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Revisiting the Linear Programming Relaxation
Approach to Gibbs Energy Minimization

and Weighted Constraint Satisfaction
Tomáš Werner

Abstract—We present a number of contributions to the LP relaxation approach to weighted constraint satisfaction (= Gibbs energy
minimization). We link this approach to many works from constraint programming, which relation has so far been ignored in machine
vision and learning. While the approach has been mostly considered only for binary constraints, we generalize it to n-ary constraints
in a simple and natural way. This includes a simple algorithm to minimize the LP-based upper bound, n-ary max-sum diffusion –
however, we consider using other bound-optimizing algorithms as well. The diffusion iteration is tractable for a certain class of high-
arity constraints represented as a black-box, which is analogical to propagators for global constraints CSP. Diffusion exactly solves
permuted n-ary supermodular problems. A hierarchy of gradually tighter LP relaxations is obtained simply by adding various zero
constraints and coupling them in various ways to existing constraints. Zero constraints can be added incrementally, which leads to a
cutting plane algorithm. The separation problem is formulated as finding an unsatisfiable subproblem of a CSP.

Index Terms—weighted constraint satisfaction, Gibbs distribution, graphical model, Markov random field, linear programming
relaxation, marginal polytope, cut polytope, cutting plane algorithm, global constraint, supermodularity, tree-reweighted max-product

F

1 INTRODUCTION

THE topic of this paper is the following problem:
given a set of discrete variables and a set of functions

each depending on a subset of the variables, maximize
the sum of the functions over all the variables. This NP-
hard combinatorial optimization problem is known as
the weighted (valued, soft) constraint satisfaction prob-
lem (WCSP) [1], minimizing Gibbs energy, or finding the
most probable configuration of a Markov random field.
For Boolean (= two-state) variables, it becomes pseudo-
Boolean optimization [2]. The WCSP is useful in many
fields, such as AI or machine vision and learning.

One of the approaches to WCSP is the linear program-
ming (LP) relaxation, first proposed by Schlesinger [3].
The WCSP is formulated as an integer LP in which the
integrality constraint is then relaxed. The dual of the
resulting LP minimizes an upper bound on the WCSP
optimum by equivalent transformations (reparameteri-
zations) of the problem. Schlesinger and colleagues pro-
posed two algorithms to decrease the bound: max-sum
diffusion [4], [5], which averages overlapping edge max-
marginals until they all coincide, and the augmenting
DAG algorithm [6]. In general, these algorithms do not
find the global minimum of the bound but only a (good)
local optimum. We surveyed works [3], [4], [6] in [7], [8].

This article is a continuation of our survey [8] of the
approach by Schlesinger et al. and an improved version
of our paper [9]. We present the following contributions:

• The author is with the Department of Cybernetics, Czech Technical
University, Karlovo náměstı́ 13, 12135 Praha, Czech Republic. Email:
werner@cmp.felk.cvut.cz.

Links to constraint programming: Minimizing Gibbs energy
and WCSP are closely linked to the constraint satisfac-
tion problem (CSP) and the related field of constraint
programming [10] because: (i) the WCSP upper bound is
tight iff the CSP formed by active constraint values has a
solution [8], (ii) CSP is a special case of WCSP, (iii) WCSP
itself is subject to research in the constraints community
[1], [11], [12]. Though early seminal works on using
constraints in image analysis reflected the rôle of crisp
constraints [13] and their relation to soft constraints [14],
[3], nowadays the relation to CSP is ignored in machine
vision and learning, where people speak only about
MRFs and graphical models. We relate the LP relaxation
approach to many results from constraint programming.
This links MRF inference to a lot of relevant literature.

N-ary generalization of the LP relaxation: The LP relaxation
by Schlesinger and max-sum diffusion were originally
formulated for binary WCSPs [3], [8]. We generalize
them to constraints of any arity: while in the binary
case nodes are coupled to edges, here we couple pairs
of hyperedges. Which hyperedge pairs are actually cou-
pled is specified by the coupling scheme. This allows to
include non-binary constraints in a native way (= not by
translation to binary constraints).

High-arity and global constraints: A high-arity constraint
represented by a black box is feasible to handle by max-
sum diffusion whenever max-marginals of its reparam-
eterization are tractable to compute. This is very similar
to how global constraints are commonly treated in CSP.

Supermodular n-ary problems: We show that for super-
modular n-ary WCSPs, any local optimum of the bound
solves the WCSP exactly; here, it suffices to couple
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hyperedges only to variables, i.e., to achieve only gener-
alized arc consistency. By revisiting [15], [12], we gener-
alize this result to permuted supermodular WCSPs.
Tighter relaxations: We show that once we have a natively
n-ary LP relaxation, it can be tightened simply by adding
zero constraints. Dually, this means that equivalent
transformations change not only the constraint values
but also the problem hypergraph. Adding various zero
constraints and coupling them to existing constraints
in various ways yields a hierarchy of gradually tighter
relaxations, corresponding to a hierarchy of nested poly-
hedral outer bounds of the marginal polytope. This can
be done incrementally, yielding a dual cutting plane
algorithm. The separation problem can be posed purely
in CSP terms, such as finding an unsatisfiable sub-CSP.
We relate higher-order LP relaxations to stronger local
consistencies (path consistency, k-consistency) in CSP.

1.1 Other Works
Non-binary constraints, tighter relaxations and cutting-
plane strategies in LP relaxation approaches to WCSP
have been addressed in a number of other works.

Most similar to ours is the decomposition approach. The
original WCSP is expressed as a sum of subproblems
on tractable hypergraphs. The sum of maxima of the
subproblems is an upper bound on the maximum of
their sum (= the true solution). The bound is minimized
over constraint values of the subproblems, subject to that
they sum to a reparameterization of the original WCSP.

The approach was proposed by Wainwright et al. [16],
[17], [18] for tree-structured subproblems and improved
by Kolmogorov [19]. Using hypertrees rather than trees
allows for natively handling non-binary constraints and
yields a hierarchy of progressively tighter relaxations [17,
§VI], [18]. Johnson et al. [20] used general subproblems
rather than (hyper)trees, also obtaining a hierarchy of
relaxations. Komodakis et al. [21] pointed out that de-
composition is a standard technique in optimization [22].

Our approach can be seen equivalent to the decompo-
sition approach. In the one direction, we decompose the
WCSP into the smallest possible subproblems, individual
constraints. In the other direction, if each constraint
in our approach is itself defined as a sum of several
constraints, we obtain the decomposition approach. Our
adding of zero constraints is similar to constructing an
augmented hypergraph in [20], [18].

Weiss et al. [23] extended the LP relaxation to n-
ary problems in a way similar to ours, with a small
but crucial difference: they couple hyperedges only to
variables (rather than other hyperedges), in which case
adding zero constraints does not tighten the relaxation.

A global constraint in WCSP was used by Rother et al.
[24]. Our aproach is different, relying on LP relaxation.

Tighter LP relaxations of WCSP and cutting plane
strategies have recently appeared in many works. These
approaches can be divided into primal [25], [26] and dual
[20], [27], [28], [29]. Ours is dual. Primal approaches have

a drawback that no algorithms to solve the primal LP are
known that scale to large problems.

Koster et al. [25] proposed the same LP relaxation as
[3] (without dual) and a primal cutting plane algorithm.

Sontag and Jaakkola [26] observed the relation of the
marginal polytope and the cut polytope [30], for which
many classes of cutting planes are known, and adapted
the algorithm [31] to separate inconsistent cycles.

Kumar and Torr [27] and Komodakis and Paragios [28]
add cycles to the LP relaxation.

Sontag et al. [29] incrementally tighten the relaxation
by adding clusters of variables.

N-ary generalizations of the LP relaxation to WCSP,
their higher-order versions, and cutting plane strategies
proposed in the above works often use different for-
malisms which makes it difficult to compare them –
however, one can conjecture that they all yield the same
hierarchy of polyhedral relaxations (or at least some of
its lower levels). We offer yet another formulation, which
is very simple and general. Its main strength is in its
close relation to constraint programming, which allows
to formulate optimality conditions and the separation
problem in CSP terms and straightforwardly extends to
global and n-ary (permuted) supermodular constraints.

2 NOTATION AND PROBLEM FORMULATION
2V resp.

(
V
k

)
is the set of all resp. of k-element subsets of

a set V . The value [[ω]] is 1 if logical expression ω is true
and 0 if ω is false. R denotes the reals and R̄ = R∪{−∞}.
The set of mappings from X to Y is Y X . An ordered
resp. unordered tuple is denoted (· · ·) resp. {· · ·}.

Let V be a finite, totally ordered set of variables. To
emphasize the variable ordering, when defining a subset
of V by enumerating its elements we use (· · ·) instead of
{· · ·}. Each variable v ∈ V is assigned a finite set Xv , its
domain. An element of Xv is a state of variable v and
is denoted xv . The joint domain of variables A ⊆ V is
the Cartesian product XA =×v∈AXv , where the order
of the factors is determined by the order on V . A tuple
xA ∈ XA is a joint state of variables A.

Example 1. Let V = (1, 2, 3, 4), X1 = X2 = X3 = X4 =
{a, b}. A joint state x134 = (x1, x3, x4) ∈ X134 = X1 ×
X3 ×X4 of variables A = (1, 3, 4) ⊆ V is e.g. (a, a, b).

We will use the following implicit restriction conven-
tion: for B ⊆ A, whenever symbols xA and xB appear in
a single expression they do not denote independent joint
states but xB denotes the restriction of xA to variables B.

A constraint with scope A ⊆ V is a function fA: XA →
R̄. The arity of the constraint is the size of its scope, |A|.

Let E ⊆ 2V be a set of subsets of V , i.e., a hypergraph.
Each hyperedge A ∈ E is assigned a constraint fA. All
these constraints together are understood as a single
mapping f : T (E,XV ) → R̄, (A, xA) 7→ fA(xA), where
we denoted T (E,XV ) = { (A, xA) | A ∈ E, xA ∈ XA }.

The topic of this article is the problem

max
xV ∈XV

∑
A∈E

fA(xA) (1)
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∑
A∈E

∑
xA

fA(xA)µA(xA)→ max
µ

∑
A∈E

ψA → min
ϕ,ψ

(2a)∑
xA\B

µA(xA) = µB(xB) ϕAB(xB) ≶ 0 ∀(A,B) ∈ J, xB ∈ XB (2b)

∑
xA

µA(xA) = 1 ψA ≶ 0 ∀A ∈ E (2c)

µA(xA) ≥ 0
∑

B|(B,A)∈J

ϕAB(xA)−
∑

B|(A,B)∈J

ϕBA(xB) + ψA ≥ fA(xA) ∀A ∈ E, xA ∈ XA (2d)

which we will refer to as the weighted constraint satis-
faction problem (WCSP). The WCSP instance is defined
by a tuple (V,E,XV , f). When V , E and XV are clear
from context, sometimes we will refer to the instance just
as f . The arity of the instance is maxA∈E |A|.

Example 2. Let V = (1, 2, 3, 4) and E = {(2, 3, 4), (1, 2),
(3, 4), (3)}. Problem (1) means that we maximize the
function f234(x2, x3, x4)+f12(x1, x2)+f34(x3, x4)+f3(x3)
over x1, x2, x3, x4.

3 LINEAR PROGRAMMING RELAXATION

The LP relaxation approach developed by Schlesinger [3]
was originally formulated for binary WCSP. Following
our survey [8], we generalize it here to n-ary WCSPs.

We start by writing the relaxation as the pair of
mutually dual linear programs (2). Here, ≶ 0 means that
the variable is unconstrained. In matrix form, (2) reads

f>µ→ max
µ

ψ>1→ min
ϕ,ψ

(3a)

Mµ = 0 ϕ ≶ 0 (3b)
Nµ = 1 ψ ≶ 0 (3c)
µ ≥ 0 ϕ>M + ψ>N ≥ f> (3d)

The pairs (2) and (3) are written such that a constraint
and its Lagrange multiplier is always on the same line.

Besides E, XV and f , the LP is described by a set

J ⊆ I(E) = { (A,B) | A ∈ E, B ∈ E, B ⊂ A } (4)

where I(E) denotes the (strict) inclusion relation on E.
We refer to the set J as the coupling scheme.

In §3.1, §3.2 we explain the primal and dual in detail.

3.1 Primal Program

In the primal LP, each hyperedge A ∈ E is assigned
a function µA: XA → [0, 1], where primal constraints
(2c)+(2d) impose that µA is a probability distribution. All
the distributions together are understood as a mapping
µ: T (E,XV ) → [0, 1]. While the constraints (2c)+(2d)
affect each distribution separately, constraint (2b) cou-
ples some pairs of distributions, imposing that they have
consistent marginals. The coupling scheme J determines
which pairs of distributions are actually coupled.

Example 3. Let A = (1, 2, 3), B = (2, 3). Then (2b) reads:
∀x2 ∈ X2, x3 ∈ X3:

∑
x1
µ123(x1, x2, x3) = µ23(x2, x3).

If µ is integral, µ: T (E,XV )→ {0, 1}, then, on certain
conditions on E and J , the primal LP is equivalent to
WCSP. Theorem 1 shows that for this equivalence to
hold, it suffices to couple hyperedges to variables [23].

Theorem 1. Let
(
V
1

)
⊆ E and IGAC(E) ⊆ J , where

IGAC(E) = { (A, (v)) | A ∈ E, |A| > 1, v ∈ A } (5)

Then the primal LP with integral µ is equivalent to (1).

Proof: Let µ be integral. Then µA represents a sin-
gle joint state, xA. Thus, fA(xA) =

∑
yA
fA(yA)µA(yA).

Equality (2b) means that the joint state represented by
µB is the restriction of the joint state represented by µA
on variables B. If IGAC(E) ⊆ J then fixing µv for all
v ∈ V uniquely determines µA for all A ∈ E.

If IGAC(E) 6⊆ J then the primal LP can have integral
optimal solutions that are not solutions of (1).

To conclude, the primal LP is a relaxation of the
WCSP. The relaxation is twofold: first, µ is allowed to be
continuous rather than integral, second, only a subset,
J , of possible marginalization constraints is imposed.
Clearly, the primal optimum is an upper bound on (1).

3.1.1 Alternative Forms of Marginal Consistency
The marginal consistency condition (and the coupling
scheme) could be formulated in several alternative ways,
different from (2b). We state these alternative forms here.

First, (2b) can be stated in a symmetric form as∑
xA\C

µA(xA) =
∑
xB\C

µB(xB)
{
∀(A,B,C) ∈ J
∀xC ∈ XC

(6)

where J ⊆ I(E) = { (A,B,C) | A,B ∈ E, ∅ 6= C ⊆
A ∩ B }. Form (6) may appear more general than the
asymmetric form (2b); e.g., if A∩B 6= ∅ and B 6⊂ A then
equality (2b) is vacuous and (6) is not. But this is not so
because equality (6) applied on (A,B,C) is equivalent
to two equalities (2b) applied on (A,C) and (B,C). This
assumes that C ∈ E, which can be ensured by adding
the zero constraint with scope C (see Example 6 in §9).

Second, while equality (2b) is imposed on all joint
states xB ∈ XB , we could impose it only on their subset:∑

xA\B

µA(xA) = µB(xB) ∀(A,B, xB) ∈ J (7)
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where J ⊆ I(E) = {(A,B, xB) | A,B ∈ E, B ⊂ A, xB ∈
XB }. Form (6) can be refined similarly.

3.2 Dual Program

Definition 1. Let E ⊆ 2V , E′ ⊆ 2V , f : T (E,XV ) → R̄,
f ′: T (E′, XV ) → R̄. WCSP instances (V,E,XV , f) and
(V,E′, XV , f

′) are equivalent iff∑
A∈E

fA(xA) =
∑
A∈E′

f ′A(xA) ∀xV ∈ XV

Unlike the previous definition of WCSP equivalence
[3], [8], [19], Definition 1 does not require that equivalent
WCSPs have the same hypergraph, it only requires that
they have the same variables V and domains XV . Thus,
it allows to change not only the constraint values but also
the hypergraph. We call a transformation taking a WCSP
to its equivalent an equivalent transformation. Until §9,
we will consider only equivalent transformations that
preserve the hypergraph (i.e., E = E′ in the definition).

The simplest hypergraph-preserving equivalent trans-
formation is applied to a single pair of constraints, fA
and fB for B ⊂ A, by adding a function ϕAB : XB → R
(a ‘message’) to fA and subtracting it from1 fB , i.e.,

fA(xA)← fA(xA) + ϕAB(xB) ∀xB ∈ XB (8a)
fB(xB)← fB(xB)− ϕAB(xB) ∀xB ∈ XB (8b)

Let a function ϕAB : XB → R be assigned to each
(A,B) ∈ J . The collection of these functions forms a
single mapping ϕ. Let fϕ denote the WCSP obtained by
applying (8) on f for all (A,B) ∈ J , i.e., fϕ is given by

fϕA(xA) = fA(xA)−
∑

B|(B,A)∈J

ϕBA(xA) +
∑

B|(A,B)∈J

ϕAB(xB) (9)

We refer to (9) as a reparameterization2 of f .
In matrix form, (9) reads fϕ = f −M>ϕ. This shows

clearly why reparameterizations preserve the primal ob-
jective: because Mµ = 0 implies (f> − ϕ>M)µ = f>µ.

Theorem 2. For any f : T (E,XV )→ R̄, we have

max
xV

∑
A∈E

fA(xA) ≤
∑
A∈E

max
xA

fA(xA) (10)

which holds with equality iff there exists a joint state xV ∈
XV such that fA(xA) = maxyA

fA(yA) for all A ∈ E.

Proof: Clearly, maxi
∑
j aij ≤

∑
j maxi aij for any

aij ∈ R̄, which holds with equality iff there exists i such
that aij = maxk akj for all j. This is applied to (1).

1. While (8) is clearly an equivalent transformation, it is far from
obvious whether any hypergraph-preserving equivalent transformation
is realizable as a composition of (8) for various (A,B) ∈ I(E). In
analogy with [8, Theorem 3] and [19, Lemma 6.3], we conjecture that
this is so if E is closed to intersection (A,B ∈ E implies A ∩B ∈ E).

2. There is a ‘gauge freedom’ in (9): f = fϕ need not imply ϕ = 0.
It is an open problem for a given f to describe the set {ϕ | f = fϕ }.
If some constraint values are −∞, this seems to be difficult.

The right-hand expression in (10) is an upper bound
on (1). By eliminating variables ψA, the dual LP reads

min
ϕ

∑
A∈E

max
xA

fϕA(xA) (11)

which can be interpreted as minimizing the upper bound
by reparameterizations permitted by J .

3.3 Hierarchy of LP Relaxations
We have shown, both by primal and dual arguments,
that the optimum of the LP (2) is an upper bound on
the true WCSP optimum (1). Sometimes, the bound is
tight, i.e., equal to (1). For any non-trivially chosen J ,
this happens for a large and complex class of WCSPs.

Tightness of the relaxation depends on the coupling
scheme J . An equality (2b) in the primal corresponds
via duality to a variable ϕAB(xB) in the dual – thus,
the larger J is, the more the primal is constrained and
the larger is the set of permitted reparameterizations in
the dual. LP relaxations for various J ∈ I(E) form a
hierarchy, partially ordered by the inclusion on I(E).

Let P (E,XV , J) ⊆ [0, 1]T (E,XV ) denote the polytope of
mappings µ feasible to the primal LP. The hierarchy of
relaxations is established by the obvious implication3

J1 ⊇ J2 =⇒ P (E,XV , J1) ⊆ P (E,XV , J2) (12)

Imposing marginal consistency in form (7) rather
than (2b) would yield a finer-grained hierarchy of re-
laxations. This would require to modify formula (9).

4 CONSTRAINT SATISFACTION PROBLEM

The constraint satisfaction problem (CSP) [33] is one of
the classical NP-complete problems. Here we give back-
ground on the CSP which we will need later.

Let each hyperedge A ∈ E be assigned a crisp con-
straint f̄A: XA → {0, 1}, understood as the characteristic
function of an |A|-ary relation over variables A. A joint
state xA is permitted (forbidden) iff A ∈ E and f̄A(xA)
equals 1 (0). Let ∨ (∧) denote the logical disjunction
(conjunction). The CSP asks whether there exists a joint
state xV ∈ XV satisfying all the relations, i.e., f̄A(xA) = 1
for each A ∈ E. Such xV is a solution. The CSP instance
is defined by (V,E,XV , f̄), where f̄ : T (E,XV )→ {0, 1}.

A CSP is satisfiable iff it possesses a solution. We call
xA a satisfiable joint state iff it can be extended to a
solution. Note, the fact that the CSP is satisfiable and
xA is permitted does not imply that xA is satisfiable. A
joint state xA is locally consistent iff f̄B(xB) = 1 for
every B such that B ∈ E and B ⊆ A. In particular, xV
is a solution iff it is locally consistent.

For tractable subclasses of the CSP see [34], [35].
A powerful tool to solve CSPs is constraint propagation

[36] (filtering, relaxation labeling [14]). The possibility to

3. Different coupling schemes may yield the same relaxation, i.e.,
P (E,XV , J1) = P (E,XV , J2) need not imply J1 = J2. It is an open
problem to characterize when exactly this happens.
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propagate constraints is the distinguishing feature of the
CSP: while in general a search cannot be avoided to solve
a CSP, propagating constraints during the search prunes
the search space such that instances of practical size can
be solved. In a way, constraint propagation is a crisp
analogy of ‘message passing’ in graphical models.

In constraint propagation, some obviously unsatisfi-
able joint states are iteratively deleted using a simple
local rule, a propagator. This is often done until the CSP
satisfies a state characterized by a local consistency – then
we speak about enforcing the local consistency.

Many local consistencies have been proposed, see [36]
for a survey and [37] for comparison of their strength for
binary CSPs. The most well-known one is arc consistency
(AC). It is defined for binary CSPs, while we need a local
consistency defined for CSPs of any arity. Many such
consistencies are known; of them, most relevant to our
LP relaxation are pairwise consistency (PWC), generalized
arc consistency (GAC), and k-consistency [36].

4.1 J-consistency
To fit our form of coupling, we introduce a modification
of PWC, J-consistency. While PWC enforces consistency
of all pairs of relations, J-consistency enforces consis-
tency of relations f̄A and f̄B only if (A,B) ∈ J .

Definition 2. For B ⊂ A, relations f̄A: XA → {0, 1} and
f̄B : XB → {0, 1} are pairwise consistent iff∨

xA\B

f̄A(xA) = f̄B(xB) ∀xB ∈ XB (13)

A CSP (V,E,XV , f̄) is J-consistent iff relations f̄A and
f̄B are pairwise consistent for every (A,B) ∈ J .

Note that the set of equalities (13) has the following
meaning: a joint state xB is permitted by relation f̄B iff
xB can be extended to a joint state xA satisfying f̄A.

PWC and GAC are special cases of J-consistency. PWC
is obtained if E is closed to intersection (i.e., A,B ∈ E
implies A ∩ B ∈ E) and J = I(E). GAC is obtained4

if
(
V
1

)
⊆ E and J = IGAC(E). For binary CSPs with(

V
1

)
⊆ E, PWC and GAC become AC.

To enforce J-consistency, a generalization of well-
known algorithms to enforce (G)AC can be used. Al-
gorithm 1 deletes unsatisfiable joint states until the CSP
becomes J-consistent, while preserving the solution set,
i.e., the relation

∧
A∈E f̄A(xA).

Obviously, if the algorithm makes f̄ empty (i.e., f̄ = 0)
then the initial CSP was unsatisfiable. Note that if any
relation f̄A becomes empty during the algorithm, it is
already clear that f̄ will eventually become empty.

We give the algorithm also in the parameterized form
as Algorithm 2, which does not change the relations f̄
(thus, they can be represented intensionally, §6.3). Each

4. We remark that the concept of GAC allows us to explain Theo-
rem 1 in §3.1 in CSP terms as follows. An integer primal-feasible µ
can be seen as a CSP in which, due to (2c), each relation has a single
permitted joint state. Clearly, such a CSP is satisfiable iff it is GAC.

Algorithm 1 (enforcing J-consistency of CSP)
repeat

Find (A,B) ∈ J , xB ∈ XB s.t.
∨
xA\B

f̄A(xA) 6= f̄B(xB)

for xA\B ∈ XA\B do f̄A(xA)← 0 end for
f̄B(xB)← 0

until f̄ is J-consistent

(A,B) ∈ J is assigned a function ϕ̄AB : XB → {0, 1},
where all these functions together form a mapping ϕ̄.
Initially we set ϕ̄ = 1. Analogically to (9), we define
transformation f̄ ϕ̄ of f̄ by

f̄ ϕ̄A(xA) = f̄A(xA) ∧
∧

B|(B,A)∈J

ϕ̄BA(xA) ∧
∧

B|(A,B)∈J

ϕ̄AB(xB)

Algorithm 2 (enforcing J-consistency, parameterized)
repeat

Find (A,B) ∈ J , xB ∈ XB s.t.
∨
xA\B

f̄ ϕ̄A(xA) 6= f̄ ϕ̄B(xB)

ϕ̄AB(xB)← 0
until f̄ ϕ̄ is J-consistent

The closure of a CSP with respect to a local consistency
is the maximal subset of its permitted joint states that
still achieves the local consistency [36, §3]. To formalize
this, we define inclusion ≤ and join ∨ on CSPs by:

f̄ ≤ f̄ ′ ⇐⇒ ∀A, xA: f̄A(xA) ≤ f̄ ′A(xA)
f̄ = f̄ ′ ∨ f̄ ′′ ⇐⇒ ∀A, xA: f̄A(xA) = f̄ ′A(xA) ∨ f̄ ′′A(xA)

Definition 3. The J-consistency closure of a CSP
(V,E,XV , f̄) is the CSP (V,E,XV , f̄

∗) where

f̄∗ =
∨
{ f̄ ′ | f̄ ′ ≤ f̄ , f̄ ′ is J-consistent } (14)

It is easy to verify that the join of J-consistent CSPs is
J-consistent (in other words, J-consistent CSPs form a
join-semilattice). Hence the closure (14) is J-consistent.

It is not true in general that an algorithm to enforce
a local consistency produces the closure of that local
consistency [36]. However, it is true for J-consistency.

Theorem 3. Algorithm 1 or 2 finds the J-consistency closure.

4.2 k-consistency
There exist stronger local consistencies than (G)AC and
PWC. Most important of them is k-consistency [36].

Definition 4. A CSP is k-consistent iff for every locally
consistent joint state xA such that |A| = k − 1 and every
variable v ∈ V there exists a state xv such that xA∪(v) is
locally consistent (i.e., xA can be extended to variable v).

Strong k-consistency is k′-consistency for all k′ ≤ k.
Solvability by strong k-consistency characterizes an im-
portant class of tractable relation languages [34, §8.4.2]
(e.g., binary CSPs with Boolean variables are solved by
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strong 3-consistency). Strong k-consistency solves CSPs
with (hyper)graph of treewidth less than k [38], [35, §3.4].

Unlike J-consistency, enforcing (strong) k-consistency
in general requires adding new relations to the CSP. Let
f̄A = 1 denote the universal relation (i.e., identically true)
on A. An inefficient way to enforce k-consistency is to
add all possible universal relations of arity k − 1 and k
(such that

(
V
k−1

)
∪
(
V
k

)
⊆ E), then enforce PWC, and then

remove all the previously added k-ary relations [39, §8].
In a more efficient algorithm, only some of the missing

(k − 1)-ary relations can be added. It achieves strong k-
consistency by enforcing k′-consistency for k′ = 2, . . . , k
in turn. A (k−1)-consistent CSP is made k-consistent as
follows. We iteratively set f̄A(xA) ← 0 whenever |A| =
k − 1 and xA cannot be extended to some variable v.
Here, if A was not already in E, we first add A to E and
set f̄A ← 1. Simultaneously, PWC is enforced.

2-consistency is the same as arc consistency.

4.2.1 3-consistency and Path Consistency

3-consistency in a binary CSP is also known as path con-
sistency for the following reason. A sequence (u, . . . , v)
of variables is a path if {u, v} and all edges along the
sequence are in E (we also allow u = v which yields
a cycle). The path is consistent iff any state pair (xu, xu)
satisfying relation f̄uv can be extended to all intermediate
relations along the path. A graph is chordal (= triangu-
lated) iff every cycle of length 4 or more has a chord.

Theorem 4. In a chordal graph, every path of length 3 (i.e.,
with 3 variables) is consistent iff every path is consistent.

Proof: For complete (hence chordal) graphs, this is a
classical results by Montanari [13], [36]. It was extended
to chordal graphs by Bliek and Sam-Haroud [40].

By definition, 3-consistency means that any locally
consistent state pair (xu, xv) can be extended to any third
variable w. In other words, after filling-in the CSP to the
complete graph with universal binary relations, all paths
of length 3 are consistent – hence, all paths are consistent.

4.3 CSP with a Relation over All Variables

Let
⋃
E =

⋃
A∈E A (typically but not necessarily we have⋃

E = V ). Consider a CSP containing a relation over
hyperedge

⋃
E (i.e.,

⋃
E ∈ E) and the coupling scheme

ISAT(E) = { (
⋃
E,A) | A ∈ E, A 6=

⋃
E } (15)

which couples
⋃
E to all other hyperedges. Proposi-

tions 5, 6, 7 give properties of ISAT(E)-consistency we
will need later. Proofs are easy, from Definitions 2, 3.

Proposition 5. A CSP with
⋃
E ∈ E has a non-empty

ISAT(E)-consistency closure iff it is satisfiable.

Proposition 6. A CSP with
⋃
E ∈ E is ISAT(E)-consistent

iff every joint state xA permitted by f̄A is satisfiable.

Proposition 7. If a CSP with
⋃
E = V ∈ E is ISAT(E)-

consistent then

f̄V (xV ) ≤
∧
A∈E

f̄A(xA) ∀xV ∈ XV (16)

Note, equality in (16) for all xV means that the relation
f̄V is realizable as the conjunction of the relations f̄A.

Example 4. Let V = (1, 2, 3), XV = {0, 1}V , and E =
{ (1, 2), (1, 3), (2, 3), (1, 2, 3) }. Let f̄ be defined by

f̄123(x1, x2, x3) = x1x̄2x̄3 ∨ x̄1x2x̄3 ∨ x̄1x̄2x3 (17a)
f̄12(x1, x2) = x̄1x̄2 ∨ x1x̄2 ∨ x̄1x2 (17b)

and f̄13 = f̄23 = f̄12, where we denoted x̄u = 1 − xu
and xuxv = xu ∧ xv . The CSP (V,E,XV , f̄) is ISAT(E)-
consistent but the inequality in (16) is strict for xV =
(x1, x2, x3) = (0, 0, 0). Clearly, f̄123 is not realizable as a
conjunction of any binary relations.

5 OPTIMALITY OF THE LP RELAXATION

Given feasible primal and dual variables, we want to
recognize whether they are optimal to the LP pair and
whether this optimum is tight. As shown in [3], [8] for
binary WCSPs, the answers to these questions depend
only on the properties of the CSP formed by the active
joint states. This is significant because it moves reasoning
about optimality of the LP relaxation to the realm of a
well-known and long-studied problem.

Here we extend these results for WCSPs of any arity.
Theorems 8, 9, 10 characterize three levels of optimality
of the LP relaxation: whether the upper bound is tight
(i.e., equal to (1)), minimal, or locally minimal.

Definition 5. Given a function fA: XA → R̄, we define a
relation dfAe: XA → {0, 1} by

dfAe(xA) =


1 if fA(xA) = max

yA

fA(yA)

0 if fA(xA) < max
yA

fA(yA)
(18)

A joint state xA of constraint fA is active iff dfAe(xA) = 1.
Given a mapping f : T (E,XV )→ R̄, we define a mapping

dfe: T (E,XV )→ {0, 1} by dfeA(xA) = dfAe(xA).

Theorem 8. Inequality (10) holds with equality iff the CSP
(V,E,XV , dfe) is satisfiable5. The solutions of this CSP are
in one-to-one correspondence with the maximizers of (1).

Proof: By restating the second part of Theorem 2.

Theorem 9. Let µ: T (E,XV ) → [0, 1] be feasible to the
primal LP. The primal and dual LP are jointly optimal iff

[1− dfϕAe(xA)]µA(xA) = 0 ∀A ∈ E, xA ∈ XA (19)

Proof: Apply complementary slackness to (2b).
Theorem 9 characterizes WCSPs for which the bound

is dual optimal, i.e., cannot be improved by changing ϕ:

5. Note a subtlety: since finding a solution to a CSP is NP-complete
even if we know that the CSP is satisfiable, finding an optimizer to a
WCSP is NP-complete even if we know that the upper bound is tight.
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it is when a primal feasible µ exists such that µA(xA) = 0
whenever joint state xA is inactive. In fact, given any
single dual optimal solution, all primal optimal solutions
are uniquely determined by the active joint states by (19).

Theorem 10. If, for any J , ϕ is optimal to the dual LP then
the J-consistency closure of dfϕe is not empty.

Proof: Let f̄ ′A(xA) = [[µA(xA) > 0]]. For any non-
negative µA, obviously

∑
xA\B

µA(xA) = µB(xB) im-
plies

∨
xA\B

f̄ ′A(xA) = f̄ ′B(xB). Hence, the CSP f̄ ′ is J-
consistent. Clearly, (19) can be rewritten as f̄ ′ ≤ dfϕe.
By (14), dfϕe has a non-empty J-consistency closure.

As shown in [41], [8], [19], a non-empty closure of dfϕe
is only necessary but not sufficient for dual optimality.
Thus, Theorem 10 characterizes local minima of the upper
bound (10). These local minima naturally appear in
several algorithms to solve the dual LP6.

The only known WCSP classes for which all local
minima are global are the supermodular ones and those
with binary constraints and Boolean variables [8], [42].

6 OPTIMIZING THE BOUND

Here we focus on algorithms to solve the LP (2).
It is better to solve the dual LP than the primal LP.

This is because no algorithm is known to solve (or find a
good suboptimum of) the primal for large instances; only
general LP solvers (simplex) have been used [25], [26].
Moreover, the number of primal variables is exponential
in the arity of the instance, thus for large arities the
primal cannot be solved explicitly at all, whereas the
corresponding exponential number of dual constraints
sometimes can be handled implicitly (§6.3, §9.3).

6.1 Existing Algorithms for Binary Problems

The dual LP in the form (11) is an unconstrained mini-
mization of a convex piecewise linear (hence nonsmooth)
function. To scale to large instances, it is reasonable to
require that an algorithm to solve (11) have space com-
plexity linear in the number of dual variables ϕAB(xB). This
rules out e.g. the simplex and interior point algorithms.
For binary WCSPs, known algorithms with this property
can be divided into two groups:

1) Local algorithms find a local minimum of the upper
bound characterized by arc consistency of the active joint
states. The found local minima are usually very good or
even global. Two types of such algorithms are known:

a) Algorithms based on averaging max-marginals:
max-sum diffusion [4], [5], [8], TRW-S [19] and [43],
[20]. They can be roughly seen as a (block) coordinate
descent. Existence of local minima follows from the
fact that coordinate descent need not find the global
minimum of a convex nonsmooth function [44, §7.3].

6. In particular, in any fixed point of the TRW-S algorithm [19], the
states and state pairs whose max-marginals are maximal in trees form
an arc consistent CSP. This is called weak tree agreement in [19].

b) The augmenting DAG algorithm [6], [7], [8] and
the virtual arc consistency (VAC) algorithm [12]. They
explicitly try to enforce AC of dfϕe. If all the states of
any variable are deleted, the bound can be improved
by back-tracking the causes of deletions.

2) Global algorithms find the global minimum of the upper
bound. Two types of such algorithms are known:

a) Subgradient descent [45], [21] is a well-known method
to minimize nonsmooth functions. These approaches
rely on decomposing the WCSP as a sum of tractable
subproblems (§1.1). To achieve good convergence rate,
the subproblems must be well chosen (large enough).
b) Smoothing algorithms [44, §7.4], [23], [20], [46] use
a sequence of smooth convex approximations of our
nonsmooth convex objective function. Each such func-
tion can be minimized by coordinate descent globally.
Unlike the global algorithms, the local algorithms

improve the bound monotonically.
In principle, any of the above algorithms can be gener-

alized to n-ary WCSPs, still keeping its space complexity
linear in the number of variables ϕAB(xB). This is easiest
for max-sum diffusion, which we show in §6.2.

6.2 Max-sum Diffusion
The max-sum diffusion iteration is the reparameteriza-
tion (8) on a single (A,B) ∈ J that averages fB and the
max-marginals of fA, i.e., makes satisfied the equalities

max
xA\B

fA(xA) = fB(xB) ∀xB ∈ XB (20)

If fB(xB) > −∞, maxxA\B
fA(xA) > −∞, this is done by

setting ϕAB(xB) = [fB(xB)−maxxA\B
fA(xA)]/2 in (8).

Theorem 11. The iteration does not increase the upper bound.

Proof: Let us denote a(xB) = maxxA\B
fA(xA),

b(xB) = fB(xB), c(xB) = [b(xB) − a(xB)]/2 = ϕAB(xB).
Before the iteration, the contribution of fA and fB to the
upper bound (10) is

max
xA

fA(xA)+max
xB

fB(xB) = max
xB

a(xB)+max
xB

b(xB) (21)

After the iteration, this contribution is

max
xB

[a(xB)+ c(xB)]+max
xB

[b(xB)− c(xB)]

= max
xB

[a(xB)+ b(xB)] (22)

Clearly, expression (22) is not greater than (21).
Using parameterization (9), we obtain Algorithm 3.

To correctly handle infinite weights, it assumes that the
CSP f̄fin defined by f̄fin

A (xA) = [[fA(xA) > −∞]] is J-
consistent. Optionally, any time a constant can be added
to a constraint and subtracted from another constraint.

Next we give important properties of the algorithm.

Theorem 12. In any fixed point ϕ of Algorithm 3, dfϕe is
J-consistent.

Proof: Show that maxxA\B
fA(xA) = fB(xB) implies∨

xA\B
dfAe(xA) = dfBe(xB), which is easy.
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Algorithm 3 (max-sum diffusion, parameterized)
loop

for (A,B) ∈ J , xB ∈ XB s.t. fB(xB) > −∞ do
ϕAB(xB)← ϕAB(xB) + [fϕB(xB)− max

xA\B

fϕA(xA)]/2

end for
end loop

Theorem 13. If the J-consistency closure of dfϕe is initially
empty then after a finite number of iterations of Algorithm 3,
the upper bound strictly decreases.

Theorem 14. If the J-consistency closure of dfϕe is initially
non-empty then:
• after any number of iterations of Algorithm 3, the upper

bound does not change;
• after a finite number of iterations of Algorithm 3, dfϕe

becomes the J-consistency closure of the initial dfϕe.

Proof: Theorems 13 and 14 can be proved by noting
that what diffusion does to the active joint states is
precisely what Algorithm 2 does to the permitted joint
states. See [8, Theorem 7], cf. [19, Theorem 3.4].

Max-sum diffusion is not yet fully understood, in
particular its convergence theory is missing. For binary
WCSPs, it has been conjectured [4], [5] that diffusion
converges to a fixed point, when (20) holds for all
(A,B) ∈ J . Though firmly believed true, this conjecture
has been never proved. We state it as follows.

Conjecture 15. In Algorithm 3, the sequence of numbers
fϕB(xB)−maxxA\B

fϕA(xA) converges to zero.

6.3 Handling High-arity and Global Constraints
A constraint fA can be represented either by explicitly
storing the values fA(xA) for all xA ∈ XA or by a black-
box function. In constraint programming, this is known
as extensional and intensional representation, respectively.
For high-arity constraints, only intensional representa-
tion is possible because the set XA is intractably large.
Intensionally represented constraints of a non-fixed arity
(not necessarily depending on all the variables) are
referred to as global constraints [47], [36], [48].

The propagator of a local consistency that is trivial
to execute for a low-arity constraint may be intractable
for a high-arity intensional constraint. A lot of research
has been done to find polynomial-time propagators for
global constraints [47]. Usually, the strongest local con-
sistency for which such a propagator is found is GAC.

Analogically, max-sum diffusion can handle an in-
tensionally represented constraint fA of an arbitrarily
high arity if a polynomial algorithm exists to compute
maxxA\B

fϕA(xA). Recall from §4 that the iteration of
Algorithm 1 or 2 is the propagator for J-consistency.
In this sense, the max-sum diffusion iteration can be
called a soft propagator (for the augmenting DAG /
VAC algorithm, we would need a slightly different soft
propagator). Thus, soft high-arity and global constraints

can be handled in the way similar to how crisp global
constraints are commonly handled in CSP.

Example 5. Let E =
(
V
1

)
∪E′ ∪ (V ) where E′ ⊆

(
V
2

)
. Let

J = IGAC(E). Algorithm 3 does two kinds of updates:
between binary and unary constraints, and between the
global and unary constraints. For the latter, we need to
compute maxxV \(u) f

ϕ
V (xV ) for every u ∈ V and xu ∈ Xu.

From (9) we have

fϕV (xV ) = fV (xV ) +
∑
v∈V

ϕV v(xv) (23)

Note that (23) is an objective function of a WCSP with
the global and unary constraints. Depending on fV , com-
puting maxxV \(u) f

ϕ
V (xV ) may or may not be tractable.

As a tractable example, let XV = {0, 1}V and

fV (xV ) =
{

0 if
∑
v∈V xv = n

−∞ otherwise
(24)

be the cardinality constraint7, which enforces the number
of variables with state 1 to be n. Instead of the max-
marginal maxxV \(u) f

ϕ
V (xV ), for simplicity we will only

show how to compute maxxV
fϕV (xV ). It can be rewritten

as a constrained maximization,

max
xV

fϕV (xV ) = max
{∑
v∈V

ϕV v(xv)
∣∣∣ xV ∈XV ,

∑
v∈V

xv = n
}

One verifies that this equals β +
∑
v∈V ϕV v(0) where

β is the sum of n greatest numbers from {ϕV v(1) −
ϕV v(0) | v ∈ V } [49]. This can be done efficiently using
a dynamically updated sorted list.

As an evidence that the approach yields plausible
approximations, we present a toy experiment with image
segmentation. The first image in Figure 1 is the input bi-
nary image corrupted with additive Gaussian noise. We
set fuv(xu, xv) = [[xu = xv]] and fv(xv) = −[θ(xv) − gv]2
where θ(x) is the expected intensity of a pixel with
label x and gv is the actual intensity of pixel v. We ran
diffusion until the greatest residual was 10−8 and then
we obtained xV by taking the active state in each variable
(this means, the constraint

∑
v xv = n may be satisfied

only approximately). The binary images in Figure 1 show
the results for different n.

Note that e.g. all algorithms in [49] can be used as
soft GAC-propagators. We anticipate that in the future,
more global constraints with tractable soft propagators
and useful in applications will be discovered.

7 SUPERMODULAR PROBLEMS

Supermodular constraints form the only known inter-
esting tractable class of weighted constraints languages
[11]. For binary supermodular WCSPs, it is known that

7. Binary supermodular WCSPs with cardinality constraint (24) (and
its soft versions) can be well approximated by a more efficient algo-
rithm using parametric max-flow. In detail, we observed experimen-
tally (but did not prove) that constraining the variables ϕV v(xv) to be
equal for all v ∈ V does not change the least upper bound. However,
this of course may not hold for other global constraints.
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n = 2000 3000 4000 5000 6000 7000 8000 9000P
v xv = 2008 3004 4011 5006 6004 7024 7982 9032

Fig. 1. Image segmentation with cardinality constraint.

the LP relaxation [3] is tight [50], [8]. This has been
generalized to n-ary supermodular WCSPs by Werner
[9] and Cooper et al. [12]. Moreover, [9], [12] show that
to solve a supermodular WCSP it suffices to find any
local optimum of the bound such that dfϕe is (G)AC.

D. Schlesinger [15] showed that binary supermodular
WCSPs can be solved in polynomial time even after
an unknown permutation of states in each variable. As
pointed out in [15], [12], this can be done also for n-ary
supermodular WCSPs.

Revisiting [50], [8], [9], [12], [15], we show in this sec-
tion how to solve permuted n-ary supermodular WCSPs.

Let each domain Xv be endowed with a total order
≤v . A function fA: XA → R̄ is supermodular iff

fA(xA ∧ yA) + fA(xA ∨ yA) ≥ fA(xA) + fA(yA)

for any xA, yA ∈ XA, where ∧ (∨) denotes the
component-wise minimum (maximum) w.r.t. orders ≤v .

Suppose that max-sum diffusion (or the augmenting
DAG / VAC algorithm, §6.1) with J = IGAC(E) found ϕ
such that dfϕe is GAC. It can be verified that supermod-
ularity of fA is preserved by reparameterizations (8) on
pairs8 (A, (v)), hence constraints fϕA are supermodular
too. It remains to prove the following theorem.

Theorem 16. Let a WCSP be such that its constraints are
supermodular and the CSP formed by its active joint states is
GAC. Then (10) holds with equality and a maximizer of (1)
can be found in polynomial time, without taking into account
the orders ≤v of variable states.

Proof: A relation f̄A: XA → {0, 1} is a lattice iff

f̄A(xA ∧ yA) ∧ f̄A(xA ∨ yA) ≥ f̄A(xA) ∧ f̄A(yA)

for any xA, yA ∈ XA, i.e., iff f̄A(xA) = f̄A(yA) = 1 implies
f̄A(xA ∧ yA) = f̄A(xA ∨ yA) = 1. A CSP in which each
relation is a lattice is a lattice CSP. The lattice CSP is both
max-closed and min-closed [34, §8.4.2], hence tractable.
Its instance is satisfiable iff its GAC closure is not empty.

The maximizers of a supermodular function on a
distributive lattice form a sublattice of this lattice [51].
Hence, dfϕe is a lattice CSP. Because dfϕe is GAC and
non-empty, it is satisfiable and its solutions are in one-
to-one correspondence with the maximizers of (1).

8. I thank Martin Cooper for pointing out that transformation (8)
preserves supermodularity only if |B| = 1. It is not clear whether
diffusion solves supermodular WCSPs if J ⊃ IGAC(E).

We will show how to find a solution to a lattice CSP
that is GAC and non-empty. If the orders ≤v are known,
a solution xV is formed simply by the lowest (w.r.t. ≤v)
permitted state xv in each variable [34], [50], [8].

If the orders ≤v are unknown, we give an algorithm
to find a solution independently on them. It is easy to
prove that the GAC closure of a lattice CSP is again a
lattice CSP. Let us pick any (v, xv) and set f̄v(xv) ← 0.
This can be seen as adding a unary relation to the CSP.
Since any unary relation is trivially a lattice, if we now
enforce GAC we again obtain a lattice CSP. This CSP
is either empty or non-empty. If it is empty (i.e., xv
was the last satisfiable state in variable v), we undo the
enforcing of GAC and pick a different (v, xv). If it is
non-empty, we have a lattice CSP with fewer permitted
states that is non-empty and GAC, hence satisfiable. We
can pick another (v, xv) and repeat the iteration, until
each variable has a single permitted state.

8 INCREMENTALLY TIGHTENING RELAXATION

We have seen in §3.3 that choosing different coupling
schemes J ⊆ I(E) yields a hierarchy of LP relaxations.
Here we show that the relaxation can be tightened
incrementally, by progressively enlarging J .

Any time during max-sum diffusion, we can extend
the current J by any J ′ ⊆ I(E) (i.e., we set J ← J ∪ J ′).
This means, we add dual variables ϕAB for (A,B) ∈ J ′
and set them to zero. Clearly, this does not change the
current upper bound. By Theorem 11, the future dif-
fusion iterations either preserve or improve the bound.
If the bound does not improve, all we have lost is the
memory occupied by the added dual variables.

Alternatively, this can be imagined as if the dual
variables ϕAB were initially present for all (A,B) ∈ I(E)
but were ‘locked’ to zero except for those given by J .
Extending J ‘unlocks’ some dual variables.

This scheme can be run also with other bound-
optimizing algorithms (§6.1). If the algorithm is mono-
tonic, the resulting incremental scheme is monotonic too.

The incremental scheme can be seen as a cutting plane
algorithm because an extension of J that leads to a better
bound corresponds to adding linear inequalities that
separate the solution µ optimal in the current feasible
polytope P (E,XV , J) from the polytope P (E,XV , I(E)).
Finding cutting plane(s) that separate current µ from
P (E,XV , I(E)) is known as the separation problem9.

Note that our algorithm runs in the dual rather than
primal space and that many rather than one cutting
plane are added at a time: extending J by already a
single (A,B) ∈ I(E) may result in several planes inter-
secting P (E,XV , J), induced by the primal constraints.

9. The term separation problem is not fully justified here because it
will be applied also to the case when extending J gets the bound out
of a local optimum (see Theorem 10), as shown later in Example 11.
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8.1 Separation Test

Let us ask whether adding a given J ′ ⊆ I(E) to current
J would lead a bound improvement. We refer to this as
the separation test. Of course, this test must be simpler
and provide more insight than actually adding J ′ and
running the bound-optimizing algorithm.

One easily invents a sufficient separation test: if run-
ning diffusion such that only pairs (A,B) ∈ J ′ are visited
improves the bound (where the amount of improvement
is a good heuristic to assess the usefulness of J ′ [29])
then running diffusion on pairs (A,B) ∈ J ∪ J ′ would
obviously improve the bound too. Unfortunately, this
test is not necessary, by Example 11 given later in §9.5.

Theorems 13+14 yield a sufficient and necessary test:

Proposition 17. Extending J by J ′ leads to a bound improve-
ment iff the (J ∪ J ′)-consistency closure of dfϕe is empty.

By Proposition 17, to find out whether extending J
and running Algorithm 3 improves the bound, we can
extend J and run (simpler and faster) Algorithm 2.

9 ADDING ZERO CONSTRAINTS

So far, we have considered only equivalent transforma-
tions that preserve the hypergraph (i.e., E = E′ in Defi-
nition 1). Let us turn to equivalent transformations that
change the hypergraph. The simplest such transforma-
tion is obtained by adding a zero constraint, i.e., by adding
a hyperedge A /∈ E to E, setting fA = 0 (where 0 denotes
the zero function), and extending J to couple A to (some
or all of) the existing incident hyperedges. More complex
such transformations are obtained as the composition of
reparameterizations and adding zero constraints. Since
adding zero constraints enables previously impossible
reparameterizations, it may improve the relaxation.

All the results obtained in §3–§8 of course apply also to
zero constraints. Further in §9 we discuss some specific
properties of WCSPs containing zero constraints.

9.1 Complete Hierarchy of LP Relaxations

Given a WCSP with hypergraph E, its hypergraph can
be completed to the complete hypergraph 2V by adding
zero constraints with scopes 2V \E. Now, the relaxation
is determined by the coupling scheme J ⊆ I(2V ) alone.
The zero constraints not present in any pair (A,B) ∈ J
are only virtual, they have no effect and can be ignored.

As in §3.3, relaxations for various J ⊆ I(2V ) form a
hierarchy, partially ordered by inclusion on I(2V ). For
the lowest element of the hierarchy, J = ∅, formula (9)
permits no reparameterizations at all and the optimum
of the LP is simply the upper bound (10). The highest
element of the hierarchy, J = I(2V ), yields the exact
solution; however, by Proposition 5 the exact solution is
obtained already for J = ISAT(E). In between, there is a
range of intermediate relaxations, including J = I(E).

9.2 Adding Zero Constraints = Lifting + Projection
Let zero constraints with scopes F ⊆ 2V \ E be added
to a WCSP (V,E,XV , f) and let J ⊆ I(E ∪ F ). Since
zero constraints do not affect the objective function of
the primal LP, the primal LP can be written as

max
{
f>µ | µ ∈ πT (E,XV )P (E ∪ F,XV , J)

}
(25)

where πD′Y ⊆ RD′ denotes the projection of a set
Y ⊆ RD onto dimensions D′ ⊆ D (i.e., πD′ deletes
components D \ D′ of every element of Y ). Thus, zero
constraints manifest themselves as a projection of the
primal feasible polytope onto the space of non-zero
constraints. In turn, adding zero constraints with scopes
F then means lifting the primal feasible set from dimen-
sions T (E,XV ) to dimensions T (E ∪ F,XV ), imposing
new primal constraints (2b)+(2c)+(2d) in the lifted space,
and projecting back onto dimensions T (E,XV ).

Suppose zero constraints with scopes 2V \E have been
added. Similarly to (12), for any J1, J2 ⊆ I(2V ) we have10

J1 ⊇ J2 =⇒
πT (E,XV )P (2V , XV , J1) ⊆ πT (E,XV )P (2V , XV , J2)

In [16], [17], [18], Wainwright et al. introduced the
marginal polytope, formed by collections (associated with
E and XV ) of marginals of some global distribution µV .
Of fundamental importance is the marginal polytope of
the complete hypergraph 2V , given by P (2V , XV , I(2V )).
The marginal polytope of a hypergraph E ⊆ 2V is then
πT (E,XV )P (2V , XV , I(2V )). Therefore, for any J ⊆ I(2V ),
polytope πT (E,XV )P (2V , XV , J) is a polyhedral outer
bound of the marginal polytope associated with (E,XV ).

It is not hard to show [9] that the marginal polytope is
the WCSP integral hull, i.e., the convex hull of (integral)
points feasible to the integer LP given by Theorem 1.

9.3 Handling Zero Constraints in Max-sum Diffusion
In the sense of §6.3, a zero constraint can be understood
as a trivial intensionally represented constraint and the
max-sum diffusion iteration as its soft propagator. Let us
see how zero constraints can be handled in diffusion.

Suppose fA = 0. Then reparameterization (9) reads

fϕA(xA) = −
∑

B|(B,A)∈J

ϕBA(xA) +
∑

B|(A,B)∈J

ϕAB(xB) (26)

Example 6. Let E = {(2), (1, 2), (2, 3)}, f2 = 0, J = I(E).
Then fϕ2 (x2) = −ϕ12,2(x2)− ϕ23,2(x2).

More interesting is the case when there is no B such
that (B,A) ∈ J . Then the first sum in (26) is vacuous and
fϕA is the objective function of a WCSP with variables A,
hypergraph EA = {B | (A,B) ∈ J }, and constraints
ϕAB . Computing maxxA\B

fϕA(xA) means solving a WCSP

10. Recall (Footnote 3) that J1 6= J2 may yield the same relaxation.
If all the constraints are non-zero, this happens iff P (2V , XV , J1) =
P (2V , XV , J2). If constraints with scopes 2V \E are zero, this happens
iff πT (E,XV )P (2V , XV , J1) = πT (E,XV )P (2V , XV , J2). Note that the
former condition implies the latter one but not vice versa.
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on a smaller hypergraph11. Adding a zero constraint fA
makes sense only if WCSPs on EA are easier to solve
than the WCSP on E. Note that no function of arity |A|
needed to be explicitly stored.

Example 7. Let V = (1, 2, 3, 4), E = { (1), (2), (3), (4),
(1, 2), (2, 3), (3, 4), (1, 4), (1, 3), V }, fV = 0, and J =
{ (V, (1, 2)), (V, (2, 3)), (V, (3, 4)), (V, (1, 4)) }. Then EA is
a cycle of length 4 and fϕV (x1, x2, x3, x4) = ϕV,12(x1, x2)+
ϕV,23(x2, x3) + ϕV,34(x3, x4) + ϕV,14(x1, x4).

Example 8. In this example, we show how adding short
cycles improves relaxations of binary WCSPs.

We tested two types of graphs:
• E =

(
V
1

)
∪ E′ where E′ ⊆

(
V
2

)
is the 2-dimensional

4-connected m×m grid.
• Complete graph, E =

(
V
1

)
∪
(
V
2

)
where |V | = m.

For the grid graph, we tested two relaxations: J1 = I(E)
and J2 = I(E ∪ F ) where F ⊆

(
V
4

)
contains all hy-

peredges A such that E ∩ 2A is a cycle of length 4 (as
in Example 7). For the complete graph, we tested two
relaxations: J1 = I(E) and J2 = I

(
E ∪

(
V
3

))
, i.e., the

relaxation J2 was obtained by adding all 3-cycles.
Each variable had the same number of states, |Xv|. We

tested five types of constraints f :
• random: all weights fv(xv) and fuv(xu, xv) were

i.i.d. drawn from the normal distribution N [0; 1].
• attract: fuv(xu, xv) = [[xu = xv]] and fv(xv) were

drawn from N [0; 1.6]. We chose variance 1.6 because
it yielded (by trial) the hardest instances.

• repulse: fuv(xu, xv) = [[xu 6= xv]] and fv(xv) were
drawn from N [0; 0.1].

In the other types (apply only to grid graphs), fv(xv)
were drawn from N [0; 1] and the binary constraints were
crisp, fuv(xu, xv) ∈ {−∞, 0}. They were taken from [7]:
• lines: fuv(xu, xv) were as in [7, Figure 19a].
• curve: fuv(xu, xv) were as in [7, Figure 15a].
On a number of WCSP instances, we counted how

many instances were solved to optimality. Once diffusion
converged, the instance was marked as solved if there
was a unique active state in each variable. Table 1
shows the results, where r1 resp. r2 is the proportion
of instances solved to optimality by relaxation J1 resp.
J2. There were 100 trials for each line; in each trial,
we randomly drew instances from the instance type
and computed relaxation J1 until it was not tight, and
then we computed relaxation J2. Runtime for random
or attract on 100× 100 grid and |Xv| = 4 was several
minutes (for a non-optimized Matlab+C code).

For random and attract on both graphs and for
repulse on grids, relaxation J2 was much tighter and
was often exact even for large graphs. For crisp binary
constraints (on grids), relaxation J2 clearly beat J1, but
for m ≥ 25 lines and curve were unsolvable. This is
not too surprising because lines and curve are much

11. These sub-WCSPs roughly correspond to the subproblems in the
decomposition approach [17], [19], [20] (see §1.1) and to the ’slave’
problems in the dual decomposition formulation [21].

graph constraints m |Xv | r1 r2
grid random 15 5 0.01 1.00
grid random 25 3 0.00 0.98
grid random 100 3 0.00 0.72
grid attract 15 5 0.79 0.99
grid attract 25 5 0.48 0.98
grid attract 100 5 0.00 0.81
grid repulse 10 3 0.18 1.00
grid repulse 20 3 0.00 0.98
grid repulse 50 3 0.00 0.57
grid lines 10 4 0.71 0.85
grid lines 15 4 0.40 0.54
grid lines 25 4 0.00 0.05
grid curve 10 9 0.17 0.65
grid curve 15 9 0.00 0.24
grid curve 25 9 0.00 0.00
complete random 10 3 0.01 1.00
complete random 15 3 0.00 0.89
complete random 20 3 0.00 0.40
complete random 25 2 0.00 0.87
complete repulse 4 2 0.00 0.98
complete repulse 5 2 0.00 0.00
complete repulse 4 3 0.00 0.00

TABLE 1
Tightening the LP relaxation by adding short cycles.

harder than instances typical in low-level vision (such as
the benchmarks in [52]). In more detail [7], they are easy
if the data terms fv(xv) are ‘close to a feasible image’
but this is not at all the case if fv(xv) are random.

Despite it is known that densely connected instances
are hard [53], it is surprising that repulse was never
solved even on very small graphs. Note, repulse en-
courages neighboring variables to have different states,
thus it is close to the difficult graph coloring problem.

9.4 Optimality under Presence of Zero Constraints
As shown in §5, optimality of the upper bound (10)
depends on the CSP formed by active joint states. Since
fA = 0 implies dfAe = 1 (where 1 denotes the universal
relation), adding a zero constraint to the WCSP means
adding a universal relation to this CSP. After reparam-
eterization (9), a zero constraint fA = 0 becomes fϕA
which is no longer zero and a universal relation dfAe = 1
becomes dfϕAe which is no longer universal.

By Theorem 8, the relaxation is tight iff dfϕe is satisfi-
able. It can happen that the CSP formed only by relations
dfϕAe with fA 6= 0 is satisfiable but the whole CSP dfϕe
is unsatisfiable. Example 9 shows this is indeed possible.
Thus, we must not ignore zero constraints when testing for
bound optimality and recovering an optimizer.

Example 9. First, we give an unsatisfiable ternary CSP
(V,E,XV , f̄) whose binary part is satisfiable. Let V =
(1,2,3,4), XV = {0,1}V , E =

(
V
2

)
∪
(
V
3

)
. Let f̄ be defined

by f̄12 = f̄13 = f̄14 = f̄23 = f̄24 = f̄34 and f̄123 = f̄124 =
f̄134 = f̄234 where relations f̄123 and f̄12 are given by (17).
Thus, the CSP consists of four copies of the CSP from
Example 4 glued together12. Its six binary relations are

12. This CSP is the ternary generalization of the well-known binary
unsatisfiable CSP on three variables (the ‘frustrated cycle’), given by
f̄12 = f̄13 = f̄23 where f̄12(x1,x2) = x̄1x2∨x1x̄2.
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shown below (the ternary relations are not visualized):

For J = I(E), check that f̄ is J-consistent. Any x1234 ∈
{(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1),(0,0,0,0)} satis-
fies all the six binary relations but none of them satisfies
all the ternary relations. Hence, f̄ is unsatisfiable.

Second, we give a WCSP (V,E,XV ,f) with the ternary
constraints being zero and we give a diffusion fixed
point ϕ such that f̄ = dfϕe. This may look trivial because
any CSP is indeed realizable as dfϕe for some f and
ϕ. But we must not forget about the constraint that the
ternary constraints are zero. E.g., f123 = 0 and hence,
by (9), fϕ123 = ϕ123,12 +ϕ123,13 +ϕ123,23, i.e., fϕ123 must be
a sum of binary functions. We show such f and ϕ exist.

Let f and ϕ be defined by f123 = f124 = f134 = f234 = 0,
f12 = f13 = f14 = f23 = f24 = f34 and ϕ123,12 = ϕ123,13 =
ϕ123,23 = ϕ124,12 = ϕ124,14 = ϕ124,24 = ϕ134,13 = ϕ134,14 =
ϕ134,34 = ϕ234,23 = ϕ234,24 = ϕ234,34, where

f12(x1,x2) = 4x̄1x̄2 +9(x̄1x2 +x1x̄2)+7x1x2

ϕ123,12(x1,x2) = x̄1x̄2 +2(x̄1x2 +x1x̄2)

From (9) we get that fϕ is given by fϕ123 = fϕ124 = fϕ134 =
fϕ234 = ϕ123,12 +ϕ123,13 +ϕ123,23 and fϕ12 = fϕ13 = fϕ14 =
fϕ23 = fϕ24 = fϕ34 = f12−ϕ123,12−ϕ124,12 where

fϕ123(x1,x2,x3) = 3x̄1x̄2x̄3 +5(x1x̄2x̄3 + x̄1x2x̄3 + x̄1x̄2x3)
+ 4(x1x2x̄3 +x1x̄2x3 + x̄1x2x3)

fϕ12(x1,x2) = 5(x̄1x̄2 + x̄1x2 +x1x̄2)+4x1x2

Check that fϕB(xB) = maxxA\B
fϕA(xA) for each (A,B)∈ J ,

i.e., ϕ is a diffusion fixed point. Check that f̄ = dfϕe.
Note a surprising property of fϕ123: function fϕ123 is

a sum of binary functions but (see Example 4) relation
dfϕ123e is not a conjunction of any binary relations13.

9.5 Adding Zero Constraints Incrementally
We have shown in §8 how the relaxation can be tightened
incrementally by extending J . When combined with
adding zero constraints14, this can be seen as a cutting
plane algorithm which adds sets of linear inequalities
separating µ optimal in πT (E,XV )P (E,XV , J) from the
marginal polytope πT (E,XV )P (2V , XV , I(2V )). Here we
focus mainly on the separation problem.

The separation test (§8.1) asks whether extending J
by J ′ ⊆ I(2V ) would lead to bound improvement. In
general, this is answered by Proposition 17. However, if

13. This suggests an interesting problem: Given f̄V : XV → {0,1}
and E ⊆ 2V , find f : T (E,XV )→ R̄ such that f̄V =

˚P
A∈E fA

ˇ
or

show that no such f exists. For given (V,E,XV ), characterize the class
of relations f̄V realizable in this way.

14. The incremental scheme from §8 is not restricted to zero con-
straints, it can be used also with non-zero constraints. E.g., given a
WCSP with hypergraph E ∪ F where constraints E are ‘easy’ (unary,
binary) and constraints F are ‘hard’ (high arity), we can first solve
constraintsE and then incrementally extend J to include constraints F .
In both cases, Proposition 17 applies.

Fig. 2. Incrementally adding zero constraints.

J ′ has a special form, this can be formulated in terms
of satisfiability of a sub-CSP of dfϕe. For a CSP with
hypergraph E, we define its restriction to F ⊆ E to be
the CSP with hypergraph F and the relations inherited
from the original CSP.

Proposition 18. Let (V,E,XV , f) be a WCSP. Let F ⊆
E. Let us ask whether adding the zero constraint with scope⋃
F , extending J by J ′ = ISAT(F ), and running max-sum

diffusion will improve the bound.
• If the restriction of dfϕe to F is not satisfiable then the

answer is ‘yes’.
• If, in the restriction of dfϕe to F , every permitted joint

state is satisfiable then the answer is ‘no’.

Proof: In Proposition 17, apply Propositions 5 and 6
on the restriction of dfϕe on hypergraph F .

Example 10. Let us return to Example 8. Figure 2 (left)
shows the CSP dfϕe after convergence of max-sum dif-
fusion for relaxation J1 of an instance random with size
m = 8 and |Xv| = 4. The upper bound is not optimal
because of the depicted unsatisfiable sub-CSP. Let A
denote the four depicted variables. After adding the
zero constraint with scope A, diffusion yielded Figure 2
(right) with an improved bound – here, the exact solu-
tion. Of course, many such steps are typically needed.

The inconsistent sub-CSP is supported only by 2
(rather than 4) states of each variable v ∈ A. Thus, in-
stead of adding a zero constraint with 4 states, we could
add a constraint with 2 states. For variables with large
domains, this could drastically reduce the computational
effort (see experiments in [29]). This would mean using
the fine-grained hierarchy of coupling schemes15 (7).

Example 11. Let dfϕe be this unsatisfiable CSP:

1

4

3

2

15. Using the fine-grained hierarchy of coupling schemes (i.e., using
(7) rather than (2b)) would require adapting Algorithm 3 and the
theorems in §6.2 because e.g. Theorem 11 does not hold. This would
require some more research, for which paper [54] might be relevant.
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The sub-CSP on variables (1, 2, 4) is satisfiable but has
unsatisfiable permitted joint states. Let us add constraint
f124 = 0. This makes the PWC closure of the whole
CSP empty. Thus, running diffusion on the sub-WCSP
on variables (1, 2, 4) will not improve the bound but
running diffusion on the whole WCSP will.

As shown in [8, Figure 5b], the CSP dfϕe in the figure
corresponds to a local optimum of ϕ that is not global.
Thus, adding zero constraints sometimes can get the
bound out of a local optimum.

For some WCSP instances, it can be useful to add more
complex subproblems than cycles.

Example 12. Consider the binary CSP dfϕe in figure (a),
whose hypergraph E has 15 variables (i.e., 1-element
hyperedges) and 22 2-element hyperedges:

(a) (b)

Let J = I(E). The CSP is J-consistent, thus diffusion
cannot improve the bound. It contains no unsatisfiable
cycles but it is unsatisfiable because of the sub-CSP with
hypergraph F ⊂ E marked in red: F has |

⋃
F | = 12

variables and 14 2-element hyperedges. The sub-CSP is
unsatisfiable because it can be reduced (by ‘contracting’
the identity relations) to the CSP in figure (b), which
encodes the (impossible) task of 3-coloring the graph K4.

Adding the zero constraint with scope
⋃
F and ex-

tending J by J ′ = ISAT(F ) = { (
⋃
F,A) | A ∈ F }

makes the J-consistency closure of dfϕe empty (verify
by Algorithm 2). Hence, diffusion will now improve the
bound. Computing maxxA\B

fϕA(xA) for A =
⋃
F needs

more effort than if F was a cycle, but is still feasible.

Given a family J of tentative subsets of I(2V ), the
separation problem consists in finding a ‘small’ J ′ ∈ J
that will improve the bound. If J is small, J ′ can
be searched exhaustively. If J has an intractable size,
Proposition 18 translates the separation problem to find-
ing an unsatisfiable sub-CSP of dfϕe. It is subject to
future research to discover polynomial-time algorithms
to find an unsatisfiable sub-CSP of a CSP, where the sub-
CSP are from some combinatorially large class (such as
cycles). Finding minimal unsatisfiable sub-CSPs (though
not in polynomial time) has been addressed in [55], [54].

Finally, note that extending J by elements of J one by
one has a theoretical problem: it can happen that adding
any single element of J does not improve the bound but
adding the union of several elements of J does.

Example 13. Consider the CSP with E = {(1), (2), (3),
(4), (1, 2), (2, 3), (3, 4), (1, 4)} in figure (a):

3

4 1

2

(a) (b) (c) (d)

Adding simultaneously zero constraints with scopes
(1, 3), (1, 2, 3), (1, 3, 4) makes the PWC closure empty
(figures b,c,d). However, adding any of these constraints
separately does not make the PWC closure empty.

9.6 k-consistency of Active Joint States
If E is closed to intersection and J = I(E), dfϕe can al-
ways be made PWC by changing ϕ. PWC is the strongest
local consistency of dfϕe achievable without adding zero
constraints. By adding zero constraints, stronger local
consistencies of dfϕe can be achieved.

By §4.2, adding all possible zero constraints of arity k
and k−1 and running max-sum diffusion with J = I(E)
makes dfϕe k-consistent. Unlike in CSP, the previously
added k-ary constraints cannot be removed after this [39,
§8]. Thus, there is a difference in the rôle of k-consistency
in CSP and WCSP. Enforcing strong k-consistency of a
CSP requires adding only relations of arity less than k.
For a WCSP, enforcing strong k-consistency of dfϕe
requires adding constraints of arity less or equal to k.
E.g., a binary CSP can be made 3-consistent and remain
binary; for a binary WCSP, dfϕe can be made 3-consistent
but only at the expense of making the WCSP ternary16.

Similarly as in CSP (§4.2), strong k-consistency of dfϕe
can be enforced in a more efficient way, by incrementally
adding only some of all missing constraints of arity k
or less. Supposing dfϕe is (k − 1)-consistent, it is made
k-consistent as follows. Whenever |A| = k − 1 and xA
cannot be extended to some variable v, we add constraint
fA∪(v) = 0, and if A /∈ E we also add constraint fA = 0.
Then we set J = I(E) and re-optimize the bound.

As making dfϕe 3-consistent requires adding new
(O(|V |3) at worst) binary and ternary constraints, it is
practical only for mid-size instances. Otherwise, partial
forms of 3-consistency can be considered. One such form
is suggested by Theorem 4: add only edges to E that
make E chordal17 (rather than complete). Since this can
be still prohibitive, even fewer edges can be added.

Example 14. Let E be the m ×m grid graph. We did a
‘partial chordal completion’ of E as follows: of all edges
necessary to complete E to a chordal graph, we added
only those edges (u, v) for which the Manhattan distance
between nodes u and v in the original graph was not
greater than d (this can be done by a simple modification
of known algorithms for chordal completion). Then we
triangulated the graph, added the resulting triangles and

16. Note, otherwise we’d get a paradox. A binary CSP with Boolean
variables is tractable: it is satisfiable iff enforcing 3-consistency does not
make it empty [34, §8.4.2]. If the active joint states of any binary WCSP
with Boolean variables could be made 3-consistent without adding
ternary constraints, we would have a polynomial algorithm to solve
any binary WCSP with Boolean variables, which is intractable.

17. It is well-known that chordal completion is done also before the
junction tree algorithm [32]. This is unrelated to its purpose here.
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ran max-sum diffusion. The table shows the proportions
of instances drawn from type lines (see Example 8)
that were solved to optimality for various m and d. The
number of added triangles is stated in parentheses.

d = 1 d = 2 d = 3 d = 4 d = 5
m=10 0.71 (0) 0.85 (162) 0.88 (313) 0.92 (592) 0.95 (703)
m=15 0.40 (0) 0.54 (392) 0.58 (785) 0.77 (1469) 0.88 (1906)
m=20 0.11 (0) 0.26 (722) 0.28 (1483) 0.38 (2773) 0.57 (3167)
m=25 0.00 (0) 0.05 (1152) 0.06 (2392) 0.16 (4459) 0.33 (5819)

Comparing to Table 1 shows that the added triangles
significantly tightened the relaxation. We remark that
using the above described more efficient incremental
algorithm would results in fewer added triangles.

9.6.1 3-consistency and Cycle Inequalities
By Theorem 4, in a 3-consistent binary CSP every cycle
is consistent18. This closely resembles the algorithm by
Barahona and Mahjoub [31] (applied to WCSP in [26]) to
separate cycle inequalities in the cut polytope [30]. While
the algorithm [31] is primal and works only for Boolean
variables, enforcing 3-consistency of dfϕe works in the
dual space and for variables with any number of states.
The precise relationship between the algorithm [31] and
enforcing 3-consistency of dfϕe has yet to be clarified.

In particular, it is known that the planar max-cut prob-
lem is tractable, solved by a linear program over the
semimetric polytope defined by the cycle inequalities [30,
§27.3], cf. [56], [57]. The planar max-cut problem is equiv-
alent to the WCSP (V,XV , E, f) where XV = {0, 1}V ,
E ⊆

(
V
2

)
is a planar graph, and constraints f have the

form fuv(xu, xv) = cuv[[xu = xv]] with cuv ∈ R (i.e., cuv
have arbitrary signs). It is an open problem whether this
WCSP is solved by enforcing 3-consistency of dfϕe.

10 CONCLUSION

We have tried to pave the way to WCSP solvers that
would natively handle non-binary constraints (possibly
of high-arity and represented by a black-box function)
and use the cutting plane strategy.

Though we have considered only max-sum diffu-
sion, most of the theory applies to the other bound-
optimizing algorithms from §6.1, most notably to the
augmenting DAG / VAC algorithm. Choosing which
bound-optimizing algorithm to use is important and
each algorithm has pros and cons:
• Max-sum diffusion is extremely simple and very

flexible. Its drawback is that it is rather slow – for
images, several times than the closely related and
slightly more complex TRW-S.

• The augmenting DAG / VAC algorithm is complex
and painful to implement efficiently [7] but has a
unique advantage in its incrementality: if we run it
to convergence and make a ‘small’ change to the

18. Note, this shows that if all cycles of length 3 are added to a WCSP
on a complete graph in Example 8 (relaxation J2), the relaxation cannot
be further improved by adding any cycles of greater lengths.

WCSP, it typically needs a ‘small’ number of itera-
tions to re-converge. This makes it suitable for cut-
ting plane schemes (as observed in [28]), branch&cut
search, and for incremental fixing of undecided vari-
ables. All the other bound-optimizing algorithms
from §6.1 need a large number of iterations to re-
converge, and this does not seem possible to avoid
by any clever scheduling of iterations.

• In the light of the possibility to add zero constraints,
the globally optimal algorithms (such as subgradi-
ent and smoothing methods) lose something of their
attractivity. It is always a question whether to use
these algorithms (which are slower than the local
algorithms, especially when the LP relaxation is not
tight) or to add zero constraints.

We considered only obtaining upper bounds on WCSP
and we have not discussed rounding schemes to round
undecided variables or using the LP relaxation as part
of a search, such as branch&bound [12] or branch&cut.
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