1,134 research outputs found

    A location-aware embedding technique for accurate landmark recognition

    Full text link
    The current state of the research in landmark recognition highlights the good accuracy which can be achieved by embedding techniques, such as Fisher vector and VLAD. All these techniques do not exploit spatial information, i.e. consider all the features and the corresponding descriptors without embedding their location in the image. This paper presents a new variant of the well-known VLAD (Vector of Locally Aggregated Descriptors) embedding technique which accounts, at a certain degree, for the location of features. The driving motivation comes from the observation that, usually, the most interesting part of an image (e.g., the landmark to be recognized) is almost at the center of the image, while the features at the borders are irrelevant features which do no depend on the landmark. The proposed variant, called locVLAD (location-aware VLAD), computes the mean of the two global descriptors: the VLAD executed on the entire original image, and the one computed on a cropped image which removes a certain percentage of the image borders. This simple variant shows an accuracy greater than the existing state-of-the-art approach. Experiments are conducted on two public datasets (ZuBuD and Holidays) which are used both for training and testing. Morever a more balanced version of ZuBuD is proposed.Comment: 6 pages, 5 figures, ICDSC 201

    Orientation covariant aggregation of local descriptors with embeddings

    Get PDF
    Image search systems based on local descriptors typically achieve orientation invariance by aligning the patches on their dominant orientations. Albeit successful, this choice introduces too much invariance because it does not guarantee that the patches are rotated consistently. This paper introduces an aggregation strategy of local descriptors that achieves this covariance property by jointly encoding the angle in the aggregation stage in a continuous manner. It is combined with an efficient monomial embedding to provide a codebook-free method to aggregate local descriptors into a single vector representation. Our strategy is also compatible and employed with several popular encoding methods, in particular bag-of-words, VLAD and the Fisher vector. Our geometric-aware aggregation strategy is effective for image search, as shown by experiments performed on standard benchmarks for image and particular object retrieval, namely Holidays and Oxford buildings.Comment: European Conference on Computer Vision (2014

    Using Apache Lucene to Search Vector of Locally Aggregated Descriptors

    Full text link
    Surrogate Text Representation (STR) is a profitable solution to efficient similarity search on metric space using conventional text search engines, such as Apache Lucene. This technique is based on comparing the permutations of some reference objects in place of the original metric distance. However, the Achilles heel of STR approach is the need to reorder the result set of the search according to the metric distance. This forces to use a support database to store the original objects, which requires efficient random I/O on a fast secondary memory (such as flash-based storages). In this paper, we propose to extend the Surrogate Text Representation to specifically address a class of visual metric objects known as Vector of Locally Aggregated Descriptors (VLAD). This approach is based on representing the individual sub-vectors forming the VLAD vector with the STR, providing a finer representation of the vector and enabling us to get rid of the reordering phase. The experiments on a publicly available dataset show that the extended STR outperforms the baseline STR achieving satisfactory performance near to the one obtained with the original VLAD vectors.Comment: In Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2016) - Volume 4: VISAPP, p. 383-39

    Embedding based on function approximation for large scale image search

    Full text link
    The objective of this paper is to design an embedding method that maps local features describing an image (e.g. SIFT) to a higher dimensional representation useful for the image retrieval problem. First, motivated by the relationship between the linear approximation of a nonlinear function in high dimensional space and the stateof-the-art feature representation used in image retrieval, i.e., VLAD, we propose a new approach for the approximation. The embedded vectors resulted by the function approximation process are then aggregated to form a single representation for image retrieval. Second, in order to make the proposed embedding method applicable to large scale problem, we further derive its fast version in which the embedded vectors can be efficiently computed, i.e., in the closed-form. We compare the proposed embedding methods with the state of the art in the context of image search under various settings: when the images are represented by medium length vectors, short vectors, or binary vectors. The experimental results show that the proposed embedding methods outperform existing the state of the art on the standard public image retrieval benchmarks.Comment: Accepted to TPAMI 2017. The implementation and precomputed features of the proposed F-FAemb are released at the following link: http://tinyurl.com/F-FAem

    Selective Deep Convolutional Features for Image Retrieval

    Full text link
    Convolutional Neural Network (CNN) is a very powerful approach to extract discriminative local descriptors for effective image search. Recent work adopts fine-tuned strategies to further improve the discriminative power of the descriptors. Taking a different approach, in this paper, we propose a novel framework to achieve competitive retrieval performance. Firstly, we propose various masking schemes, namely SIFT-mask, SUM-mask, and MAX-mask, to select a representative subset of local convolutional features and remove a large number of redundant features. We demonstrate that this can effectively address the burstiness issue and improve retrieval accuracy. Secondly, we propose to employ recent embedding and aggregating methods to further enhance feature discriminability. Extensive experiments demonstrate that our proposed framework achieves state-of-the-art retrieval accuracy.Comment: Accepted to ACM MM 201
    • …
    corecore