
1

Concept Preserving Hashing for Semantic Image
Retrieval with Concept Drift

Xing Tian, Wing W. Y. Ng*, Hui Wang
*corresponding author

Abstract—Current hashing-based image retrieval methods
mostly assume that the database of images is static. However,
this assumption is not true in cases where the databases are
constantly updated (e.g. on Internet) and there exists the problem
of concept drift. Online (a.k.a. incremental) hashing methods
are proposed recently for image retrieval where the database
is not static. However, they have not considered the concept
drift problem. Moreover, they update hash functions dynamically
by generating new hash codes for all accumulated data over
time which is clearly uneconomical. In order to solve these
two problems, Concept Preserving Hashing (CPH), is proposed.
In contrast to existing methods, CPH preserves the original
concept, i.e., the set of hash codes representing a concept is
preserved over time, by learning a new set of hash functions
to yield the same set of hash codes for images (old and new)
of a concept. The objective function of CPH learning consists of
three components: isomorphic similarity, hash codes partition
balancing, and heterogeneous similarity fitness. Experimental
results on 11 concept drift scenarios show that CPH yields better
retrieval precisions than existing methods and does not need to
update hash codes of previously stored images.

Index Terms—Image Retrieval, Hashing, Non-stationary Envi-
ronment, Concept Drift, Concept Preserving.

I. INTRODUCTION

W ITH the rapid development of the Internet and the
wide usage of visual devices, multimedia data grows

explosively. There is a huge volume of images on the Internet
and this volume is getting bigger every day. It has been report-
ed that about 350 million photos are uploaded to Facebook
every day [1]. Efficient retrieval of relevant images from a
large and non-stationary database of images has become a
challenging problem. To tackle this challenge, not only should
the huge volume of the database be taken into consideration,
but also the very dynamic nature of the database. As the
database is dynamically updated, the (data) distribution of the
classes in the database, i.e. semantic concepts, may change
- a phenomenon called concept drift [2]. New concepts may
also emerge as new images are added to the database. For
examples, as a new and unprecedented product is released

Xing Tian (shawntian123@gmail.com) and Wing W. Y. Ng
(wingng@ieee.org, corresponding author) are with the Guangdong Provincial
Key Lab of Computational Intelligence and Cyberspace Information, School
of Computer Science and Engineering, South China University of Technology,
Guangzhou, China 510006.

Hui Wang (h.wang@ulster.ac.uk) is with the School of Computing, Ulster
University, Jordanstown, United Kingdom, BT370QB.

This work was supported by National Natural Science Foundation of China
under Grants 61572201 and 61876066, Guangzhou Science and Technology
Plan Project 201804010245, EU Horizon 2020 Programme (700381, AS-
GARD), and China Scholarship Council (201706150058).

or a new actor is getting popular, a lot of images of these
new objects (product or actor) are added to the database thus
resulting in the emergence of new concepts. Moreover, as new
images are added, the distribution of existing concepts may
change. For example, an upgrade of BMW 520 is released or
the character “Kungfu Panda” is created, resulting in changes
of the distribution of classes (BMW 520 and “Panda”). These
changes are unavoidable in non-stationary environments and
will undoubtedly increase the difficulty of image retrieval.

Content-Based Image Retrieval (CBIR) is an approach to
image retrieval, which has been extensively researched in
recent years. It seeks to retrieve similar images for a query
image based on the content of images, rather than the meta
data of images. Tree-based methods, e.g. the k-d tree [3] and
the cover tree [4], are a class of methods for content-based
image retrieval. They build tree structures based on features of
the image data. However, tree-based methods generally suffer
from the curse of dimensionality problem [5]. Moreover, the
storage cost of tree structure is prohibitively high for real world
applications.

Hashing methods are another class of methods for CBIR.
They typically have sub-linear complexity and low space cost,
thus have become mainstream methods for CBIR. Hashing
methods generate hash codes to project images from a high
dimensional feature space onto a low dimensional binary
Hamming space. In the original feature space, hash functions
(hyperplanes) partition the feature space into many hash buck-
ets. For a hash hyperplane, the two sides of this hyperplane
correspond to two binary hash values of 0 and 1. Therefore,
K hash hyperplanes generate a K-bit hash code for each
image in the database according to the relative location of
this image with respect to different hash hyperplanes. In fact,
the hash code of an image is the ID of the hash bucket that the
image is in, and every hash bucket has a unique hash code.
Finally, Hamming distance is calculated for two hash codes
to evaluate the similarity between their respective images.
An ideal hashing method is one such that similar images
should have hash codes that have zero or very small Hamming
distance while dissimilar images should have hash codes that
have large Hamming distance. Many hashing methods have
been proposed to provide different ways of generating hash
functions, such as Local Sensitive Hashing (LSH) [6], the
multi-hashing method Dual Complementary Hashing (DCH)
[7], and the semi-supervised method BSPLH [8].

Most of the existing hashing methods assume that the
databases are static, however, many real-world image databas-
es are in fact non-stationary. Moreover, the distribution of

Page 8 of 21Transactions on Cybernetics

2

existing concepts may change over time. When these changes
occur, the performance of pre-trained hash functions drops
accordingly. Recently, several non-stationary hashing methods
have been proposed to deal with non-stationary image retrieval
problems, including OKH [9], OSH [10], OH [11] and ICH
[12]. However, all of these methods, except ICH, assume that
data appear in an online manner and ignore the concept drift
problem. Moreover, they all need to update the hash codes for
all images in the database using the newest hash functions.
This is clearly inefficient and a waste of resources. In order to
solve these two problems, we propose a new hashing method,
Concept Preserving Hashing, which projects images of the
same concept from different time steps with different concept
drifts to the same set of hash codes. Therefore, images in the
database only need to be hashed once when they are added to
the database and no update of hash code is needed. In this way,
data distribution of semantic classes is preserved in the hash
projected space by hash codes for non-stationary environments
with concept drifts. We also devise a fast computation method
for generating new hash functions in every time step for CPH.

The main contributions of this paper are as follows:
• CPH is the first supervised hashing method for image

retrieval in non-stationary environment with concept drift.
• CPH learns hash functions based on new images and

old reference images to generate hash codes for new
images only. Images of the same concept are mapped
to its fixed area in Hash projected space. To our best
knowledge, CPH is the first incremental hashing method
which generates hash codes for new images only without
updating hash codes of old images.

• A fast training method of hash functions is proposed
in this paper. The objective function of CPH consists
of isomorphic similarity, hash code partition balancing,
and heterogeneous similarity fitness. The optimal hash
functions for the newest data chunk can be computed
directly, which is practical for online retrieval task.

• Experimental results show that CPH outperforms all
other comparable stationary and non-stationary methods,
including the multi-hashing method ICH, in all 11 non-
stationary data scenarios.

The paper is organized as follows. In Section II, related
hashing methods are reviewed, especially the existing non-
stationary hashing methods. CPH is presented in Section III.
Experimental results of CPH and other comparable methods
are shown and discussed in Section IV. We conclude the paper
in Section V.

II. RELATED WORKS

Hashing methods have been widely used for large scale
image retrieval problems. Most of existing hashing methods
assume the database of images is static. In recent years,
several online hashing methods are proposed to update hash
functions for image retrieval in non-stationary environments.
Representative methods for both stationary and non-stationary
hashing are introduced in Section II-A and II-B, respectively.
More detailed information about existing hashing methods can
be founded in [13].

A. Existing Stationary Hashing Methods

According to whether semantic information is utilized for
training, current hashing methods can be generally divided into
three types, i.e. unsupervised, supervised, and semi-supervised
hashing methods, respectively.

Locality Sensitive Hashing (LSH) [6] is one of the most
popular unsupervised hashing methods, which generates hash
functions randomly. Several variants of LSH are proposed
in [14] [15] [16]. Iterative Quantization (ITQ) [17] learns a
rotation matrix of projected images iteratively to minimize
the quantization loss. The MLSH-ITQ method [18] learns
hash projections with preserving Euclidean distances between
images and employs ITQ to minimize the loss of thresholding.
Complementary Hashing [19] employs multiple hash tables
in which the images already hashed correctly by previous
hash tables will not be used again for training the next hash
tables. Asymmetric Cyclical Hashing [20] generates long hash
codes for query and short hash codes for stored images to
achieve both high accuracy and low storage cost. Spectral
Hashing [21] generates hash codes based on graph partitioning.
Spherical Hashing [22] [23] partitions the image database
using hyperspheres instead of hyperplanes to generate hash
codes. The bit selection hashing methods are proposed in [24]
[25] to select optimal combinations of hash functions based on
both similarity preservation capabilities of each hash function
and independence between hash functions. Based on sparse
hashing [26], the nonlinear Sparse Hashing with Optimized
Anchor Embedding [27] selects the optimal anchor set uti-
lized in sparse representation. Distributed Graph Hashing [28]
trains hash functions based on data distributed on multiple
agents. Kernel Reconstructive Hashing is proposed in [29]
which generates hash codes based on the local distribution
information of data. Adaptive Binary Quantization [30] learns
discriminative hash functions for discovered prototypes and
assigns unique hash code to each prototype. Ordinal Constraint
Hashing [31] generates hash codes based on the permutation
relation information of data instead of pairwise similarity.

Supervised hashing methods train hash functions using
semantic information and generally achieve better retrieval
performances. The LSH with learned metric [32] employs a
learned Mahalanobis metric to preserve the semantic similarity
information of images. The LDA hash [33] generates the
objective function by minimizing the difference of project-
ed samples between similar image pairs and maximizing
the difference for dissimilar image pairs based on Linear
Discriminant Analysis. The spectral hashing with semanti-
cally consistent graph [34] utilizes the pairwise similarity
information between images to optimize the graph Laplacian
directly, rather than the Euclidean distance in the original
spectral hashing method. Nonlinear Discrete Hashing [35]
employs a multi-layer neural network to preserve the local
structure of images and learn hash codes. Supervised Discrete
Hashing [36] generates optimal hash codes for all images
by minimizing the loss function of classifier. The sensitivity-
based image filtering method (SIF) is proposed in [37], which
firstly utilizes two descriptors to score the hash buckets and
candidate images. Then, based on the trained radial basis

Page 9 of 21 Transactions on Cybernetics

3

function neural network, the dissimilar candidate images from
multiple hash tables are filtered. Error correcting input and
output coding proposed in [38] learns hash codes based on
distribution preservation and error correction. In recent years,
various deep-neural-network-based hashing methods have also
been proposed. For instance, deep supervised hashing (DSH)
[39] is a representative deep hashing method which generates
discriminative hash codes based on CNN and pairwise simi-
larities of images. Another deep hashing method is proposed
in [40] to handle the multi-label images retrieval. The hash
code is divided into multiple pieces and each piece belongs
to a different category. Triplet-based deep hashing [41] trains
hash functions based on the relative relationships among three
samples to solve cross-modal retrieval problem.

By combining the advantages of both unsupervised and su-
pervised hashing methods, the semi-supervised hashing meth-
ods are proposed which utilize the data distribution informa-
tion and semantic similarity information simultaneously. The
semi-supervised Multi-graph Hashing [42] employs multiple
modalities of data to form a weighted multi-graph as a more
comprehensive description of dataset. Sequential Projections
Learning Hashing (SPLH) [5] learns each hash function by
corrects the errors made by the previous one. BSPLH [8] also
learns hash functions one by one but treats all previously
learned hash functions holistically. Each hash function is
trained by correcting the errors made by all previous ones.
A semi-supervised hashing (SCEM-SSH) is proposed in [43],
which trains hash functions by maximizing the joint entropy of
all hash functions. Dual Complementary Hashing (DCH) [7]
employs the SPLH to train multiple hash tables sequentially
in which the pairwise label matrix is updated iteratively to
strengthen the training of next hash table. Based on DCH,
BBSHR [44] is proposed which increases the number of
pairwise similarities of images to train the multiple hash tables.

B. Existing Non-stationary Hashing Methods

The data environments in the real world are mostly non-
stationary, while most of existing hashing methods retrieve
relevant images from a given static database. Concerning this
issue, several non-stationary hashing methods are proposed in
recent years, including Online Kernel-based Hashing (OKH)
[9], Online Sketching Hashing (OSH) [10], Online Hashing
(OH) [11] and Incremental Hashing (ICH) [12]. OKH and
OH both update hash functions based on pairs of images with
their similarity in an online manner. OSH updates the sketch
of the database dynamically and trains new hash functions
based on the structural information of the new sketch. Online
Supervised Hashing [45] learns and adapts hash functions in a
discriminative manner based on error correcting output codes.
The adaptive hashing [46] updates hash functions iteratively
based on streaming data. MIHash [47] utilizes mutual informa-
tion between distributions of Hamming distance of similar and
dissimilar images to evaluate the performance of hash table.
Then optimal hash codes are learned by optimizing the mutual
information objective.

However, all the aforementioned online hashing methods
only assume the data appearing in an online manner with-

out considering the concept drift problem. In existing non-
stationary hashing methods, ICH [12] is the only hashing
method designed for image retrieval with concept drift. ICH
employs multiple hash tables to record the semantic informa-
tion over time in a distributed manner. Hash tables generated
by ICH are weighted according to their performance to the
current data environment. ICH achieves promising retrieval
precision in non-stationary environments with concept drift.

Unfortunately, training a new hash table using BSPLH in
ICH at each time step is time consuming and inefficient for
practical use. Moreover, the storage cost and retrieval time of
ICH is high because each image is represented by multiple
hash codes. Last but not least, the major drawback of all
existing non-stationary hashing methods is the re-computation
of hash codes for all images in the database whenever new
hash functions are trained. This is very time consuming and
may be prohibitive for solving large scale image retrieval
problems. Therefore, in this work, a novel method, CPH, is
proposed to deal with non-stationary image retrieval problems
with concept drift which trains new hash functions quickly and
generate unique single hash code for each image. For CPH, the
hash codes of previous images will not be updated when new
set of hash functions are learned. As far as we know, CPH is
the only work to keep static hash codes for all data when new
data appear over time, which is meaningful and significant.

III. CONCEPT PRESERVING HASHING

Instead of adapting hash functions to concept drifts, CPH
preserves the distribution of the original concept in the hash
projected space and projects newly drifted concept back to the
same area of original concept. This is similar to human mind
which maps drifted concepts to the space of known concepts.

Without loss of generality, we assume the number of images
in each data chunk to be the same. Let X

(t) 2 R
D⇥N be

the data chunk arrived at time t where D and N denote
the dimensionality of the image descriptor and the number
of images in a chunk, respectively. In this work, the image
database is firstly normalized to center at the origin of the input
space. At time t = 0, the first data chunk provides the initial
image set of each concept including images and corresponding
labels. Therefore, the task of CPH at t = 0 is to learn a set
of hash functions to distinguish those given concepts. Hashing
methods aim to learn a set of hash functions such that images
of the same concept will have similar hash codes while images
of different concepts have dissimilar hash codes. In this way,
the similarity information of the images in this data chunk
is preserved. In addition, each hash function is also expected
to divide images into different binary hash values evenly to
maximize the entropy of hash bit [5]. Therefore, at t = 0, CPH
generates a set of B hash functions, H(0) = {h1, h2, ..., hB},
which maximizes both the similarity preservation and the
variance of hash codes. This target is exactly same with the
idea of the existing BSPLH. To learn the hash code well, we
employ BSPLH in a supervised manner. After the training of
hash functions, the hash code value of the b

th hash function
(hb) for an image x is computed as follows:

hb(x) = sgn(wT
b x) (1)

Page 10 of 21Transactions on Cybernetics

4

where sgn(•) and wb denote the sign function and the hash
projection vector, respectively.

The key component of CPH is the concept preservation
training over time after time t = 0. This is achieved by
minimizing the hash code differences between images of the
same concept at t = 0 and at the current time. After H

(0)

is learned, a set of n images from each semantic class is
randomly drawn from the X

(0) as concept reference images.
Projected hash vectors of concept reference images are used
as the representation of each existing concept. To provide
a projection reference for the following hashing projections
after t = 0, we record the position of these images after the
original hash projections. To improve the accuracy, the real-
valued hash function outputs (by Equation 1 without the use of
sign function) of concept reference images are recorded as the
Concept Reference Matrix 2 R

nC⇥B , where C denotes the
number of concepts in the data chunk. This matrix records the
distribution of images in each concept after hashing projection.
Thus, in the following training process of CPH, the newly
generated hash codes are expected to map to the corresponding
area of the same concept.

After the set of hash functions is trained for the data
chunk at time t, hash codes for newly arrived images are
computed by H

(t) and then added to the database storing
hash codes of images arrived since t = 0. Hash codes of
the query image arrived at time t are computed using the
latest K sets of hash functions because query images are
drawn from the current data environment. Then accumulated
Hamming distance between K hash codes of the query and
the hash codes of all images in the database are computed.
Images in the database with hash codes yielding minimum
accumulated Hamming distances from the hash code of the
query are returned as the image retrieval results. CPH is
illustrated in a schematic diagram as shown in Figure 1, where
two consecutive time steps are considered. At time t = T ,
data distributions of existing concepts A and B change and
a new concept C emerges. By CPH, new images of existing
concepts A and B are expected to be projected to the same
areas in the hash projected space for old images belonging to
the same concepts, A or B. The Concept Reference Matrix
consists of projection references for concepts A and B, but
has no information for the new concept C when it emerges at
t = T . Thus, new images of new concept C are projected to
an area far from the areas for other existing concepts in the
hash projected space. After the training of new hash functions,
projection references of the new concept C will be added to
 which makes C to become an existing concept in t > T .
In this way, the Concept Reference Matrix records the
projection references for all concpets. Newly appearing images
are projected to be close to projection references of its concpet
without updating existing hash codes of old images. CPH
generates hash codes for newly appearng images only and
avoids frequent access to old images which is very practical
for real world applications. To our best knowledge, CPH is
the first hashing method for non-stationary data environment
which learns new hash function without updating hash codes
of old images.

The details of the Concept Reference Matrix and the

Fig. 1: The schematic diagram of CPH.

objective function of CPH to learn new hash functions are
introduced in Sections III-A and III-B, respectively. Section
III-C will derive the optimization method of CPH for hash
codes generation. Section III-D introduces the retrieval method
when the query image appears.

A. Concept Reference Matrix
As the major component of CPH, knowledge representation

of the original concepts plays an important role. Similar to
human mind, some examples of a concept in the hash projected
space will be remembered to serve as the reference of this
concept for the learning of following hash projections. New
images with hash codes similar to the reference of one concept
will be treated as the same concept. Borrowing this idea, CPH
uses a Concept Reference Matrix to store examples of hash
function values of images in different concepts.

For each class in the first data chunk at time t = 0, n images
are randomly selected to form a set of nC reference images
(i.e. X⇤ 2 R

D⇥nC) for a C-class problem. To provide more
accurate information for concept preservation, real-valued hash
function values are stored instead of the binary hash codes to
construct the Concept Reference Matrix. Then, the Concept
Reference Matrix 2 R

nC⇥B is computed as follows:

 = (X⇤)TW (0) (2)

In the case that the number of images in a concept class
is less than n, then all images of this concept class are used
as reference images. At the next time step, extra reference
examples of this concept class will be randomly selected until
there are n example images of this concept class added to
X

⇤. Then, their hash function values computed using the
corresponding new hash functions will be added to . In the
case that new concept appearing at time t > 0, n images of
this concept will also be added into X

⇤.

B. Objective Function of CPH
The objective of CPH is to preserve concept by projecting

new images of the same concept to the same set of hash codes
while maintaining a high accuracy in distinguishing images
of different concepts. To train a new set of hash functions

Page 11 of 21 Transactions on Cybernetics

5

when a new data chunk appears, three aspects are taken
into consideration: isomorphic similarity, hash codes partition
balancing, and heterogeneous similarity fitness. Therefore,
CPH is set to maximize the following objective function:

�(W) = J(W) + ↵J
⇤(W) + �tr{WT

XX
T
W} (3)

where ↵ and � are non-negative parameters of CPH; X and W

denote the set of training images in the newest data chunk and
the current hash projection matrix to be learned, respectively.
CPH maximizes the objective function in Equation 3 to find
the optimal hash functions (i.e. W).

In Sections III-B and III-C, the focus is on works done
within each time step therefore the superscript t for time
step is dropped for simplicity. The first component J(W)
preserves the isomorphic similarity of images in the current
data chunk while J

⇤(W) preserves the similarity between the
images of original concepts and the concepts present in the
current data chunk, i.e. heterogeneous similarity fitness. The
last component enhances the variance of the hash codes being
learned to yield higher entropy. Instead of directly maximizing
the differences among hash codes of images, it is relaxed
to maximize the variance of hash values i.e. W

T
XX

T
W

as in [5]. Components J(W) and J
⇤(W) are derived in the

following paragraphs.
Two images are regards as similar when they share the same

label. Using the concept class labels of images in the current
data chunk, the element in pairwise similarity matrix S is
computed as follows:

Sij =

(
+1, xi and xj are similar
�1, xi and xj are dissimilar

(4)

where xi and xj are two images in the current data chunk. For
the case that each image having multiple labels, the number of
common labels can be used as the pairwise similarity between
two images. To remove the need of computing similarity for
the same image, we set diagonal elements in S to zero.
The similarity of concepts of the current data chunk, i.e.
isomorphic similarity, can be preserved by finding hash codes
maximizing the quantity in Equation 5 as follows:

J(H) =
BX

b=1

{
X

8Sij=1

hb(xi)hb(xj)�
X

8Sij=�1

hb(xi)hb(xj)}

= tr{H(X)SH(X)T }
= tr{sgn(WT

X)Ssgn(WT
X)T }

(5)
Then, Equation 5 can be relaxed by removing the sgn(•)

to obtain the following:

J(W) = tr{WT
XSX

T
W} (6)

The major challenge of dealing with image retrieval prob-
lems with concept drift is that images of the same concept
may locate in different regions of the input feature space at
different time t (i.e. concept drift). Stationary hashing methods
fail to deal with concept drift by hashing images of the same
concept to different hash codes at different t. Therefore, CPH
adds a new component (i.e. heterogeneous similarity fitness)

to the objective function which maximizes the fitness of hash
values of new data with the projection references of the same
concept in , as follows:

max J⇤(W) = tr{WT
XS

⇤ } (7)

where S
⇤ is the pairwise similarity matrix between X and X

⇤

and is not symmetric. So, the objective function of CPH can
be written as:

�(W) = tr{WT
XSX

T
W}+ ↵tr{WT

XS
⇤ }+

�tr{WT
XX

T
W} (8)

In the case of new concept appearing, since all projection
references in belong to different concepts from this new
concept, the heterogeneous similarity fitness, i.e. Equation 7,
will provide dissimilarity information between new and old
concepts. In this way, images of this new concept will be
projected to an area in the hash projected space which is
different from those of other concepts. Then, after the training
of new hash functions W , hash projected values of reference
images of this new concept will be added into . In later time
steps, this concept will be preserved based on .

C. Hash Codes Generation by CPH
At time t = 0, does not exist. Therefore, we set ↵ = 0

and the objective function of CPH becomes:

�(W) = tr{WT
XSX

T
W}+ �tr{WT

XX
T
W} (9)

This objective function is similar to the one in BSPLH [8]
and thus the sequential learning procedure of BSPLH is used
to learn the B-bit hash functions. At t > 0, is built and the
full objective function of the CPH is maximized to find hash
functions for the new data chunk. Based on the newest data
chunk and , the optimal W is computed by setting the partial
derivative of �(W) respect to W to be zero, as follows:

@�(W)

@W
= 0

) (XSX
T + �XX

T)W + ↵XS
⇤ = 0

(10)

which is a simple linear regression problem, and W is directly
computed as follows:

W = �↵(XSX
T + �XX

T)�1
XS

⇤ (11)

Based on Equation 11, new hash functions in CPH can be
computed directly based on the concept reference matrix and
newly appearing images which is very efficient, especially
new hash functions are trained at each time step. Equation
11 requires (XSX

T + �XX
T) to be positive definite for its

inverse to exist, so we give the sufficiency conditions for it in
the following.

Lemma 1: For a function f(x) = y(x) + g(x), we have
min{f(x)} � min{y(x)}+min{g(x)}.

Lemma 2: min(xT
Ax) = �

A
min if A 2 R

m⇥m, x 2 R
m⇥1,

and x
T
x = 1 where m and �

A
min denote the dimension of the

variables x and the smallest eigenvalue of A, respectively.
Based on these two lemmas, we have:
Proposition 1: The matrix U = Y +�Z is positive definite if

�
Y
min+��

Z
min > 0 and � > 0, where Y = XSX

T , Z = XX
T .

Page 12 of 21Transactions on Cybernetics

6

�
Y
min and �

Z
min denote the smallest eigenvalue of the matrix

Y and Z, respectively.
Proof 1: If U is positive definite, then U must satisfy

8x 6= 0, xT
Ux > 0

, 8x 6= 0, xT (Y + �Z)x > 0

, 8xT
x = 1,min{xT (Y + �Z)x} > 0

(12)

Given that xT (Y +�Z)x = x
T
Y x+�x

T
Zx and based on

Lemma 1, we have:

min{xT (Y + �Z)x} � min{xT
Y x}+min{�xT

Zx} (13)

By combining Lemma 2, 12, and 13, we have:

min{xT
Y x}+ �min{xT

Zx} = �
Y
min + ��

Z
min > 0 (14)

Therefore, we can conclude that �
Y
min + ��

Z
min > 0 and

� > 0 are sufficiency conditions for (XSX
T +�XX

T) to be
positive definite. Q.E.D.

Proposition 1 shows the sufficiency condition for the term
(XSX

T + �XX
T) to be positive definite. However, the

data set X and pairwise similarity matrix S are different at
different time steps. The eigenvalues of the matrix XSX

T and
XX

T are required to calculate the sufficiency condition. It is
inefficient to check the sufficiency condition at each time step,
thus in our experiments, a fixed value is selected for parameter
�. In cases where the inverse of (XSX

T +�XX
T) does not

exist, the pseudo-inverse of the matrix will be used to compute
Equation 11. Moreover, influences of different parameter val-
ues to the final retrieval performance are analyzed in Section
IV-F. Given the fact that the precision of the CPH relies on the
precision of concept learning in t = 0, a more time consuming
but accurate sequential learning i.e. BSPLH is applied at t = 0.
Afterward, a very fast direct computation of weight is applied
for t > 0 to provide fast concept learning. Therefore, the
overall training time of CPH is very fast, especially for large
t in comparison to other online hashing methods.

D. Retrieval When Query Appears
In CPH, each image in the database has a unique hash code

generated by its corresponding set of hash functions. In other
words, the hash codes in the hash tables are generated by
different sets of hash functions. Each set of hash functions
corresponds to one data distribution at a time step. For a
query image at time t, we need to generate the hash code
for this query. The newest K sets of hash functions are
used to generate K hash codes for this query because the
query is drawn from the recent data environment. Then the
summation of the Hamming distances between the K hash
codes of the query and the unique hash code of a given
image in the database is calculated as the final accumulated
Hamming distance between the query and the given image.
The images in the database with smallest final accumulated
Hamming distance are returned as the retrieval results. When
a query image xq appears at time t = T , the final accumulated
Hamming distance between xq and image xi is computed as
follows:

Dham(xq, xi) =
TX

t=T�K+1

H
(t)(xq)�H

(t)(xi) (15)

where Dham(xq, xi), �, and H
(t)(xi) denote the final accu-

mulated Hamming distance function between two images, the
XOR operation between hash codes, and the hash code of
the image xi, respectively. When there are not enough sets
of hash functions in storage, i.e. T < K, all existing sets
of hash functions are used to generate the hash codes of the
query. Figure 2 shows an overview of CPH. A new data chunk
appears at each time step. At time t = 0, hash functions W

(0)

are learned using BSPLH firstly. Concept reference images
are then selected to generate the Concept Reference Matrix
for the following training of hash functions. Hash codes for
existing images are also generated and stored. In the following
time steps, based on the Concept Reference Matrix and newly
appearing images, new hash functions are learned at each
time step using Equation 11. Meanwhile, hash codes of newly
appearing data are also generated and stored. In Figure 2, the
newest data chunk, learned hash functions and generated hash
codes are marked with green for readability.

Fig. 2: An Overview of CPH.

IV. EXPERIMENTAL STUDIES

Image retrieval in non-stationary environment is still a
new research topic. As far as we know, there is no public
non-stationary image database with concept drift problem
available yet. In our experiments, two public real world image
databases, CIFAR10 and CIFAR100, are utilized to simulate
the non-stationary data environments. There are totally 11
non-stationary data scenarios being simulated to evaluate the
retrieval performance of CPH and the comparative methods.
In our experiments, CPH is compared with LSH [6], SH [21],
BSPLH [8], OKH [9], OSH [10], OH [11] and ICH [12].
LSH and SH are representative unsupervised hashing methods
and are used as baseline comparative methods. BSPLH is a
representative semi-supervised hashing method which is also
applied in the primary training procedure of CPH. The super-
vised OKH, OH and the unsupervised OSH both handle the
image retrieval problem in non-stationary data environment,
which are the main comparative methods in the study of
CPH. ICH exactly handles the image retrieval problem in non-
stationary environment with the concept drift problem. Thus,
ICH is also a main comparative method used in this paper.

Page 13 of 21 Transactions on Cybernetics

7

In our experiments, the parameters of each comparative
method are selected as used in the original papers or official
release of MATLAB libraries. For the proposed method CPH,
two parameters involved in the objective functions are set
as ↵ = 1 and � = 0.05 in our experiments. Moreover, the
number of concept reference images selected in each concept
and the number of hash codes generated generated for the
query are set as 100 and 10, respectively. The value of thse
parameters are anaylzed and selected in Section IV-F in detail.
For the case that there are not enough images for the selection
of concept reference images at time step t = 0, all existing
images of this concept will be selected, and extra images in
the following time steps will be selected until 100 concept
reference images in total of this concept are found. For all
employed hashing methods, the length of hash code is set to
64. For each experiment, 10 independent runs are performed
and their average results are presented.

Mean Average Precision (MAP) and Top 1% Precision
are used in our experiments as metrics to evaluate different
hashing methods based on the semantic ground truth. MAP
is a widely used evaluation metric which considers both the
precision and ranks of the true positive returned samples. The
Top 1% precision concept is firstly proposed in [12], which is
based on the idea of Top N precision. Evaluating precision in
an adaptive range, not a certain number N , is appropriate for
evaluation in non-stationary environment.

11 simulated data scenarios of non-stationary environments
with concept drift used in the experiments are introduced
in Section IV-A. Experimental results of different hashing
methods are presented and discussed in Section IV-B. In Sec-
tion IV-C, CPH is compared with several modified stationary
hashing methods to show its outstanding retrieval performance.
Section IV-D compares the training times of different hashing
methods. In Section IV-E, CPH is validated on multi-labeled
images retrieval task. Parameters influencing the performance
of CPH are investigated in Section IV-F.

Fig. 3: Appearance ratio of five sub-classes in each super class.

A. Databases of Non-stationary Scenarios with Concept Drift
Two databases, CIFAR10 and CIFAR100, are used in our

experiment to simulate 11 different non-stationary data scenar-
ios. The CIFAR10 database consists of 60, 000 real world color
images belonging to 10 semantic classes, such as airplane, cat,
dog, and so on. Each class has 6, 000 images. Each image has

32 ⇥ 32 pixels and is described by a 512-dimensinal GIST
descriptor. The CIFAR100 database consists of 60, 000 32⇥32
color images belonging to 100 classes. Each class has 600
images, and each image is described by a 512-dimensional
GIST feature vector. Moreover, 100 classes can be further
grouped into 20 super classes. In other words, five similar
but different smaller classes can be grouped into a larger
common class. For example, the super class Trees consists of
five smaller classes, i.e. maple, oak, palm, pine, and willow.

(a) Examples of appearing images for super class Trees over
time.

(b) Examples of distribution drifting for five super classes.

Fig. 4: Examples of distribution drifting by controlling the
appearance of sub-classes.

In this paper, two concept drift problems are focused: the
distribution drifting and new class appearing, following the
idea in [12]. 11 data scenarios are simulated in our experiments
which consists of 5 distribution drifting data scenarios, 3 new
class appearing scenarios, and 3 more complicated combined
scenarios. The detailed settings of these 11 data scenarios
are listed in tables I, II, and III. The CIFAR10 database is
used to simulate the new class appearing data scenario, as
shown in table I. Images randomly selected from 5 randomly
selected classes are used as the original set from time 0 5.
Then when t >= 6, images from the original classes and a
certain number of new classes (i.e. 1, 3, and 5) are selected to
form the following data chunks. Table II shows the settings of
distribution drifting scenarios. The CIFAR100 database, which
contains 20 super classes, is used. Each super class consists

Page 14 of 21Transactions on Cybernetics

8

TABLE I: Settings of simulation for new class appearing scenarios

Concept drift problem 0 t 5 t >= 6 Scenario Name

Images randomly selected from 5 classes Images randomly selected from the original classes
and 1 new class

CIFAR10 1

New class appearing Same as above Images randomly selected from the original classes
and 3 new classes

CIFAR10 3

Same as above Images randomly selected from the original classes
and 5 new classes

CIFAR10 5

TABLE II: Settings of simulation for distribution drifting scenarios

Concept drift problem t = 0 t > 0 Scenario Name

Images randomly selected from the first sub-class in
20 super classes

Subclasses of all existing super classes change ac-
cording to Figure 3

CIFAR100 20

Images randomly selected from the first sub-class in
15 super classes

Same as above CIFAR100 15

Distribution drifting Images randomly selected from the first sub-class in
10 super classes

Same as above CIFAR100 10

Same as above Subclasses of 6 existing super classes change accord-
ing to Figure 3

CIFAR100 10 6

Same as above Subclasses of 3 existing super classes change accord-
ing to Figure 3

CIFAR100 10 3

TABLE III: Settings of simulation for combined scenarios

Concept drift problem 0 t 20 21 t 40 Scenario Name

Combined (new class
appearing and
distribution drifting
happen
simultaneously)

• 5 stationary super-classes 10 new super classes appear CIFAR100 DN
• 5 super classes drift
• 15 super-classes without drift • 10 out of 15 super classes drift CIFAR100 ND
• 5 super classes appear as new classes since t = 6 • 5 super classes appear continuously without drift
• 5 super classes without drift
• 5 super-classes drift Experiments end at t = 20 CIFAR100 D&N
• 10 new super-classes appear at t = 6

of 5 smaller classes (also called sub class for simplicity). The
distribution drifting phenomenon is simulated by controlling
the appearance ratio of each sub class in the corresponding
data chunk, as shown in Figure 3, in which the ratio values are
generated by Gaussian functions with different mean values.
In this way, the distribution of the super classes changes over
time. Figure 4 shows examples of distribution drifting by
controlling the appearance ratio of sub-classes. Figure 4(a)
shows examples of appearing images for super class Trees
over time, which consists of five sub classes with appearance
ratio changes according to Figure 3. Each column represents
example images appearing in a time step. Only 9 time steps are
shown in this figure for simplicity. According to Figure 4(a),
images belonging to different sub classes are visibly similar
with little difference. Moreover, the appearance ratio of each
sub class changes over time. In this way, the distribution of
the super class Trees drifting over time is simulated. Figure
4(b) shows examples of distribution drifting happening in five
super classes, i.e. Fish, Trees, People, Flowers, and Vehicles.
Moreover, we further evaluate the proposed CPH on three
more complicated data scenarios, namely CIFAR100 DN,
CIFAR100 ND, CIFAR100 D&N, as shown in Table III. In
CIFAR100 DN and CIFAR100 ND, the new class appearing
scenario and distribution drifting scenario happens in different
order. In CIFAR100 D&N, two concept drift scenarios happen

simultaneously.
There are 21 data chunks being generated from t = 0 to 20

for all data scenarios, except data scenarios CIFAR100 DN
and CIFAR100 ND in which two concept drift scenarios
happen sequentially. CIFAR100 DN and CIFAR100 ND both
have 41 data chunks from t = 0 to 40. At each time step t, both
the training set and the testing set are generated by randomly
selecting 1000 images from these classes according to the
above appearance ratios. Moreover, 100 images in training set
at each time step are randomly selected as the labeled images
while all other images are regarded as unlabeled images for
semi-supervised methods, i.e. BSPLH and ICH. For supervised
hashing methods, OKH, OH and CPH, all images in the
training set are used as labeled images. For OKH and OH,
which learns image pairs in an online manner, the 1000 images
in the training set are partitioned into 500 pairs with similarity
information for training. For CPH, we set n = 100, K = 10,
↵ = 1, and � = 0.05. For the unsupervised OSH, all label
information is ignored.

B. Experimental Results
CPH is compared with representative stationary hashing

methods such as LSH, SH, BSPLH and existing non-stationary
hashing methods such as OKH, OSH, OH, and ICH. Com-
parisons are performed on 11 non-stationary data scenarios.

Page 15 of 21 Transactions on Cybernetics

9

(a) CIFAR10 1 (b) CIFAR10 3 (c) CIFAR10 5

Fig. 5: MAP of CPH and comparative hashing methods on 3 new class appearing data scenarios.

(a) CIFAR10 1 (b) CIFAR10 3 (c) CIFAR10 5

Fig. 6: Top 1% precision of CPH and comparative hashing methods on 3 new class appearing data scenarios.

(a) CIFAR100 20 (b) CIFAR100 15 (c) CIFAR100 10

(d) CIFAR100 10 6 (e) CIFAR100 10 3

Fig. 7: MAP of the CPH and comparative hashing methods on 5 distribution drifting data scenarios.

Section IV-B1 introduces the experimental results on the new
class appearing data scenarios. Comparisons on the distri-
bution drifting data scenarios are shown in Section IV-B2.
Section IV-B3 shows the experimental results on three more
complicated data scenarios with settings listed in Table III.

1) Comparisons on New Class Appearing Data Scenarios:
The experimental results in terms of MAP and Top 1%
precision for all comparative methods and CPH are shown
in Figures 5 and 6, respectively.

In both Figure 5 and Figure 6, the unsupervised LSH and
SH obtain the lowest retrieval accuracy, since no semantic
information is used for training. Moreover, hash functions of
these two methods are trained at the beginning and never
update. OSH and OKH achieve lower MAP but higher top 1%

precision than BSPLH. This suggests that there are more cor-
rect images being returned in the top 1% image set with least
Hamming distance for OKH and OSH than BSPLH. However,
the rank of these correctly returned images is relatively higher
than BSPLH. In these new class appearing data scenarios, the
unsupervised OSH updates hash functions adaptively without
considering the semantic similarity information. OKH and OH
updates hash functions with pairwise similarities of two labels,
while BSPLH utilizes the similarities between all pairs of data
in the data chunk. For a data chunk containing n labeled
images, only n/2 pairwise similarities will be used for training
in OKH and OH, while C

2
n pairwise similarities could be used

for training in BSPLH. This is a big drawback of OKH and
OH which is also the reason that in some cases (e.g. Figure

Page 16 of 21Transactions on Cybernetics

10

(a) CIFAR100 20 (b) CIFAR100 15 (c) CIFAR100 10

(d) CIFAR100 10 6 (e) CIFAR100 10 3

Fig. 8: Top 1% precision of CPH and comparative hashing methods on 5 distribution drifting data scenarios.

(a) CIFAR100 DN (b) CIFAR100 ND (c) CIFAR100 D&N

Fig. 9: MAP of CPH and comparative hashing methods on 3 combined data scenarios.

(a) CIFAR100 DN (b) CIFAR100 ND (c) CIFAR100 D&N

Fig. 10: Top 1% precision of CPH and comparative hashing methods on 3 combined data scenarios.

5), the supervised OKH and OH cannot achieve better retrieval
performance than the stationary BSPLH. CPH achieves highest
MAP and Top 1% precision among all hashing methods in
comparison for 3 new class appearing scenarios. The big drop
of retrieval performance for CPH at time t = 1 is caused by the
change from using sequential learning to direct computation
of W for hash function generation after t > 0. Even with this
drop, the performance of CPH recovers quickly and keeps
the highest performance level comparing with other hashing
methods.

2) Comparisons on Distribution Drifting Data Scenarios:
Figure 7 and Figure 8 show MAP and Top 1% precision
of CPH and comparative methods on 5 distribution drifting
data scenarios, respectively. In the first three data scenarios,

different number (i.e. 20, 15, 10) of super classes are utilized
to simulate the distribution drifting situation. Afterwards, 10
super classes are used for simulation in which 6 (and 3) super
classes drifts and left classes keep unchanged.

According to Figure 7 and Figure 8, CPH outperforms
other hashing methods significantly. At the time step t = 1,
there is significant performance drop for CPH, due to the
change of hash functions training method. However, after time
t = 1, the performance of CPH recovers quickly, just like the
phenomenon shown in the new class appearing data scenarios.
Moreover, the performance of CPH keeps stable finally at a
high level with new data appearing over time. ICH employs
multiple hash tables and adjusts the weights of hash tables
adaptively, which achieves the second best retrieval perfor-

Page 17 of 21 Transactions on Cybernetics

11

mance. The representative online hashing methods OKH, OH
and OSH achieve relatively lower MAP and Top 1% precision.
But all three methods still perform better than stationary
hashing methods, such as BSPLH, LSH, and SH.

3) Comparisons on Combined Data Scenarios: Figures 9
and 10 show the experimental results on 3 combined data
scenarios. CPH outperforms all other comparative methods.
In data scenario CIFAR100 DN, 5 super classes drift from
time t = 0 20, and 10 super classes appear as new concepts at
time t = 21. Thus the performance of CPH has a significant
drop at time t = 21. In data scenario CIFAR100 ND, 15
original super classes appear without drifting, and 5 super
classes appear at time t = 6 as the new concepts. Then 10 of
the 15 original super classes begin drifting. The performance
of all hashing methods drops at time t = 6 due to the new class
appearing. Moreover, after time t = 21, all hashing methods
tend to drop for a period of time, since 10 super classes begin
drift. After several time period, the retrieval performance of
hashing methods become stable. In the CIFAR100 D&N data
scenario, images from 5 stationary classes appear over time.
5 super classes drift during time t = 0 20. Moreover, 10
new super classes appear at time t = 6 to simulate the new
class appearing situation. In this data scenario, both concept
drift problems happen simultaneously which makes this data
scenario most complicated. In this data scenario, CPH also
outperforms all other hashing methods.

Moreover, visual retrieval results of CPH and other four
non-stationary hashing methods on two data scenarios, i.e.
CIFAR10 1 and CIFAR100 10 3, at time t = 20 are shown
in Figure 11. The query image is randomly selected from the
query set at time t = 20. For the given query image, top 10
nearest images returned by each hash method are shown at
the corresponding row. Wrongly returned images which are
dissimilar to the query image are marked with red rectangles.
Some returned images are the same. That is because images in
data chunks at different time steps are selected randomly and
independently from the original image set. Therefore, image
may be selected more than once. According to Figure 11,
the proposed CPH method achieves significantly outstanding
retrieval performance comparing to other methods.

C. Comparison with Modified Existing Hashing Methods

CPH achieves a good retrieval performance at the beginning
in all data scenarios. To further evaluate CPH with updating,
it is compared with a static version of CPH which trains hash
functions at the beginning by CPH but does not update hash
functions afterwards. This version of CPH is named as CPH 0.
Moreover, in this section, we also compare CPH with two
simply modified versions of the existing stationary hashing
methods, to show the performance improvement of CPH. Since
BSPLH is utilized to train the first set of hash functions in
CPH with all data labeled, both two comparative methods, i.e.
BSPLH N and BSPLH A, are based on BSPLH. BSPLH N
re-trains hash functions by BSPLH at each time step utilizing
the newest data chunk. BSPLH A re-trains hash functions at
each time step by using all existing labeled and unlabeled
data. Figure 12 shows the MAP results of CPH, CPH 0 and

(a) Visual retrieval results on CIFAR10 1 data scenario.

(b) Visual retrieval results on CIFAR100 10 3 data scenario.

Fig. 11: Visual retrieval results of non-stationary hashing
methods on two data scenarios.

two modified methods on three kinds of non-stationary data
scenarios: distribution drifting scenario CIFAR100 20, new
class appearing scenario CIFAR10 1, and combined scenario
CIFAR100 D&N.

BSPLH N re-trains hash functions only using the newest
data chunk and ignores the previous data information.
BSPLH A utilizes all existing data for training directly, while
the newest data distribution may be different with the previous
ones. According to Figure 12, BSPLH N and BSPLH A
achieve nearly the same MAP performance. Moreover, their
MAP performance is the lowest, comparing to CPH and
CPH 0. Therefore, simply updating hash functions by the
newest chunk of data or directly combining all existing data
for training is not able to generate suitable hash functions
for image retrieval task in non-stationary data environment.
CPH 0 achieves outstanding retrieval performance at the be-
ginning. Since it does not update hash functions afterwards,
CPH 0 cannot adapt to the new data environment when
concept drift happens. As a result, the retrieval performance
of CPH 0 degrades significantly later. CPH achieves the best
performance in all three data scenarios which generate new
hash functions to preserve the similarity between new and old
images in different times.

D. Comparison in Training Time
In this section, we compare the training times of different

hashing methods for the experiment using the CIFAR100 20
scenario. Figures 13 and 14 show the individual training time
at each time step and the accumulated training time over time
of each hashing method, respectively. CPH yields the largest
individual training time at t = 0, due to the fully supervised
training process of BSPLH. However, the individual training
time for training new hash functions is very little. Thus,

Page 18 of 21Transactions on Cybernetics

12

(a) CIFAR100 20 (b) CIFAR10 1 (c) CIFAR100 D&N

Fig. 12: MAP of CPH, CPH 0 and two modified versions of BSPLH.

CPH is efficient to train new hash functions with new data
appearing over time. Moreover, its accumulated training time
is dominated by the training time at t = 0. It is obvious that
in a long run, small individual training time at t > 0 is a very
important for large scale image retrieval problems.

Fig. 13: Individual training time of different hashing methods
at each time step.

Fig. 14: Accumulated training time of different hashing meth-
ods at each time step.

ICH is a semi-supervised incremental hashing method. It
takes the second longest individual training time at time t = 0
and it is almost a constant in all time steps. This leads to
the ICH yielding a very large accumulated training time over
a long time period. OSH yields a relatively small individual
training time, but the accumulated training time becomes
very large after a period of time and increases steadily. The
accumulated training time of OSH is larger than that of CPH
when t > 13. LSH and BSPLH are stationary methods and
never update after time t = 0. Thus their individual training
time after time t = 0 is zero. The individual training time of
OKH after time t = 0 is similar to the proposed CPH, which is
also efficient. Given the significantly better retrieval precision

and low individual training time at all t > 0, CPH is a very
promising hashing method for non-stationary image retrieval
problems with concept drift for a long run.

E. Image Retrieval for Multi-labeled Images
In the previous sections, CPH has shown its superior

performance for single-labeled images. In this section, CPH
is validated on a more challenging task, i.e. multi-labeled
images retrieval. Real world image database NUSWIDE is
employed which consists of 269, 648 images belonging to 81
categories. For multi-labeled images retrieval task, two images
are regarded as similar when they share at least one same label.
Each image is represented by a 500-dimension bag of words
based on SIFT descriptors. This database is used to simulate
the new class appearing scenario, in which 20 categories are
randomly selected as the original classes. Images belonging
to original classes are randomly selected to generate the data
chunks from time t = 0 to 10. After time t = 10, images
from all 81 categories are randomly selected to generate data
chunks.

Top 1% precision and MAP of CPH and other comparative
methods are shown in Figure 15. According to this figure, the
stationary hashing methods LSH, SH, and BSPLH yield the
worst retrieval performance after new class appearing since
time t = 11. CPH achieves highest Top 1% precision and
satisfying MAP performance just lower than ICH. Among
ICH and CPH, ICH employs multiple hash tables with larger
storage cost and updates hash codes of all images at each time
step. CPH generates hash codes for new image only without
updating hash codes of all images which is more efficient.
Other non-stationary hashing methods OKH, OSH, and OH
achieve better retrieval performance comparing to stationary
hashing methods but lower than CPH’s.

F. Parameter Selection
There are two sets of parameters need to be selected for

CPH. The first set consists of two parameters: ↵ and � for
the objective function, while the second set consists of three
parameters: the number of bits (B), the number of images
in a concept class being selected for (n),and the number
of hash codes generated for the query (K). Average Top
1% precisions over t = 0 to 20 for different parameter
values for the CIFAR100 D&N scenario are used to evaluate
the performance of parameter selection. Figure 16 shows the
average precisions for different ↵ and � values with B = 64,

Page 19 of 21 Transactions on Cybernetics

13

(a) Top 1% precision

(b) MAP

Fig. 15: Top 1% precision and MAP of CPH and other
comparative methods.

n = 100, and K = 10. According to this figure, the retrieval
performance of the CPH method is insensitive to values of ↵
and �. In experiments, ↵ = 1 and � = 0.05 are used because
this set of parameters yields the best performance. With ↵ = 1
and � = 0.05, average Top 1% precisions over t = 0 to 20
for different K and n values for the CIFAR100 D&N scenario
are shown in Figure 17. According to this figure, we choose
K = 10 and n = 100 in all experiments. Figure 18 shows
the Top 1% precision of CPH with different hash code length.
When B = 64, CPH achieves almost the best performance,
which is just lower than the case B = 128. Consider the
training efficiency, we select B = 64 as the hash code length
in all our experiments.

Fig. 16: Average top 1% precisions for different � and ↵

values.

V. CONCLUSIONS

In this paper we propose a new method, i.e. concept pre-
serving hashing, for image retrieval in non-stationary data en-
vironment with concept drift. With new data chunk appearing,

Fig. 17: Average top 1% precisions for different K and n

values.

Fig. 18: Top 1% precisions of CPH with different hash code
length B.

CPH generates hash codes for new images which are similar
to the hash codes of previous images of the same concept. In
other words, CPH projects images of the same concept from
different times (i.e. different distributions) to a similar area
in the hash projected space. In this way, there is no need to
update the learned hash codes of previous images. To generate
the objective function for learning new hash functions, three
aspects are taken into consideration C isomorphic similarity,
hash codes partition balancing, and heterogeneous similarity
fitness. The new hash functions can be learned directly which
is very efficient. As far as we know, this is the first work
to handle image retrieval in non-stationary environment with
concept drift without updating old hash codes. This attempt is
very valuable and practical for large scale image retrieval in
non-stationary environment.

There are also several drawbacks of CPH which need further
improvement. One is that there is a significant performance
drop at the beginning, which is caused by the different
training procedure of hash functions. Thus, a further work
is to strengthen the updating methods of hash functions to
achieve more stable retrieval performance. Moreover, CPH
trains new hash functions at each time step to adapt to new
data environment like other non-stationary hashing methods,
while concept drift may be slight or not happening in some
time steps. Therefore, concept drift detection for deciding
whether new hash functions need to be updated is another
interesting topic. In recent years, transfer learning technique
has been widely researched and achieved huge success, which
utilizes knowledge of source domain to benefit the training

Page 20 of 21Transactions on Cybernetics

14

on target domain. Applying transfer learning technique to
preserve the concept when learning new hash functions could
be a meaningful idea and worthy of further research. This is
also one of our future works.

REFERENCES

[1] B. Marr, Big Data: Using SMART big data, analytics and metrics to
make better decisions and improve performance. Wiley, 2015.

[2] R. Elwell and R. Polikar, “Incremental learning of concept drift in
nonstationary environments,” IEEE Transactions on Neural Networks,
vol. 22, no. 10, pp. 1517–1531, 2011.

[3] C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image
descriptor matching,” in Proceedings of the International Conference
on Computer Vision and Pattern Recognition. IEEE, 2008, pp. 1–8.

[4] A. Beygelzimer, S. Kakade, and J. Langford, “Cover trees for nearest
neighbor,” in Proceedings of the 23rd International Conference on
Machine Learning. ACM, 2006, pp. 97–104.

[5] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for
large-scale search,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 34, no. 12, pp. 2393–2406, 2012.

[6] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proceedings of the
twentieth annual symposium on Computational geometry. ACM, 2004,
pp. 253–262.

[7] P. Li, J. Cheng, and H. Lu, “Hashing with dual complementary projection
learning for fast image retrieval,” Neurocomputing, vol. 120, pp. 83–89,
2013.

[8] C. Wu, J. Zhu, D. Cai, C. Chen, and J. Bu, “Semi-supervised nonlinear
hashing using bootstrap sequential projection learning,” IEEE Transac-
tions on Knowledge and Data Engineering, vol. 25, no. 6, pp. 1380–
1393, 2013.

[9] L.-K. Huang, Q. Yang, and W.-S. Zheng, “Online hashing,” in Proceed-
ings of International Joint Conference on Artificial Intelligence, 2013,
pp. 1422–1428.

[10] C. Leng, J. Wu, J. Cheng, X. Bai, and H. Lu, “Online sketching hashing,”
in Proceedings of the International Conference on Computer Vision and
Pattern Recognition, 2015, pp. 2503–2511.

[11] L.-K. Huang, Q. Yang, and W.-S. Zheng, “Online hashing,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 29, no. 6,
pp. 2309C–2322, 2018.

[12] W. W. Ng, X. Tian, Y. Lv, D. S. Yeung, and W. Pedrycz, “Incremental
hashing for semantic image retrieval in nonstationary environments,”
IEEE Transactions on Cybernetics, vol. 47, no. 11, pp. 3814–3826, 2017.

[13] J. Wang, T. Zhang, J. Song, N. Sebe, and H. T. Shen, “A survey on
learning to hash,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 40, no. 4, pp. 769–790, 2018.

[14] M. Raginsky and S. Lazebnik, “Locality-sensitive binary codes from
shift-invariant kernels,” in Advances in Neural Information Processing
Systems, 2009, pp. 1509–1517.

[15] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for
scalable image search,” in Proceedings of the International Conference
on Computer Vision. IEEE, 2009, pp. 2130–2137.

[16] K. Jiang, Q. Que, and B. Kulis, “Revisiting kernelized locality-sensitive
hashing for improved large-scale image retrieval,” in Proceedings of the
International Conference on Computer Vision and Pattern Recognition,
2015, pp. 4933–4941.

[17] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quantiza-
tion: A procrustean approach to learning binary codes for large-scale
image retrieval,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 35, no. 12, pp. 2916–2929, 2013.

[18] X. Bai, H. Yang, J. Zhou, P. Ren, and J. Cheng, “Data-dependent hashing
based on p-stable distribution,” IEEE Transactions on Image Processing,
vol. 23, no. 12, pp. 5033–5046, 2014.

[19] H. Xu, J. Wang, Z. Li, G. Zeng, S. Li, and N. Yu, “Complementary
hashing for approximate nearest neighbor search,” in Proceedings of
the International Conference on Computer Vision. IEEE, 2011, pp.
1631–1638.

[20] Y. Lv, W. W. Ng, Z. Zeng, D. S. Yeung, and P. P. Chan, “Asymmetric
cyclical hashing for large scale image retrieval,” IEEE Transactions on
Multimedia, vol. 17, no. 8, pp. 1225–1235, 2015.

[21] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Advances
in Neural Information Processing Systems, 2009, pp. 1753–1760.

[22] J.-P. Heo, Y. Lee, J. He, S.-F. Chang, and S.-E. Yoon, “Spherical
hashing,” in Proceedings of the International Conference on Computer
Vision and Pattern Recognition. IEEE, 2012, pp. 2957–2964.

[23] ——, “Spherical hashing: Binary code embedding with hyperspheres,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 37, no. 11, pp. 2304–2316, 2015.

[24] X. Liu, J. He, B. Lang, and S.-F. Chang, “Hash bit selection: A
unified solution for selection problems in hashing,” in Proceedings of the
International Conference on Computer Vision and Pattern Recognition.
IEEE, 2013, pp. 1570–1577.

[25] X. Liu, C. Deng, B. Lang, D. Tao, and X. Li, “Query-adaptive reciprocal
hash tables for nearest neighbor search,” IEEE Transactions on Image
Processing, vol. 25, no. 2, pp. 907–919, 2016.

[26] F. Shen, C. Shen, Q. Shi, A. v. d. Hengel, Z. Tang, and H. t.
Shen, “Hashing on nonlinear manifolds,” IEEE Transactions on Image
Processing, vol. 24, no. 6, pp. 1839C–1851, 2015.

[27] Y. Guo, G. Ding, L. Liu, J. Han, and L. Shao, “Learning to hash with
optimized anchor embedding for scalable retrieval,” IEEE Transactions
on Image Processing, vol. 26, no. 3, pp. 1344–1354, 2017.

[28] S. Wang, C. Li, and H.-L. Shen, “Distributed graph hashing,” IEEE
Transactions on Cybernetics, vol. 49, no. 5, pp. 1896–1908, 2019.

[29] X. Bai, C. Yan, H. Yang, L. Bai, J. Zhou, and E. R. Hancock, “Adaptive
hash retrieval with kernel based similarity,” Pattern Recognition, vol. 75,
pp. 136–148, 2018.

[30] X. Liu, Z. Li, C. Deng, and D. Tao, “Distributed adaptive binary
quantization for fast nearest neighbor search,” IEEE Transactions on
Image Processing, vol. 26, no. 11, pp. 5324–5336, 2017.

[31] H. Liu, R. Ji, J. Wang, and C. Shen, “Ordinal constraint binary coding
for approximate nearest neighbor search,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 41, no. 4, pp. 941–955, 2018.

[32] B. Kulis, P. Jain, and K. Grauman, “Fast similarity search for learned
metrics,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 31, no. 12, pp. 2143–2157, 2009.

[33] C. Strecha, A. Bronstein, M. Bronstein, and P. Fua, “Ldahash: Improved
matching with smaller descriptors,” IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, vol. 34, no. 1, pp. 66–78, 2012.

[34] P. Li, M. Wang, J. Cheng, C. Xu, and H. Lu, “Spectral hashing with
semantically consistent graph for image indexing,” IEEE Transactions
on Multimedia, vol. 15, no. 1, pp. 141–152, 2013.

[35] Z. Chen, J. Lu, J. Feng, and J. Zhou, “Nonlinear discrete hashing,” IEEE
Transactions on Multimedia, vol. 19, no. 1, pp. 123–135, 2017.

[36] F. Shen, C. Shen, W. Liu, and H. Tao Shen, “Supervised discrete
hashing,” in Proceedings of the International Conference on Computer
Vision and Pattern Recognition, 2015, pp. 37–45.

[37] W. W. Ng, J. Li, S. Feng, D. S. Yeung, and P. P. Chan, “Sensitivity
based image filtering for multi-hashing in large scale image retrieval
problems,” International Journal of Machine Learning and Cybernetics,
vol. 6, no. 5, pp. 777–794, 2015.

[38] C. Ma, I. W. Tsang, F. Shen, and C. Liu, “Error correcting input and
output hashing,” IEEE Transactions on Cybernetics, vol. 49, no. 3, pp.
781–791, 2019.

[39] H. Liu, R. Wang, S. Shan, and X. Chen, “Deep supervised hashing for
fast image retrieval,” in Proceedings of the International Conference on
Computer Vision and Pattern Recognition. IEEE, 2016, pp. 2064–2072.

[40] H. Lai, P. Yan, X. Shu, Y. Wei, and S. Yan, “Instance-aware hashing for
multi-label image retrieval,” IEEE Transactions on Image Processing,
vol. 25, no. 6, pp. 2469–2479, 2016.

[41] C. Deng, Z. Chen, X. Liu, X. Gao, and D. Tao, “Triplet-based deep
hashing network for cross-modal retrieval,” IEEE Transactions on Image
Processing, vol. 27, no. 8, pp. 3893–3903, 2018.

[42] J. Cheng, C. Leng, P. Li, M. Wang, and H. Lu, “Semi-supervised
multi-graph hashing for scalable similarity search,” Computer Vision
and Image Understanding, vol. 124, pp. 12–21, 2014.

[43] W. W. Ng, Y. Lv, Z. Zeng, D. S. Yeung, and P. P. Chan, “Sequential
conditional entropy maximization semi-supervised hashing for semantic
image retrieval,” International Journal of Machine Learning and Cyber-
netics, vol. 8, no. 2, pp. 571–586, 2017.

[44] W. W. Ng, X. Zhou, X. Tian, X. Wang, and D. S. Yeung, “Bagging–
boosting-based semi-supervised multi-hashing with query-adaptive re-
ranking,” Neurocomputing, vol. 275, pp. 916–923, 2018.

[45] F. Cakir and S. Sclaroff, “Online supervised hashing,” in Proceedings
of the International Conference on Image Processing. IEEE, 2015, pp.
2606–2610.

[46] ——, “Adaptive hashing for fast similarity search,” in Proceedings of
the International Conference on Computer Vision, 2015, pp. 1044–1052.

[47] F. Cakir, K. He, S. A. Bargal, and S. Sclaroff, “Mihash: Online
hashing with mutual information,” in Proceedings of the International
Conference on Computer Vision. IEEE, 2017, pp. 437–445.

Page 21 of 21 Transactions on Cybernetics

