44 research outputs found

    Revisiting Kernelized Locality-Sensitive Hashing for Improved Large-Scale Image Retrieval

    Full text link
    We present a simple but powerful reinterpretation of kernelized locality-sensitive hashing (KLSH), a general and popular method developed in the vision community for performing approximate nearest-neighbor searches in an arbitrary reproducing kernel Hilbert space (RKHS). Our new perspective is based on viewing the steps of the KLSH algorithm in an appropriately projected space, and has several key theoretical and practical benefits. First, it eliminates the problematic conceptual difficulties that are present in the existing motivation of KLSH. Second, it yields the first formal retrieval performance bounds for KLSH. Third, our analysis reveals two techniques for boosting the empirical performance of KLSH. We evaluate these extensions on several large-scale benchmark image retrieval data sets, and show that our analysis leads to improved recall performance of at least 12%, and sometimes much higher, over the standard KLSH method.Comment: 15 page

    SADIH: Semantic-Aware DIscrete Hashing

    Full text link
    Due to its low storage cost and fast query speed, hashing has been recognized to accomplish similarity search in large-scale multimedia retrieval applications. Particularly supervised hashing has recently received considerable research attention by leveraging the label information to preserve the pairwise similarities of data points in the Hamming space. However, there still remain two crucial bottlenecks: 1) the learning process of the full pairwise similarity preservation is computationally unaffordable and unscalable to deal with big data; 2) the available category information of data are not well-explored to learn discriminative hash functions. To overcome these challenges, we propose a unified Semantic-Aware DIscrete Hashing (SADIH) framework, which aims to directly embed the transformed semantic information into the asymmetric similarity approximation and discriminative hashing function learning. Specifically, a semantic-aware latent embedding is introduced to asymmetrically preserve the full pairwise similarities while skillfully handle the cumbersome n times n pairwise similarity matrix. Meanwhile, a semantic-aware autoencoder is developed to jointly preserve the data structures in the discriminative latent semantic space and perform data reconstruction. Moreover, an efficient alternating optimization algorithm is proposed to solve the resulting discrete optimization problem. Extensive experimental results on multiple large-scale datasets demonstrate that our SADIH can clearly outperform the state-of-the-art baselines with the additional benefit of lower computational costs.Comment: Accepted by The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19

    Strongly Constrained Discrete Hashing

    Get PDF
    Learning to hash is a fundamental technique widely used in large-scale image retrieval. Most existing methods for learning to hash address the involved discrete optimization problem by the continuous relaxation of the binary constraint, which usually leads to large quantization errors and consequently suboptimal binary codes. A few discrete hashing methods have emerged recently. However, they either completely ignore some useful constraints (specifically the balance and decorrelation of hash bits) or just turn those constraints into regularizers that would make the optimization easier but less accurate. In this paper, we propose a novel supervised hashing method named Strongly Constrained Discrete Hashing (SCDH) which overcomes such limitations. It can learn the binary codes for all examples in the training set, and meanwhile obtain a hash function for unseen samples with the above-mentioned constraints preserved. Although the model of SCDH is fairly sophisticated, we are able to find closed-form solutions to all of its optimization subproblems and thus design an efficient algorithm that converges quickly. In addition, we extend SCDH to a kernelized version SCDH_K. Our experiments on three large benchmark datasets have demonstrated that not only can SCDH and SCDH_K achieve substantially higher MAP scores than state-of-the-art baselines, but they run much faster than those that are also supervised

    Concept Preserving Hashing for Semantic Image Retrieval with Concept Drift

    Get PDF
    corecore