapted their movements to the

target position rotated by 30 degrees (same angle used in the asymptote phase). Therefore,

the subjects that did not have visual feedback during 30 degrees rotation, were able to

“recall” their motor response to this perturbation during the error-clamp phase. Based on

this result, Shmuelof et al. [Shmuelof et al., 2012] speculated that during the phase when

visual feedback was not provided, the subjects followed a different kind of motor learning

process (reinforcement learning), suggesting that reinforcement learning was necessary for

motor memory retention. Important to note that Shmuelof et al. reported that only 20% of

the participants could consciously detect the presence of the rotation perturbation and even

less of them noticed the presence of the error clamp.

Our model reproduces Shmuelof et al. data (compare Fig 13 and 2 in [Shmuelof et al.,

2012]) and provides an interesting mechanistic interpretation of their results. In Fig 13 blue

curves show the reaching direction vs. trial number for the group who was continuously

provided with both the reward (binary error (BE)) and visual feedback (vector error (VE)).

Accordingly, this group is labeled “BE+VE”. Red curves depict the reaching directions for

the group who did not have visual feedback during the asymptote phase (between trials

80 and 160). This group data is labeled “BE”. During the simulation, the BE+VE group

relied on the cerebellar error-based mechanisms for adaptation exclusively. In contrast, the

BE group switched to reinforcement learning during the asymptote phase when no visual

feedback was given. So, during the asymptote phase, the BG explored and selected a new

rewarding action/motor program. Then, during the 45-degree rotation phase, since visual

feedback was provided again, the system switched back to the error-based learning, thus

reinforcing the motor program found during the asymptote phase. During the error clamp

phase, the degradation of the CB network synaptic weights (the “forgetting” process) grad-

ually diminished cerebellar correction and revealed the unadjusted motor program which
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appeared different for the two groups. In the BE+VE group, where BG were never involved,

this action coincides the default response observed during the baseline phase. In the BE

group, however, the motor program was replaced through exploration and reinforcement to

the movement in 30-degree direction during the asymptote phase.
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Figure 13 Simulation of the reinforcement-dependent memory retention. These simulations re-
produce Shmuelof et al. [Shmuelof et al., 2012] data. Blue lines show the 16-run average of the
reaching angle dynamics for the model that constantly received both binary and vector error feed-
back (BE+VE). Orange lines show 16-run average of the reaching angle dynamics for the model
that received only binary feedback between trials 80 and 160 (BE). Lighter blue and lighter orange
lines correspond to the simulations where the error clamp was extended by 40 trials. Thick black
horizontal lines show the target center, thin grey horizontal lines show target boundaries. Grey
areas show SEMs. During error clamp the orange BE curves (unlike the blue BE+VE curves)
approximately converge to the level where the binary feedback only was provided between trials 20
and 160.

Learning deficits in cerebellar ataxia and parameters of the critic Previously

we have shown that it is possible to reproduce Schlerf et al [Schlerf et al., 2013] data using

constant learning rate and increasing the degradation rate for the ataxic condition simula-
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tions. Now we show that there is another way of qualitatively reproducing the same data if

the learning rate is controlled by the critic. Here we assume that BG are not active, so the

critic only controls the learning rate of the CB model.

As explained above, critic decisions are based on whether the difference of the observed

and predicted errors falls within a certain threshold, or not. Therefore, by modifying this

threshold size, the critic decisions can be modified. We assume that the threshold is pro-

portional to the participant’s estimate of its movement variability, i.e. in control conditions

it is equal to the standard deviation of the baseline endpoint noise. Our simulations (not

shown) confirm that when the model uses critic thresholds corresponding to underestimated

movement variability, it leads to reduced adaptation levels. These simulations support the

hypothesis about the misjudged movement variability in cerebellar condition formulated in

[Schlerf et al., 2013].

For consistency, we also verified that, as in case of the constant learning rate (see Model

Calibration section), the increased endpoint noise with movement variability estimate used

by the critic adjusted correspondingly, does not produce learning deficits. However, if one

additionally increases the degradation rate in the cerebellum, the adaptation deteriorates as

in Fig 3.

5.3 Discussion

As previously stated, both basal ganglia and cerebellum may be involved in motor

adaptation. Although the functional role of each compartment has been investigated, the

interplay between the two structures remains poorly understood [Caligiore et al., 2016b].

We used mathematical modeling to characterize the functional interactions between these

structures during motor adaptation.

We introduced a novel model of the network implementing error-based (supervised)

learning in cerebellum. Conceptually, this model can be considered a state-space model, like

the one discussed in [Thoroughman and Shadmehr, 2000]. However, in contrast with more

abstract error-based motor adaptation models, our implementation of the cerebellar network
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is incorporated into the movement system that produces biophysically accurate movements

[Teka et al., 2017b]. There are more detailed models of the cerebellum (e.g. [Luque et al.,

2014]), but that was not our goal to model cerebellar networks per se. We were rather

interested in mechanisms that engage different learning systems depending on context.

In our study, we assume that the role of basal ganglia is to select an action in response

to a visual cue. In the context of reaching movements, an action is a temporal pattern

of inputs (a motor program) to the motoneurons which activate arm muscles and, thus,

generate a movement to a desired target position. We also assume that a copy of the selected

motor program is sent to the cerebellum whose role is to calculate and apply a correction

to the motor program that reduces the magnitude of the movement error observed on a

previous trial. Under these assumptions, we show that if unregulated, action selection and

error correction mechanisms come into conflict. We conclude that only one of them should

be active at a time and propose a critic mechanism that controls learning rates in both

structures. Specifically, the critic predicts the effect of cerebellar correction calculated on

the previous trial and compares it with actual movement error perceived by the subject. If

the results are consistent, the critic increases its output which defines the learning rate in

the cerebellum and increases dopamine release in basal ganglia. If the observed error differs

too much from the prediction, the critic decreases its output, which suppresses learning

in the cerebellum and reduces dopamine release in basal ganglia. Note, that comparing the

magnitudes of the predicted and observed errors is equivalent to comparing predicted change

(reduction) of the error between consecutive trials and the observed change of the error. In

the context of adaptation to force field perturbations, the idea of variable learning rate,

regulated by consistency of the environment has been previously proposed [Castro et al.,

2014]. Our implementation of the critic component follows a somewhat similar idea, though

the results are difficult to compare directly because of different experimental protocols being

considered.

We show that the suggested critic mechanism provides switching between error-based

and non-error-based learning depending on the efficiency of the former. In a nutshell, once
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the perturbation is introduced, the target is missed resulting in a negative reinforcement

(via a reduction of dopamine release) of the movement previously selected by basal ganglia.

However, if the correction applied by the cerebellum is successful, the critic facilitates learn-

ing in the cerebellum while simultaneously returning dopamine release in basal ganglia to a

normal level thus preventing the negative reinforcement of the action from happening. In

case the cerebellar correction did not work as planned, the critic stops the learning process in

the cerebellum, and allows basal ganglia to block the unsuccessful movement and to initiate

exploration of more rewarding actions through the reinforcement learning process.

It is common to classify learning as explicit or implicit [Huberdeau et al., 2015] and in

the context of this study we work under the assumption that all the learning happening in

the experiments we reproduce with our model is implicit. I.e. we assume that the feedback

manipulations and other experiment conditions (such as high movement speed requirements),

used in [Gutierrez-Garralda et al., 2013, Shmuelof et al., 2012, Schlerf et al., 2013], have

prevented cognitive strategies to develop in participants. We stress that PFC in our model

PFC node only provides results of direct sensory processing (like CB error and perception

of cue activation). It does not play a direct role in the implicit reinforcement learning.

The neural mechanisms described in this chapter are likely accompanied by further

latent mechanisms that could enable more nuanced coordination between supervised and

reinforcement learning strategies. However, in the context of “all models are wrong, but

some are useful”, we made a simplest possible model that reproduces effects observed in

various behavioral experiments. “Simplest” here means within a class of models that follow

existing well-established knowledge from electrophysiological and anatomical studies. We

have checked several most natural ways of the system organization and ruled out all besides

the one with the critic affecting both BG reward and the CB learning rate. Roughly speaking,

we show that supervised and reinforcement learning cannot coexist, some switching should

happen, provided that one restricts oneself to the classical models of BG and CB like the

ones we have used.

We don’t claim that our model is the only one possible, but since to our knowledge it is
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the first one of this kind, it should be a good start to verify (or falsify) it with more detailed

behavioral/electrophysiological studies and create a more accurate model later. We think

that currently there is not enough experimental data available to create a plausible model

describing more sophisticated interactions between the learning systems. We hope that our

model can help to design such experiments.

As noted above, to build our model we had to make a general assumption about the

existence of the functional dichotomy between BG and CB. There are, however, recent

articles [Wagner et al., 2017, Heffley et al., 2018] challenging this view, so we stress that

this dichotomy is a hypothesis and not a well-established fact. Calcium transients in granule

cells have been shown to correlate to reward prediction [Wagner et al., 2017]. Parallel fibers

could also be a source of contextual input to the cerebellar nuclei.[Heffley et al., 2018] show

that calcium transients in climbing fibers contextually correlate to motor outcomes rather

than to motor error. The authors indicate that these results support the hypothesis that

climbing fibers provide sensorimotor predictions.

In our model the error is encoded somewhere outside of the circuit. We generally pre-

sume that it is communicated to the model directly from the cortex, but for the normal

functioning of the model it is not really important which structure supplies the error in-

formation. Experimental research has identified that the climbing fibers and the dopamine

neurons are strong candidates for encoding errors. We see such data contributing to more

accurate description of BG (e.g. [Kim et al., 2019] ) and CB models separately, whereas

we tried to use BG and CB models that are as simple as possible and study interactions

between them instead.

5.3.1 Choice of level of detail

Our cerebellum model is essentially a nonlinear version of the standard Kalman filter-

based model [Schlerf et al., 2013]. And locally it still works in a linear “gradient-descent”

way. We have used a nonlinear model instead of a linear one because we wanted to reproduce

experiments involving naturalistic complex movements in 2D space. One of the benefits of
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such approach is the ability to explore effects appearing for strong visuomotor perturbations

like rotations by large angles and visual field reflections.

5.3.2 Adaptation efficiency comparison

Since the critic essentially turns off involvement of either BG or CB in the learning

process, the adaptation efficiency of the full model is the same as when the corresponding

structure is the only one active from the beginning.

In case when both types of system can lead to successful adaptation reinforcement

learning would generally have slower convergence but can potentially stop very close to the

target (provided that the rewarded spot it small enough), whereas supervised learning would

give fast convergence, but it will stop at the point where degradation (damping/forgetting)

in the CB model compensate the learning rate. So in total the answer to the question “Which

system adapts better when both potentially can do it?” would depend both on the notion

of “better” (e.g. whether one wants fast adaptation or precise adaptation or both) and on a

relationship between BG learning rate, reward size, reward spot size, CB learning rate and

CB degradation rate.

5.3.3 Physiological basis for control of motor learning

Although some aspects of cerebellar learning have been characterized, the neurophysiol-

ogy that underlies cerebellar learning is not fully understood. For instance, while it is known

that the CB relies on vector error for learning and that a critic mechanism is necessary for

certain motor adaptation tasks, it is not yet clear exactly where or how these mechanisms

occur in vivo.

Previous studies suggest that a combination of simple (vector error) and informed (pre-

dicted and actual error comparison) feedback is necessary for cerebellar motor adaptation.

One potential source of informed feedback is the inferior olive (IO), a nucleus in the medulla,

which receives sensory input and provides feedback to the cerebellum via climbing fiber in-

puts. Gellman et al. [Gellman et al., 1983] demonstrated that subpopulations of IO cells
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respond to specific sensory modalities. Furthermore in [Gellman et al., 1985], they showed

that IO cells were excited in response to unexpected stimuli – e.g. if a participant un-

expectedly touched an object during exploration – with subpopulations of olivary neurons

responding as sensation-specific “event detectors”. When unexpected stimuli occur, exci-

tation in IO neurons elicits “complex” spikes in cerebellar Purkinje cells, thereby strongly

inhibiting neuron activity in the cerebellum. Thus, it is thought that the IO inhibits cere-

bellar output when reliable sensory information is not available, and therefore the IO likely

corresponds to the cerebellum-controlling critic in the model. Anatomical evidence suggests

that in order to determine the reliability of sensory input the IO may compare error signals

from different sources, though the exact nature of this comparison mechanism is not yet fully

understood [Zeeuw, 1998].

Although excitation of IO cells produces complex spikes in Purkinje cells, complex

spiking can be caused by other inputs to the cerebellum. In a follow-up study to [Gellman

et al., 1985], it was demonstrated that complex spikes could occur in the cerebellar Purkinje

cells without the introduction of unexpected stimuli [Wang et al., 1987]. Thus, there are

other sensory inputs, aside from the IO, that cause complex spikes during cerebellum-directed

movements; these non-IO inputs likely provide vector error to the cerebellum during normal

learning [Wang et al., 1987].

Another possibility how CB learning rate could be controlled is via some sort of di-

rect control of plasticity in the cerebellum. On the reinforcement learning side the reward

modification by critic (which can be a part of IO as noted above) can be done either via

modification the signal received by SNc or by direct modulation of dopamine amount in the

striatum.

5.3.4 Choice of model parameter values to simulate different experiments

Our model can be easily modified to produce functional motor adaptation consistent

with different experimental protocols. Several related experiments have been selected from

the literature allowing for investigation of BG-CB interactions across a range of different
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motor behaviors. By including a variety of experimental protocols in our simulations, we

demonstrated that our model allows generalization across different modalities (e.g. types of

movement, implicit/explicit reward, etc.). At the same time, model parameters were kept

consistent whenever possible so that simulation results related to different protocols could be

compared. Yet, certain parameters were adjusted, such as reward components’ magnitudes,

pools of actions used for different tasks, or movement variability as the experiments we

model did not have identical experimental settings. We also had to adjust some of the critic

parameters. We believe that differences in experimental conditions justify these parameter

modifications. In Schlerf et al. experiments [Schlerf et al., 2013], the participants made

slicing movements wearing a cotton glove (to reduce friction between the hand and table

surface) to random targets of 1 cm width within 10 cm from the start location. In Shmuelof

et al. study [Shmuelof et al., 2012], the protocol required subjects to perform fast reaching

movements, having arm supported on a lightweight sled that hovered on air cushions created

by compressed-air jets (allowing frictionless planar motion of the arm) to 1 cm wide targets

8cm away from the start location. In Gutierrez-Garralda et al. study [Gutierrez-Garralda

et al., 2013], participants made throwing movements. All these experiments address similar

types of motor adaptation and are likely to have similar mechanisms involved, but movement-

related and reward-related parameters can vary. A detailed experimental study investigating

the validity of our assumptions about the parameters in each particular case is desired,

though.

In the current work habit formation (increase of the strength of projections from PFC

cue-encoding neurons to the thalamus) does not play a major role, since it is a relatively slow

process. As we explored in [Kim et al., 2017b], habituation can play an important role in

experiments with larger numbers of trials (and also in the pre-learning phase if it is present)

compared to the motor learning experiments we were interested in. Here the numbers of

trials were relatively small and the results would be the same if we were to turn off the

habit formation in the model completely. We did not do explicit pre-learning of the model

in this study and just set “habitual” associations artificially in the beginning. It would not
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be correct to say, however, that habits themselves don’t play any role at all in the current

study, since the number of the trials when BG starts to explore depends on the strength of

the initial habitual associations – roughly speaking, the stronger the initial association, the

larger the number of punishments from unsuccessful trials that the BG has to receive before

it starts to explore.

The model of CB alone has two main internal parameters: (constant) learning rate

and degradation rate. There is also an external parameter – noise amplitude. Changing

the learning rate controls the speed of adaptation. Also a nonlinear relation between the

degradation rate and the learning rate controls the final error level, where learning is balanced

by forgetting (changing the degradation rate has a much stronger influence on it). The

performance does not drop much with the increase of the noise level.

We studied parameter sensitivity of CB with critic active in the Schlerf et al [Schlerf

et al., 2013] context (healthy subjects and cerebellar patients adapting to abruptly and

gradually introduced rotations). We found that in this case the performance (average size

of error) worsens for higher noise levels, but only if it is increased without increasing the

model’s estimate of the environmental variability (i.e. if the noise becomes stronger but the

model is aware of that, it performs equally well). There is no explicit learning rate, because

it is controlled by the critic. There is however the coefficient regulating the maximal learning

rate. Increasing degradation reduces the performance in a way similar to the model with a

fixed learning rate. There are also parameters regulating the rate at which the critic increases

the learning rate if it thinks that everything works fine, and the rate at which it decreases the

learning rate when it thinks the opposite. The effects of changing these parameters are the

most prominent under the increased noise condition: both reducing the former and increasing

the latter (separately) lowers the performance. See Methods subsection “Simulation with

critic active” for exact values and more details.
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5.3.5 Error-based adaptation and cerebellar deficits

Via simulation of the experimental results published by Schlerf et al. [Schlerf et al.,

2013], we demonstrated that our cerebellar correction model replicates motor adaptation data

to single step and multi-step visual rotations. We also reproduced adaptation deficiencies

observed in ataxia patients by increasing the degradation rate of synaptic weights in the

cerebellar network to represent a reduction in memory related coefficient inferred by Schlerf

et al. [Schlerf et al., 2013] using a Kalman filter model.

Interestingly, Schlerf et al. have not found any significant alterations in the learning

rate related parameter of their model in ataxia patients, even though their motor variability

was increased. This is consistent with Butcher et al. results [Butcher et al., 2017], where

it was shown that increased movement noise alone does not lead to deficits in adaptation.

Our model also shows no change in the cerebellar learning rate if an increase in movement

variability is accompanied by the proportional increase of the thresholds used by the critic.

In fact, instead of increasing degradation, one could reduce the learning rate (though the

amount of required change is higher) to produce similar changes in the adaptation levels.

However in this case these adaptation levels (asymptotic error values) would be reached

significantly slower which was not observed in the behavioral data by Schlerf et al. [Schlerf

et al., 2013].

Integration of the critic into the model provides additional possibilities to interpret

Schlerf et al. [Schlerf et al., 2013] results. Our simulations show that similar learning

deficits appear if one changes some of the critic parameters. In particular, the increase

in the asymptotic error in multistep condition can be obtained by reducing the movement

variability estimate used by the critic to evaluate the efficiency of the cerebellar correction

(or increasing the endpoint noise level without adjusting the parameters of the critic). It goes

in agreement with Schlerf et al. hypothesis [Schlerf et al., 2013] that ataxics have a wrong

estimate of their own movement variability. Similar effects were observed when the reaction

of the critic to the threshold crossing was modified. However, the changes of these critic

parameters led to a much more dramatic reduction of the learning rate, than the increase of
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degradation.

In Schlerf et al. analysis [Schlerf et al., 2013] the learning rate of control participants

was greater after the single step perturbation, than after the multi-step more gradual pertur-

bation. In our simulations we did not observe this effect. In our simulations the difference

of the learning rate in controls in multistep and single step conditions observed for some

parameter values happens because in multistep condition unexpected effects (noise and per-

turbations) are smaller on average, than in a single step condition, thus the critic is less

likely to reduce the learning rate. In a broader context, in our model both underestimating

and overestimating the uncontrollable movement variability by the critic can have negative

effects on learning. Underestimated variability can lead to overly strong reduction in the

learning rate for mild perturbations, which results in reduced ability to adapt using error-

based learning and may trigger BG-driven exploratory behavior. Overestimated variability

tends to drive cerebellar learning rates close to maximum possible and prevent the system

from switching to non-error-based learning mechanisms, if it becomes necessary.

5.3.6 Predictions

The model has implications that can be tested experimentally. It predicts, for example,

that for very precise movements, where the expected movement variability is low, the par-

ticipants are less likely to adapt even to mild perturbations, in comparison to the case when

their movement variability is artificially increased. The good test for the model would be a

Gutierrez-Garralda-like experiment with reaching movements under the rotation perturba-

tion instead of the Dove prism and with explicit rewards. It would be important to check

whether the observed effects qualitatively change for different movement variability magni-

tudes. Another way to test the model is to perform a series of experiments with different

visuomotor rotation angles and check at what angles participants switch from error-based

to non-error-based learning.

Another important prediction of the model is variations of the striatal dopamine concen-

trations. Specifically, our model predicts that during error-based adaptation the dopamine



99

levels are significantly higher compared to the non-error-based scenario. To test this predic-

tion, one could measure the striatal dopamine concentration during adaptation to visuomotor

perturbations implying different (error-based vs. non-error-based) learning mechanisms.

5.4 Conclusions

The proposed model of motor adaptation to perceptual perturbations includes two dis-

tinct learning structures, cerebellum and basal ganglia, responsible for error-based and non-

error-based motor learning, respectively. We demonstrate that based on existing experi-

mental evidence, it is necessary to have a mechanism regulating involvement of cerebellum

and basal ganglia depending on the perturbation. We suggest that the involvement of a

particular learning mechanism is regulated by the same signal depending on the consistency

of the internal model used by the brain to predict the movement results. The resulting

model reproduces data from several experiments, involving interaction between error-based

and non-error-based learning mechanisms.

5.5 Methods

We distinguish between the model of the motor adaptation system, which is supposed to

reproduce activity of some parts of the participant’s brain, and the model of the experimental

environment, which is supposed to describe factors and events that the participant does not

control. We call the latter “a context”.

The model aims at representing a human subject performing reaching movements with

indirect visual feedback of her/his arm during a sequence of trials. We assume that the hand

position is not directly visible but is displayed on a screen as a cursor. At the beginning of

each trial the participant places his hand to a fixed starting point and the attempts to move

the arm to a target position appearing on the screen 20 cm away from the starting position.

The visual feedback (hand position-cursor position correspondence) can be artificially per-

turbed during the experiment. Depending on the context, the participant receives a reward

if the movement endpoint occurs within the target spot.
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We used different models of the motor adaptation system of increasing complexity and

different contexts. Each context corresponded to one of the experimental protocols, which

included experiment-specific alterations of the visual feedback and reward paradigms.

5.5.1 Neuro-mechanical model of the arm

To simulate center-out reaching tasks, we previously designed an arm model simulating

2D center-out reaching movements described in details in [Teka et al., 2017b]. In short, the

model consists of two rigid links connected by hinge joints (shoulder and elbow) actuated

by six Hill-type muscles [Harischandra and Örjan Ekeberg, 2008]. These include four single-

joint muscles: the shoulder flexor (SF) and extensor (SE), the elbow flexor (EF) and extensor

(EE), which control rotation of either the upper arm or forearm around the corresponding

joint. The other two muscles, namely: bi-articular flexor (BF) and extensor (BE) are two-

joint muscles that attached to both joints and simultaneously control movement around

them. The arm movement depends on the combination of multiple muscle activations and

is restricted to the horizontal plane. The dynamics of the arm motion is derived from

the Lagrange equations, which take into account the Coriolis and centrifugal forces, joint

viscoelastic forces, and muscle forces [Teka et al., 2017b]. The proprioceptor afferent feedback

from each muscle (Ia and Ib) projecting to the spinal cord was derived and modified from

[Prochazka, 1999].

The model of spinal cord comprises complex interconnections among motorneurons,

interneurons, including Renshaw cells, Ia- and Ib- inhibitory interneurons and correspon-

dent afferent feedbacks (see [Teka et al., 2017b] for details). The spinal circuitry receives

descending inputs from the motor cortex that activates corresponding motoneurons, which

in turn drive arm movements via activation of muscles. Interneurons and Renshaw cells

mediate interactions within spinal circuits and modulate cortical signals to the arm muscles.

In addition, spinal reflexes, namely: stretch reflex, autogenic inhibition reflex and recurrent

inhibition of motoneurons, which play an important role in arm kinematics [Franklin and

Wolpert, 2008], are incorporated into the model of spinal cord. The detailed description of
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the spinal circuitry can be found in previous publications [Teka et al., 2017b, Franklin and

Wolpert, 2008, Markin et al., 2015].

The position and movement of the arm is controlled by the time varying input descending

from cortex which we refer to as a motor program. So, the motor program is a time-dependent

6-dimensional vector of signals innervating the spinal cord circuitry, p(t). To actuate reaching

movements, we implemented cortical neurons as a cortical ”controller” that solves an inverse

problem

F (p, 0) = x⃗0

where x⃗0 is the target position. The inverse problem solution is based on a proposed straight-

line trajectory to a target position and a predefined bell-shaped arm endpoint velocity profile.

Thus, the controller generates a motor program that produces a task-specific activation of

lowlevel spinal circuits that in turn induce the muscle activation pattern realizing the in-

tended reaching movement. Therefore, calculation of the correct motor program relies on the

information about target position which in turn depends on how reliable visual feedback is.

During visual perturbations, the target position is perceived incorrectly, which thus results

in a displacement of the movement endpoint relative to the actual target position, i.e. in a

movement error.

5.5.2 Model of cerebellum

The role of cerebellum in the model is to calculate a correction to the cortical motor

program that brings the movement endpoint closer to the target position. This correction

is assumed to be additive and is calculated based on the information about the movement

error acquired on the previous trial. The corrected motor program pcor(t) is calculated by

linearly transforming the original motor program

pcor(t) = (1 +W )p(t)
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where W is a 6×6 correction matrix. This correction can be viewed as a result of processing

the initial motor program by a linear artificial neural network mapping 6 inputs to 6 outputs

with synaptic weights W . Weight matrix update follows classical error back propagation

algorithm which is a one-step iteration of the gradient descent method to minimize the

magnitude of the vector movement error e⃗:

Wnew = W − 1

2
λ

∂

∂W
e⃗T e⃗− γW,

where parameter λ defines the convergence speed, and γ defines exponential decay of the

synaptic weights in absence of learning signal (forgetting). Hereinafter we refer to λ and γ as

learning and degradation rates, respectively. Taking into account that the movement error

is the vector difference between the movement endpoint position and the target position x⃗0,

we have

e⃗ = F (p,W )− x⃗0,

where F (p,W ) := F (pcor, 0) is the movement endpoint as a functional of the initial motor

program p(t) and the correction matrix W as calculated by the neuro-mechanical arm model

with the corrected motor program. Then the equation for the weights update takes the form

Wnew = W − λ
∂F

∂W
e⃗− γW,

where ∂F/∂W is a 6×6×2 tensor whose components are the derivatives of the end movement

positions with respect to correction matrix entries.

5.5.3 Basal ganglia model

The model of reinforcement learning in basal ganglia we used in this study was previ-

ously published and is described in details in [Kim et al., 2017b]. Briefly, the model is an

extension of the classical two-pathway BG model from [Frank, 2005] to the case of many

possible actions. Here, we only provide short qualitative description of our model. Behav-
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ioral experiments studying reinforcement learning mechanisms assume that a choice must be

made between several differentially rewarding behavioral options. Unlike decision-making

tasks, motor learning does not imply a small or finite number of possible choices. The only

constraint is the context of the task, e.g. reaching from a fixed initial position to an unknown

destination. Our model has unlimited number of possible actions. As the context, we used

center-out reaching movements performed in a horizontal plane. To calculate cortical ac-

tivity corresponding to different movements, we explicitly solved an inverse problem based

on the given arm dynamics as described above. Accordingly, for every possible reaching

movement we could calculate the corresponding motor program represented by the activity

profiles of cortical inputs responsible for activation of different muscles. To describe different

experiments, we define corresponding (arbitrarily large) sets of motor programs that define

all possible behavioral choices (actions) in each experimental context.

The classical view of action selection is that different motor actions are gated by tha-

lamocortical relay neurons. In the presented model, we assume that relay neurons can be

activated at different firing rates, and their firing rates define contributions of different motor

programs to the resulting motor response. More specifically, in our model cortical input to

the spinal network is implemented as a linear combination of all possible motor programs

in the given context with coefficients defined by the firing rates of corresponding thalamo-

cortical relay neurons. This linear combination can be viewed as an aggregate input to the

spinal network from the cortical motoneurons exhibiting activity profiles corresponding to

different motor behaviors, e.g. reaching movements in different directions.

The classical concept of BG function is that the BG network performs behavioral choice

that maximizes reward. This action selection process results in activation of thalamic relay

neurons corresponding to the selected action and suppression of neurons gating other behav-

iors. Per this concept, each action is dedicated to specific neurons in different BG nuclei.

Their focused interconnections form action-related loops which start at the cortex, bifurcate

in the striatum into direct and indirect pathways converging on the internal Globus Pallidus

(GPi), and feed back to the cortex through the thalamus. Action preference is facilitated by
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increased excitatory projections from sensory cortical neurons representing the stimulus to

direct pathway striatal neurons (D1 MSNs). Suppression of unwanted competing actions is

assumed to occur because of lateral inhibition among the loops at some level of the network

in a winner-takes-all manner.

The classical model predicts that novel cue-action associations acquired based on rein-

forcement learning rely on BG network integrity. However, multiple experimental studies

have shown that pharmacological blockade of GPi, the BG output structure, does not lead to

significant impairments in performing well-learned tasks. Consistent with these experiments,

it was suggested that acquired associations may become “direct” projections within the cor-

tex bypassing the BG network. In our implementation of the model, competing actions

are suppressed by lateral inhibition in the population representing thalamocortical neurons,

independent of BG network integrity.

In the model, novel cue-action associations are formed based on reinforcement learning

in the striatum. Eventually, the preferable behavior is reliably selected due to potentiated

projections from the neurons in prefrontal cortex (PFC), activated by the provided stimulus,

to D1 MSNs, corresponding to the preferred behavior. On a longer timescale, repetitive

execution of the same action in response to the same stimulus leads to habituation of the re-

sponse via long-term potentiation of the direct projections between the corresponding PFC

and thalamocortical relay neurons based on Hebbian learning. At the same time, due to

degradation of synaptic connections between the PFC and striatum in absence of reinforce-

ment, BG involvement in the action selection process gradually decreases. Eventually, the

behavior becomes a habit, which is automatically selected solely based on direct cortico-

cortical projections.

In technical terms, the output of basal ganglia model is the activation levels of thalam-

ocortical relay neurons in response to the input from PFC neurons activated by visual cues.

Each cure represents one of the possible reaching targets. These levels are used as coeffi-

cients of the linear combination of all possible actions which represents the motor program

selected for execution. The resulting motor program is used to calculate the endpoint of
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the movement using Neuro-Mechanical Arm Model (see above). Depending on the distance

between the movement endpoint and the target position, the reward is calculated as dictated

by the experimental context (see below). This reward value is used to calculate the reward

prediction error (RPE) as a temporal difference between the current and previous reward

values. The RPE is used as the reinforcement signal to potentiate or depress synaptic pro-

jections from PFC neurons, activated by the visual cue provided, to the striatal neurons,

representing the selected actions.

Mathematically, the model is implemented as a 700-dimensional hybrid dynamical sys-

tem made of distinct 7 populations of rate neurons (D1 MSN, D2 MSN, GPe, STN, GPi,

thalamus), each containing 100 rate neurons (each representing a neuronal subpopulation);

every neuron corresponds to a one of the parallel loops within basal ganglia-thalamocortical

circuit. The parallel structure is only violated in the thalamus node where each loop inhibits

all other loops, creating a “winner takes all effect” which prevents strong simultaneous ac-

tivation of different loops. The simulation of a single trial goes as follows. First, the rate

differential equations are solved until a point attractor is reached (which empirically al-

ways happens with this system). This point attractor describes activities of all the 700 rate

neurons, including the ones in the thalamus. We then take the activities of the thalamic

neurons and use them as input to the neuro-mechanical arm model, which in turn produced

a movement. After that the reward is supplied (or not) to the model, depending on whether

the movement endpoint was in the proximity of the target center (target size is a model

parameter). Using the reward value the model computes the RPE and updates the reward

prediction value. Finally, the RPE value is used to update to strengths of connections be-

tween the PFC and D1 MSN, D2 MSN. PFC neurons (whose number is equal to the number

of cues in the experimental setup) are not simulated and are modeled simply by real numbers

meaning that they provide constant signal while BG reaches a decision.

See details in [Kim et al., 2017b].
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5.5.4 Model of the Critic

In the presence of visual perturbation, cerebellum may produce corrections that do not

lead to improvement in movement accuracy. To cope with that, the critic in the model pre-

dicts the result of the implemented correction and compares it with the actual improvement

in performance on the next trial. To calculate the expected error after correction, the critic

uses the internal model

e⃗exp = F (p,Wnew)− x⃗0

where Wnew is an adjusted correction matrix as described above, and x⃗0 is the actual target

position.

The critic compares the expected error with the error e⃗real observed on the next trial

which is subject to possible visual perturbation. If the observed error agrees well with

critic’s prediction, then the critic concludes that CB is functioning correctly and increases

the learning rate λ in the cerebellum for future adjustments. If there is no agreement, the

critic assumes that either the cerebellar correction was not the main reason for the error

change (e.g. the altered motor program), or CB was relying on the distorted error when

adjusting the correction matrix. In both cases, the critic decreases the learning rate to

suppress faulty cerebellar learning. Specifically, the critic calculates the magnitude of the

difference between the errors

mismatch = |e⃗real − e⃗exp|

and then forms its output

critic =


speedup · λ, mismatch < tlow · κ

λ, tlow · κ ≤ mismatch ≤ thigh · κ
λ

slowdown
,mismatch ≥ thigh · κ
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Here the critic compares the mismatch between predicted and perceived errors with two

threshold values. These thresholds are multiples of the estimate of the movement variability

κ which is assumed to be equal to the standard deviation of the endpoint noise. The critic

treats any mismatch less than tlow times the endpoint variability estimate κ as consistent

with prediction, any mismatch greater than thigh · κ as inconsistent with prediction, and any

mismatch in between these threshold is treated as inconclusive. The critic output is used to

set as a new value for the learning rate λ for the next trial. Therefore, in case of the consistent

prediction it is increased by a factor of speed up, in case of the inconsistent prediction it is

reduced by a factor of slow down or remains unchanged if the test is inconclusive. The values

of the parameters used are specified in each simulation context.

We bound the critic output by 0.001 from below and by aopt ·λopt from above, where ·λopt

is defined as the value of λ that leads to a complete elimination of the vector error in one

step (e⃗exp = 0) in absence of any visual perturbation. Also, if the current error magnitude is

extremely small (less than 1mm ) the critic signal is accepted equal to current value of λ, i.e.

the learning rate does not change. The critic signal is also used to offset the reinforcement

signal DA in the basal ganglia mode:

DA = RPE + α · critic

where RPE is the reward prediction error, and coefficient α depends on the context (see

below). In case cerebellar corrections are efficient in reducing the movement error, the critic

output is close to its maximum, which ensures positive reinforcement of the currently selected

action regardless of the reward provided. When cerebellar corrections are faulty, the critic

output is close to zero, which suppresses learning in cerebellum and creates prerequisites for

the reward-based learning in basal ganglia.

5.5.5 Simulation algorithm

The general flow of information in the model is as follows. First, basal ganglia select a

motor program to be executed. Then cerebellum modifies the program and sends it as an



108

input to the neuro-mechanical model of the arm which executes the program and calculates

the movement endpoint which is used to calculate the vector error and the reward. Because

of visual perturbation, the perceived vector error may be distorted depending on the ex-

perimental context. The critic evaluates whether cerebellum correction worked as expected

and sets its output accordingly. Then basal ganglia module updates synaptic weights of the

projections from PFC to striatal neurons based on the reward received and the critic input,

and cerebellum updates the correction matrix based on the vector error received and the

learning rate set by the critic.

More formally, the simulation of each trial can be divided into following stages, some of

which can be skipped depending on the particular model type (see text and Fig 9.B):

1. Selection of the motor program by the BG model, based on presented cue.

2. Application of the CB correction using current CB correction matrix.

3. Use of the resulting motor program as an input to the arm model to simulate the

movement and calculate reaching endpoint.

4. Addition of Gaussian (with mean zero and standard deviation 0.005m = 5mm noise

to the endpoint and application of the visual perturbation that transforms the vector

error.

5. Critic evaluation of the predicted and perceived error agreement.

6. Calculation of the reinforcement signal as a sum of the reward and the critic signal.

7. BG learning: use of the reinforcement signal to update the synaptic weights of PFC

projections to the striatum.

8. CB learning: Update of the correction matrix based on the vector error, and the critic

signal as a learning rate.
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5.5.6 Simulation contexts (models of experimental protocols)

Description of each of context includes the list of targets and (initial) cue-action associ-

ations used, sequence of cue activations, reward description as well as some additional minor

details.

Test 3-phase contexts First, we describe simple contexts that we use to demonstrate

model performance using progressively augmented architecture (Figs 2, 4, 7, 8, 11, 12). In

total we use three sensory cues (C1 and C2, C2’) and three actions (A1 and A2, A2’)

which corresponded to reaching toward North-East (T1, 45 degrees), North-North-East (T2,

75 degrees) and North-West (T2’,135 degrees) targets at 20 cm distance from the starting

point. We set habitual associations C1 → A1, C2 → A2 and C2 → A2 represented by

direct projections from PFC neurons (cues) to thalamocortical relay neurons (actions) to be

of strength 0.3 (see [Kim et al., 2017b] for details). In each context we use only two cues

and two actions. Then the virtual experiment has the following protocol:

1. Baseline: for 50 trials of the simulation, cue C1 is activated.

2. Adaptation: for 50 (or 100) trials, a visual perturbation is applied.

3. Post-effect: Finally, for the last 50 trials the conditions were returned to the ones used

during first 50 trials.

The visual perturbation is fixed for every context and can be of the following types: 1)

shift perturbation in reaching context: a switch of the presented cue from C1 to C2 (or C2’)

while keeping the vector error unaltered directly. 2) Rotation perturbation: a switch of the

presented cue from C1 to C2 (or C2’) and CCW rotation by 30 (or 90) degrees is applied

to the movement endpoint (hence also to the vector error). 3) X-reflection perturbation:

a switch of the presented cue from C1 to C2 and x-coordinate reversal in the movement

endpoint (which, in turn, affects the vector error in the similar manner).

We label the protocols in the following way.
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• Mild shift context: 3-phase context with 30 degrees shift perturbation during 50 trials;

• Mild rotation context: 3-phase context with 30 degrees rotation during 50 trials;

• Strong shift context: 3-phase context with 90 degrees shift perturbation during 100

trials;

• Strong rotation context: 3-phase context with 90 degrees rotation during 100 trials;

• Reflection context: 3-phase context with reflection perturbation during 100 trials.

For all these contexts, the pool of possible actions consisted of 100 reaching movements

with endpoints uniformly distributed from 20 to 155 degrees on a circle with 20 cm radius

and a centre at the initial hand position. When the reinforcement learning was enabled,

the reward of magnitude 3 was given for reaching within a circular target spot of 4 cm size,

centered at the target. The initially reward was set to 3 as well, assuming that subjects

were pretrained to perform reaching movements and getting reward of this particular mag-

nitude for reaching within the target spot. For strong shift, strong rotation and reflection

perturbations we used the cerebellar learning rate = 2.

Schlerf et al. context [Schlerf et al., 2013] The context uses 13 cues with habitual

associations with movement to directions from 60 to 90 degrees with a 2.5-degree step, to

represent different targets used in the actual experiment. At each trial one of these cues was

randomly activated. To simulate trials without visual feedback we did not update the CB

correction matrix after them.

The endpoint noise had SD = 1.05cm. For the controls the learning rate was set to 1.

The pool of actions was 100 reaching movements in directions uniformly distributed from 58

to 92 degrees.

To replicate the altered adaptation observed in ataxic patients, we increased the degra-

dation coefficient γ in the CB model from 0.04 to 0.16 to replicate the experimentally ob-

served asymptotic error. The arm endpoint noise SD was increased to 0.013 to replicate the

larger movement variability observed in cerebellar patients.
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Simulation with critic active For the version of the context with critic active, the

critic thresholds were tlow = 2, thigh = 3.5 and the speeds speedup = slowdown = 1.3. The

optimality coefficient was aopt = 0.2, to limit the learning rate values-for this setup due to

constantly changing targets and large noise the learning rates tend to get high values for our

critic parameters. The movement variability estimate was equal to the noise SD.

We have used several modifications of parameters for controls, which can be regarded as

a study of how critic performance depends on its parameters. Increasing both noise to 0.013

and estimate of the variability to 0.013 does not lead to any change both in rates and in

adaptation levels. If we additionally increase degradation to 0.016 (like in the constant rate

case), we reduce the adaptation level, but the rates stay the same. In fact, for our parameter

values increasing noise to 0.013 without adjusting movement variability does not have a

strong effect. Though if we do the same, while decreasing the estimate of the variability, the

effect is significant. The same happens if we apply stronger noise (not shown). Keeping the

noise size at controls level, one can decrease the adaptation levels by reducing the optimality

coefficient to 0.05 or the movement variability estimate alone to 0.88cm. In general, increasing

noise and decreasing the movement variability estimate has the same qualitative effect (one

can get a quantitative version of it too ). The fact that increasing the noise to 0.013 did

not produce a strong effect only reflects the fact that we increased the noise not strongly

enough to match the decrease of the movement variability estimate to 0.88cm (which can be

translated into sizes of thresholds tlow and thigh ). For the control noise value changing speed

up and slowdown within large ranges did not produce almost any effect, but for the increased

level of noise (without movement variability adjustment) one can get reduced adaptation

levels by either reducing the speedup to 1.12, or increasing the slow to 1.7.

Like in the constant rate case, the adaptation levels the model produce are rather stable

to the learning rate amplitude alterations (the most direct analog of the strongly reduced

constant learning rate is strongly reduced optimality coefficient), but final adaptation level

takes longer to achieve for smaller rates. Not surprisingly, unlike degradation increase, critic

parameter modifications affect adaptation to single step perturbations stronger than multi-



112

step adaptation, because the model encounters stronger perceptual perturbations. Even

though during the multi-step perturbation the perturbations reaches the same magnitude,

the formula for the critic we use works with changes of the error rather than with the error

itself, otherwise it would not be able to adapt to perturbations strong in magnitude, but not

changing perception (e.g. large shifts).

Gutierrez-Garralda at al. context [Gutierrez-Garralda et al., 2013] We used

two sensory cues (C1 and C2) corresponding to actions A1, A2 of reaching to targets T1 at

70 degrees and T2 at 110 degrees, respectively.

We set the habitual associations for both cues (C1-A1 and C2-A2) represented by

connections from corresponding PFC neurons to thalamocortical relay neurons with ini-

tial strength 0.55 (see [Kim et al., 2017b] for details). During the simulation, the target T1

corresponded to the actual target position, and the target T2 corresponds to the distorted

target position as perceived during the visual perturbation.

For the first 25 trials, the cue C1 was activated, and reward was provided for reaching

to the target T1. Then for trials 26 to 50 , the activated cue was changed to C2, but the

reward was still provided for reaching to the target T1. Finally, in the last 25 trials the

activated cue was changed back to C1, and reward was provided for reaching to the target

Tl again. The rewarding spot radius (Dmax) was 4cm. The pool of actions consisted of 100

reaching movements in directions uniformly distributed from 10 to 170 degrees. The reward

value was set to be equal to

R = −22|e⃗|1.5 + 0.7λ.

The initial reward expectation for both cues was set to 0.

In the experiment [Gutierrez-Garralda et al., 2013] the participants were aware of the

perturbation. Therefore, we reset the error history when we introduced or removed the

perturbation (i.e. the critic did not update its output on a trial immediately following the

change in conditions).

In this simulation context we used the following parameters for the critic component:
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tlow = 1.9, thigh = 2.1, movement endpoint variability estimate κ = 0.005, the learning rate

update parameters speed up = 2 and slowdown = 2.8, and aopt = 0.8.

Parkinson’s (PD) and Huntington’s Disease (HD) conditions were simulated as described

in [Kim et al., 2017b]. Specifically, PD condition involved a 90% reduction in the rates of

reinforcement learning in BG to mimic degeneration of dopaminergic neurons in SNc. HD

condition was simulated as a 90% reduction in output of the indirect pathway striatal medium

spiny neuron population.

Shmuelof et al. context [Shmuelof et al., 2012] We have used a single cue

C1 associated with reaching movement to the North (90 degrees, see Fig 1B). The initial

strength of the connection from the PFC neuron representing this cue to the thalamocortical

neuron corresponding to this action was set to 0.1.

During the asymptote phase, to imitate absent visual feedback, we set the critic output

to zero. We simulated the error clamp phase by setting the vector error to zero and providing

the reward regardless of whether the target spot was reached or not. The pool of possible

actions was 100 reaching movements in directions uniformly distributed from 40 to 110

degrees.

The participants have received explicit reward in [Shmuelof et al., 2012], so we modelled

the reward in the following way:

R = 2Θ(0.028− |e⃗|) + 0.65 · λ

where Θ(.) is Heaviside step function. The endpoint noise standard deviation was 0.008m.

The critic component parameters were tlow = 2, thigh = 3.5, the movement variability κ =

0.008 aopt = 0.2, the rate update factors speed up = 1.3 and slow down = 1.3.
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6

DISCUSSION

6.1 Significance

The following is a brief discussion of the potential applications and overall significance

of the present work.

6.1.1 Clinical relevance

Parkinson’s disease (PD) is among the most common neurodegenerative disorders with

an estimated 10 million sufferers worldwide [Rocca, 2018]. Neurologically-linked motor disor-

ders like Parkinson’s disease (PD) are notoriously difficult to accurately diagnose. Moreover,

the development of a laboratory (e.g. genetic) test is unlikely, as the onset of PD depends

on complex interactions between genetics and the environment [de Lau and Breteler, 2006].

Clinical diagnosis of PD is further complicated by the existence of other motor diseases— e.g.

Huntington’s disease (HD), ataxia, and Tourette syndrome— which can also cause Parkinso-

nian motor symptoms (e.g. tremors, spasms, excessive involuntary movement). Differential

diagnosis of PD requires that these confounding disorders and other potential causes of

Parkinsonian symptoms— e.g. drug abuse, stroke— are ruled out before a PD diagnosis

can be confirmed [NICE, 2017]. The lack of a reliable diagnostic procedure presents a major

hurdle that prevents early identification and preventive treatment of PD. However, ongoing

research into the physiopathology of neurodegenerative motor disorders has yielded some

consensus understanding of the underlying neurophysiological mechanisms that contribute

to the onset and progression of motor dysfunction. Damage to brain regions primarily asso-

ciated with motor control— such as the basal ganglia and cerebellum— has been implicated

as a key factor in the loss of motor adaptation, a common feature of PD symptomatology.

In particular, the role of dopaminergic reinforcement learning in the basal ganglia has
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been the focus of numerous PD-centered studies. Administration of levodopa (L-DOPA), a

precursor to dopamine, is the most common initial treatment prescribed for PD patients.

Furthermore, the use of deep brain stimulation to target damaged nuclei in the basal ganglia

is among the most promising new treatments currently being tested in clinical trials [Bron-

stein et al., 2011]. Moreover, innovations in brain-machine interface technologies— such as

the recently developed ”neural lace” system from the biotech startup Neuralink— could soon

enable the restoration of sensory and motor function for PD patients [Musk and Neuralink,

2019].

Despite these medical advances, recent evidence suggests that the underlying mecha-

nisms involved in these pathologies could be more nuanced than previously thought. Patient

symptomatology can vary on a case-by-case basis, even between patients diagnosed with the

same disease. Some of this variation can be explained by the disruption of particular neuronal

species within heterogeneous neuronal populations (e.g. striatal cholinergic interneurons).

Therefore, it is important to better understand the underlying physiology that could yield

clinically relevant outcomes for improved diagnostic and preventive care to reduce the burden

that PD causes for patients and the healthcare system.

6.1.2 Computational methods & neurofunctional theory

In this report, a new ”complete” neurofunctional theory was introduced. The funda-

mental principles behind this theory are motivated by the goal to fully describe the essential

mechanisms underlying neurobehavioral phenomena.

This goal is accomplished largely by the conceptualization of ”neurofunction.” Bridging

this gap between biophysics and behavior yields insights into the functional dependence of

behavioral output on localized heterogeneous neural circuitry. From this localized circuitry

can emerge large-scale, inter-network interactions— e.g. the multi-network neural interac-

tions that form the cerebro-cortico-striatal loop, which could play a role in motor adaptation

[Caligiore et al., 2016a, Doya, 2000a, Haber, 2016, Houk and Wise, 1995].

Neurocomputational network models can be derived from statistical measurements—
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e.g. from behavioral experiments. Prior knowledge of the relevant neural circuitry— e.g.

ionic timescales, neurotransmitters, cell types— can also ease the model construction pro-

cess. When constructing a neurocomputational model, biophysical parameters are chosen to

replicate the known properties of the relevant neurophysiology, while simultaneously repli-

cating the relevant statistical observations. Typically this is an iterative tuning process

that continues until the model statistically replicates the observed behavior— e.g. motor

adaptation with a specific learning rate.

Using this neurocomputational approach, complex hypotheses can be posed as computer

simulations that attempt to replicate essential statistical features of the original behavioral

experiments. Essentially, this approach seats Bayesian inference problems in a neurofunc-

tional context that can be more easily interpreted, which addresses a frequently cited disad-

vantage of popular Bayesian techniques like artificial neural networks. A neurocomputational

model can quantitatively replicate phenomenological outcomes— e.g. the success or failure

to adapt to a visual perturbation— by Bayesian inference of model parameters, which can

be formulated with varying degrees of biophysical details— depending on the specific goal

of the neurocomputational experiment.

Neurocomputational modeling can be used as a flexible quantitative tool— capable

of testing complex neurofunctional hypotheses, especially those that would otherwise be

intractable (e.g. mechanistic hypotheses involving the temporal dynamics of multiple over-

lapping neural circuits with unknown connectivity). If implemented appropriately, inter-

pretation of simulation results can be accomplished by employing straightforward empirical

logic. Initially, it can be assumed that the biophysical model adequately characterizes the

essential neurofunctional features of the learning system that produced the empirical data.

Then, given that the biophysical parameter X is manipulated, the simulation should produce

Y— this kind of causal relationship can be statistically inferred from the data, e.g. by cor-

relation between two variables. Thus, if the expected correlation cannot be replicated, the

null hypothesis is confirmed— the neurofunctional system cannot be characterized by the

proposed model. Otherwise, assuming sufficient statistical power, the biophysical relation-
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ship defined by the model parameters could explain the essential neurofunctional dynamics

of the system.

6.2 Results Summarized

6.2.1 The functional role of striatal cholinergic interneurons in reinforce-

ment learning from computational perspective

chapter 4 describes an investigation into the neurofunctional role played by striatal

cholinergic interneurons (”tonically active neurons,” TANs) during reinforcement-mediated

motor adaptation. The experimental results presented illustrate that TANs can affect the

timing and encoding of reward during RL-mediated adaptation by selectively modulating

dopamine release from D2 neurons.

Moreover, the presented neurocomputational simulation results suggest that the inabil-

ity of L-DOPA to completely restore non-error-based learning in Parkinson’s patients could

be explained by the specific mechanism by which L-DOPA increases extracellular dopamine

in the striatum. Essentially, L-DOPA restores the tonic dopamine concentration to healthy

levels, which restores some of the D2-TAN encoding of reward. However because the phasic

release of dopamine is unaffected by L-DOPA, D2-TAN encoding is not fully recovered.

6.2.2 The interplay between cerebellum and basal ganglia in motor adap-

tation: a modeling study

A key takeaway from this publication is that the cerebellum and basal ganglia can

operate via neurofunctionally distinct learning strategies that cannot be concurrently active,

and therefore must be coordinated via some latent neurofunctional mechanism.

Using model-based (i.e. supervised) learning, the cerebellum can leverage real-time vi-

sual feedback to adaptively correct motor control— in the model, this is represented by an

architecture similar to a supervised artificial neural network. In contrast, the basal gan-

glia can learn cue-action associations via dopamine-based RL, which can be characterized
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as non-error-based (i.e. model-free) learning— striatal dopamine encodes discrete reward-

s/punishments without depending on real-time visual feedback.

These distinct learning strategies have different advantages and disadvantages. The

cerebellar error-based learning strategy can quickly adapt to small visual perturbations but

fails to adapt to larger perturbations. Meanwhile the basal ganglia’s non-error-based learning

strategy is more robust to large perturbations but adapts to small perturbations less quickly

than the cerebellum.

A key conclusion of this study is that a neurofunctional cortico-cerebro-striatal control

circuit could be responsible for coordinating between these two distinct learning strategies—

a result that is validated by the computational model. This conclusion could be clinically

relevant for the diagnosis of Parkinsonian symptoms, particularly in quantitatively distin-

guishing between different neurofunctional motor disorders.

6.3 Robert Capps: Contributions

In this section, the author’s contributions are listed for the relevant experiments de-

scribed in chapter 4 and chapter 5.

6.3.1 The functional role of striatal cholinergic interneurons in reinforce-

ment learning from computational perspective

For the publication The functional role of striatal cholinergic interneurons..., the au-

thor’s contributions include:

Validation of the computational model— Validated the model by iteratively research-

ing the individual biophysical processes relevant to TAN-dopamine interactions. Compiled

relevant quantitative details from the literature to formulate the computational model of

TAN-dopamine interactions.

Formal analysis and software development— Implemented the TAN-dopamine release

model in the Python programming language. Explored the model’s sensitivity to various

perturbations and initial conditions using a variety of optimization techniques and visual-
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ization methods.

Investigation— Reviewed the literature, explored quantitative behavior of the compu-

tational model.

Data curation— Amalgamated data from tables and figures in the literature, which was

used for statistical fitting procedures during model development.

Writing (original draft preparation, review and editing).

Visualization— Programmatically created the time series figures (using the Python

visualization library Matplotlib), and digitally created the mechanistic diagram of TAN-

dopamine interactions (Figure 1) using the open-source vector editing software Inkscape.

6.3.2 The interplay between cerebellum and basal ganglia in motor adap-

tation: a modeling study

For the publication The interplay between cerebellum and basal ganglia..., the author’s

contributions include:

Conceptualization— Discussed relevant literature, drafted visual diagrams (e.g. on the

whiteboard) during lab meetings to explore new avenues of thought relevant to the project.

Methodology— Contributed existing knowledge of computational learning models. As-

sisted with technical troubleshooting during model development, implementation (e.g. opti-

mization, numerical integration).

Writing (original draft preparation, review and editing).

Visualization— Assisted with making the figures publication-ready (in particular, the

figures that show simulation results).

6.4 Future Directions

Finally, this section describes some interesting potential future directions related to the

present work. In particular, some possible next steps in the development of a ”complete”

neurofunctional theory are discussed. Potential applications of neurofunctional theory are

also listed and described briefly.
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6.4.1 Conservation of neurofunction

The continued development of neurofunctional theory is an obvious next step in this

avenue of research. Specifically a ”complete” neurofunctional theory as defined in chap-

ter 1 requires a more rigorous mathematical formalization of the computational principles

underlying neurofunctional theory.

One possible approach involves the formulation of a conservation law of neurofunc-

tion. The proposed conservation law could state that the neurofunctional characteristics

of an observed behavior (or behaviors) are symmetric in spacetime— i.e. neurofunctional

characteristics are conserved (invariant) with respect to spacetime, which implies that ob-

served neurofunction is also preserved between individual computational agents, e.g. human

participants in a behavioral study.

Future research on this topic would aim to formalize this law, which could result in the

derivation of a physical unit of measure— e.g. by relating the estimated neurofunctional

tensor N̂ to the Lagrangian L[q(t), ˙q(t), t], a functional of the generalized coordinates q(t)

and the times t1, t2 is obtained, which can be expressed as N̂[q, t1, t2] =
∫ t2

t1
L[q(t), q̇(t), t],

an application of the principle of least action [Feynman, 1965].

6.4.2 Quantitative ethics

The future application of neurofunctional principles— particularly in concert with

neurocomputational methods— necessitates serious ethical consideration [Char et al.,

2018, Verghese et al., 2018]. The integration of psychology, neuroscience, and neurocompu-

tational methods could provide deeper quantitative insights in fields that straddle the arts

and sciences, such as law, philosophy, economics, and sociology. Although qualitative or

subjective reasoning is commonly applied in these contexts, neurocomputational techniques

could be used to quantitatively validate previously intractable problems in these fields.

6.5 Points Summarized
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Section Description
(section 1.1) A new Neurofunctional theory of learning is introduced, poten-

tial applications of the theory are discussed.
(chapter 2) A synthetic literature review is presented as a chronological nar-

rative. The review summarizes some key discoveries in the cogni-
tive sciences— namely those that motivate the need for a ”com-
plete” Neurofunctional theory— e.g. behaviorism, the cognitive
revolution, and the inception of computational neuroscience are
discussed.

(chapter 4, chapter 5) Two of the author’s publications are presented in the context of
Neurofunctional theory.

(chapter 6) Results from the included publications are presented in the con-
text of Neurofunctional theory, and specific applications of these
conclusions are discussed.
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