621 research outputs found

    An Optimal Self-Stabilizing Firing Squad

    Full text link
    Consider a fully connected network where up to tt processes may crash, and all processes start in an arbitrary memory state. The self-stabilizing firing squad problem consists of eventually guaranteeing simultaneous response to an external input. This is modeled by requiring that the non-crashed processes "fire" simultaneously if some correct process received an external "GO" input, and that they only fire as a response to some process receiving such an input. This paper presents FireAlg, the first self-stabilizing firing squad algorithm. The FireAlg algorithm is optimal in two respects: (a) Once the algorithm is in a safe state, it fires in response to a GO input as fast as any other algorithm does, and (b) Starting from an arbitrary state, it converges to a safe state as fast as any other algorithm does.Comment: Shorter version to appear in SSS0

    Probably Safe or Live

    Get PDF
    This paper presents a formal characterisation of safety and liveness properties \`a la Alpern and Schneider for fully probabilistic systems. As for the classical setting, it is established that any (probabilistic tree) property is equivalent to a conjunction of a safety and liveness property. A simple algorithm is provided to obtain such property decomposition for flat probabilistic CTL (PCTL). A safe fragment of PCTL is identified that provides a sound and complete characterisation of safety properties. For liveness properties, we provide two PCTL fragments, a sound and a complete one. We show that safety properties only have finite counterexamples, whereas liveness properties have none. We compare our characterisation for qualitative properties with the one for branching time properties by Manolios and Trefler, and present sound and complete PCTL fragments for characterising the notions of strong safety and absolute liveness coined by Sistla

    Stellar Consensus by Instantiation

    Get PDF
    Stellar introduced a new type of quorum system called a Federated Byzantine Agreement System. A major difference between this novel type of quorum system and a threshold quorum system is that each participant has its own, personal notion of a quorum. Thus, unlike in a traditional BFT system, designed for a uniform notion of quorum, even in a time of synchrony one well-behaved participant may observe a quorum of well-behaved participants, while others may not. To tackle this new problem in a more general setting, we abstract the Stellar Network as an instance of what we call Personal Byzantine Quorum Systems. Using this notion, we streamline the theory behind the Stellar Network, removing the clutter of unnecessary details, and refute the conjecture that Stellar\u27s notion of intact set is optimally fault-tolerant. Most importantly, we develop a new consensus algorithm for the new setting

    Optimistic fair transaction processing in mobile ad-hoc networks

    Get PDF
    Mobile ad-hoc networks (MANETs) are unstable. Link errors, which are considered as an exception in fixed-wired networks must be assumed to be the default case in MANETs. Hence designing fault tolerant systems efficiently offering transactional guarantees in these unstable environments is considerably more complex. The efficient support for such guarantees is essential for business applications, e.g. for the exchange of electronic goods. This class of applications demands for transactional properties such as money and goods atomicity. Within this technical report we present an architecture, which allows for fair and atomic transaction processing in MANETs, together with an associated application that enables exchange of electronic tokens

    Distributed eventual leader election in the crash-recovery and general omission failure models.

    Get PDF
    102 p.Distributed applications are present in many aspects of everyday life. Banking, healthcare or transportation are examples of such applications. These applications are built on top of distributed systems. Roughly speaking, a distributed system is composed of a set of processes that collaborate among them to achieve a common goal. When building such systems, designers have to cope with several issues, such as different synchrony assumptions and failure occurrence. Distributed systems must ensure that the delivered service is trustworthy.Agreement problems compose a fundamental class of problems in distributed systems. All agreement problems follow the same pattern: all processes must agree on some common decision. Most of the agreement problems can be considered as a particular instance of the Consensus problem. Hence, they can be solved by reduction to consensus. However, a fundamental impossibility result, namely (FLP), states that in an asynchronous distributed system it is impossible to achieve consensus deterministically when at least one process may fail. A way to circumvent this obstacle is by using unreliable failure detectors. A failure detector allows to encapsulate synchrony assumptions of the system, providing (possibly incorrect) information about process failures. A particular failure detector, called Omega, has been shown to be the weakest failure detector for solving consensus with a majority of correct processes. Informally, Omega lies on providing an eventual leader election mechanism

    On the Formal Verification of the Stellar Consensus Protocol

    Get PDF
    • …
    corecore