10 research outputs found

    Revisiting the Linear Programming Relaxation Approach to Gibbs Energy Minimization and Weighted Constraint Satisfaction

    Get PDF
    We present a number of contributions to the LP relaxation approach to weighted constraint satisfaction (= Gibbs energy minimization). We link this approach to many works from constraint programming, which relation has so far been ignored in machine vision and learning. While the approach has been mostly considered only for binary constraints, we generalize it to n-ary constraints in a simple and natural way. This includes a simple algorithm to minimize the LP-based upper bound, n-ary max-sum diffusion – however, we consider using other bound-optimizing algorithms as well. The diffusion iteration is tractable for a certain class of higharity constraints represented as a black-box, which is analogical to propagators for global constraints CSP. Diffusion exactly solves permuted n-ary supermodular problems. A hierarchy of gradually tighter LP relaxations is obtained simply by adding various zero constraints and coupling them in various ways to existing constraints. Zero constraints can be added incrementally, which leads to a cutting plane algorithm. The separation problem is formulated as finding an unsatisfiable subproblem of a CSP

    Zero-Temperature Limit of a Convergent Algorithm to Minimize the Bethe Free Energy

    Get PDF
    After the discovery that fixed points of loopy belief propagation coincide with stationary points of the Bethe free energy, several researchers proposed provably convergent algorithms to directly minimize the Bethe free energy. These algorithms were formulated only for non-zero temperature (thus finding fixed points of the sum-product algorithm) and their possible extension to zero temperature is not obvious. We present the zero-temperature limit of the double-loop algorithm by Heskes, which converges a max-product fixed point. The inner loop of this algorithm is max-sum diffusion. Under certain conditions, the algorithm combines the complementary advantages of the max-product belief propagation and max-sum diffusion (LP relaxation): it yields good approximation of both ground states and max-marginals.Comment: Research Repor

    Generalized sequential tree-reweighted message passing

    Full text link
    This paper addresses the problem of approximate MAP-MRF inference in general graphical models. Following [36], we consider a family of linear programming relaxations of the problem where each relaxation is specified by a set of nested pairs of factors for which the marginalization constraint needs to be enforced. We develop a generalization of the TRW-S algorithm [9] for this problem, where we use a decomposition into junction chains, monotonic w.r.t. some ordering on the nodes. This generalizes the monotonic chains in [9] in a natural way. We also show how to deal with nested factors in an efficient way. Experiments show an improvement over min-sum diffusion, MPLP and subgradient ascent algorithms on a number of computer vision and natural language processing problems

    Higher-order Graph Principles towards Non-rigid Surface Registration

    Get PDF
    This report casts surface registration as the problem of finding a set of discrete correspondences through the minimization of an energy function, which is composed of geometric and appearance matching costs, as well as higher-order deformation priors. Two higher-order graph-based formulations are proposed under different deformation assumptions. The first formulation encodes isometric deformations using conformal geometry in a higher-order graph matching problem, which is solved through dual-decomposition and is able to handle partial matching. Despite the isometry assumption, this approach is able to robustly match sparse feature point sets on surfaces undergoing highly anisometric deformations. Nevertheless, its performance degrades significantly when addressing anisometric registration for a set of densely sampled points. This issue is rigorously addressed subsequently through a novel deformation model that is able to handle arbitrary diffeomorphisms between two surfaces. Such a deformation model is introduced into a higher-order Markov Random Field for dense surface registration, and is inferred using a new parallel and memory efficient algorithm. To deal with the prohibitive search space, we design an efficient way to select a number of matching candidates for each point of the source surface based on the matching results of a sparse set of points. A series of experiments demonstrate the accuracy and the efficiency of the proposed framework, notably in challenging cases of large and/or anisometric deformations, or surfaces that are partially occluded.Ce rapport formalise le problème du recalage de surfaces 3D comme la recherche d’un ensemble de correspondances discrètes par la minimisation d’une fonction d’énergie, qui est composée de fonctions de coûts mesurant des similitudes géométriques et d’apparence, et des à priori d’ordre élevé sur la déformation. Deux formulations à base de graphes d’ordre élevé sont proposées sous différentes hypothèses de déformation. La première formulation encode la déformation isométrique, à partir de géométrie conforme, dans un problème d’appariement de graphes d’ordre élevé, qui est résolu par décomposition duale et est capable de gérer les cas de correspondance partielle. Malgré l’hypothèse d’isométrie, cette approche est capable de mettre en correspondance de manière robuste deux ensembles clairsemés de points sur deux surfaces, y compris lorsque celles-ci subissent une déformation fortement anisométrique. Cependant, sa performance se dégrade de manière significative lorsqu’elle est étendue au recalage anisométrique d’un ensemble de points à forte densité. Ce problème est rigoureusement traité par la suite à travers un nouveau modèle de déformation capable de gérer des difféomorphismes arbitraires entre deux surfaces. Ce modèle de déformation est introduit dans une formulation MRF d’ordre élevé pour le recalage dense de surfaces, et être inféré en utilisant un nouvel algorithme parallèle et efficace en termes de mémoire. Pour traiter l’espace de recherche prohibitif, nous concevons une méthode efficace pour sélectionner un ensemble de correspondants potentiels pour chaque point appartenant à la surface source. Cette méthode est basée sur les résultats d’appariement d’un ensemble clairsemé de points. Notre méthode est validée au moyen d’une série d’expériences qui démontrent sa précision et son efficacité, notamment dans les cas difficiles où des déformations importantes et/ou anisométriques sont présentes, ou lorsque les maillages sont partiellement cachés

    A learning framework for higher-order consistency models in multi-class pixel labeling problems

    No full text
    Recently, higher-order Markov random field (MRF) models have been successfully applied to problems in computer vision, especially scene understanding problems. One successful higher-order MRF model for scene understanding is the consistency model [Kohli and Kumar, 2010; Kohli et al., 2009] and earlier work by Ladicky et al. [2009, 2013] which contain higher-order potentials composed of lower linear envelope functions. In semantic image segmentation problems, which seek to identify the pixels of images with pre-defined labels of objects and backgrounds, this model encourages consistent label assignments over segmented regions of images. However, solving this MRF problem exactly is generally NP-hard; instead, efficient approximate inference algorithms are used. Furthermore, the lower linear envelope functions involve a number of parameters to learn. But, the typical cross-validation used for pairwise MRF models is not a practical method for estimating such a large number of parameters. Nevertheless, few works have proposed efficient learning methods to deal with the large number of parameters in these consistency models. In this thesis, we propose a unified inference and learning framework for the consistency model. We investigate various issues and present solutions for inference and learning with this higher-order MRF model as follows. First, we derive two variants of the consistency model for multi-class pixel labeling tasks. Our model defines an energy function scoring any given label assignments over an image. In order to perform Maximum a posteriori (MAP) inference in this model, we minimize the energy function using move-making algorithms in which the higher-order problems are transformed into tractable pairwise problems. Then, we employ a max-margin framework for learning optimal parameters. This learning framework provides a generalized approach for searching the large parameter space. Second, we propose a novel use of the Gaussian mixture model (GMM) for encoding consistency constraints over a large set of pixels. Here, we use various oversegmentation methods to define coherent regions for the consistency potentials. In general, Mean shift (MS) produces locally coherent regions, and GMM provides globally coherent regions, which do not need to be contiguous. Our model exploits both local and global information together and improves the labeling accuracy on real data sets. Accordingly, we use multiple higher-order terms associated with each over-segmentation method. Our learning framework allows us to deal with the large number of parameters involved with multiple higher-order terms. Next, we explore a dual decomposition (DD) method for our multi-class consistency model. The dual decomposition MRF (DD-MRF) is an alternative method for optimizing the energy function. In dual decomposition, a complex MRF problem is decomposed into many easy subproblems and we optimize the relaxed dual problem using a projected subgradient method. At convergence, we expect a global optimum in the dual space because it is a concave maximization problem. To optimize our higher-order DD-MRF exactly, we propose an exact minimization algorithm for solving the higher-order subproblems. Moreover, the minimization algorithm is much more efficient than graph-cuts. The dual decomposition approach also solves the max-margin learning problem by minimizing the dual losses derived from DD-MRF. Here, our minimization algorithm allows us to optimize the DD learning exactly and efficiently, which in most cases finds better parameters than the previous learning approach. Last, we focus on improving labeling accuracies of our higher-order model by combining mid-level features, which we call region features. The region features help customize the general envelope functions for individual segmented regions. By assigning specified weights to the envelope functions, we can choose subsets of highly likely labels for each segmented region. We train multiple classifiers with region features and aggregate them to increase prediction performance of possible labels for each region. Importantly, introducing these region features does not change the previous inference and learning algorithms

    Optimization of Markov Random Fields in Computer Vision

    No full text
    A large variety of computer vision tasks can be formulated using Markov Random Fields (MRF). Except in certain special cases, optimizing an MRF is intractable, due to a large number of variables and complex dependencies between them. In this thesis, we present new algorithms to perform inference in MRFs, that are either more efficient (in terms of running time and/or memory usage) or more effective (in terms of solution quality), than the state-of-the-art methods. First, we introduce a memory efficient max-flow algorithm for multi-label submodular MRFs. In fact, such MRFs have been shown to be optimally solvable using max-flow based on an encoding of the labels proposed by Ishikawa, in which each variable XiX_i is represented by ℓ\ell nodes (where ℓ\ell is the number of labels) arranged in a column. However, this method in general requires 2 ℓ22\,\ell^2 edges for each pair of neighbouring variables. This makes it inapplicable to realistic problems with many variables and labels, due to excessive memory requirement. By contrast, our max-flow algorithm stores 2 ℓ2\,\ell values per variable pair, requiring much less storage. Consequently, our algorithm makes it possible to optimally solve multi-label submodular problems involving large numbers of variables and labels on a standard computer. Next, we present a move-making style algorithm for multi-label MRFs with robust non-convex priors. In particular, our algorithm iteratively approximates the original MRF energy with an appropriately weighted surrogate energy that is easier to minimize. Furthermore, it guarantees that the original energy decreases at each iteration. To this end, we consider the scenario where the weighted surrogate energy is multi-label submodular (i.e., it can be optimally minimized by max-flow), and show that our algorithm then lets us handle of a large variety of non-convex priors. Finally, we consider the fully connected Conditional Random Field (dense CRF) with Gaussian pairwise potentials that has proven popular and effective for multi-class semantic segmentation. While the energy of a dense CRF can be minimized accurately using a Linear Programming (LP) relaxation, the state-of-the-art algorithm is too slow to be useful in practice. To alleviate this deficiency, we introduce an efficient LP minimization algorithm for dense CRFs. To this end, we develop a proximal minimization framework, where the dual of each proximal problem is optimized via block-coordinate descent. We show that each block of variables can be optimized in a time linear in the number of pixels and labels. Consequently, our algorithm enables efficient and effective optimization of dense CRFs with Gaussian pairwise potentials. We evaluated all our algorithms on standard energy minimization datasets consisting of computer vision problems, such as stereo, inpainting and semantic segmentation. The experiments at the end of each chapter provide compelling evidence that all our approaches are either more efficient or more effective than all existing baselines

    Discrete graphical models -- an optimization perspective

    Full text link
    This monograph is about discrete energy minimization for discrete graphical models. It considers graphical models, or, more precisely, maximum a posteriori inference for graphical models, purely as a combinatorial optimization problem. Modeling, applications, probabilistic interpretations and many other aspects are either ignored here or find their place in examples and remarks only. It covers the integer linear programming formulation of the problem as well as its linear programming, Lagrange and Lagrange decomposition-based relaxations. In particular, it provides a detailed analysis of the polynomially solvable acyclic and submodular problems, along with the corresponding exact optimization methods. Major approximate methods, such as message passing and graph cut techniques are also described and analyzed comprehensively. The monograph can be useful for undergraduate and graduate students studying optimization or graphical models, as well as for experts in optimization who want to have a look into graphical models. To make the monograph suitable for both categories of readers we explicitly separate the mathematical optimization background chapters from those specific to graphical models.Comment: 270 page
    corecore