5 research outputs found

    A New System Architecture for Heterogeneous Compute Units

    Get PDF
    The ongoing trend to more heterogeneous systems forces us to rethink the design of systems. In this work, I study a new system design that considers heterogeneous compute units (general-purpose cores with different instruction sets, DSPs, FPGAs, fixed-function accelerators, etc.) from the beginning instead of as an afterthought. The goal is to treat all compute units (CUs) as first-class citizens, enabling (1) isolation and secure communication between all types of CUs, (2) a direct interaction of all CUs, removing the conventional CPU from the critical path, and (3) access to operating system (OS) services such as file systems and network stacks for all CUs. To study this system design, I am using a hardware/software co-design based on two key ideas: 1) introduce a new hardware component next to each CU used by the OS as the CUs' common interface and 2) let the OS kernel control applications remotely from a different CU. The hardware component is called data transfer unit (DTU) and offers the minimal set of features to reach the stated goals: secure message passing and memory access. The OS is called M³ and runs its kernel on a dedicated CU and runs the OS services and applications on the remaining CUs. The kernel is responsible for establishing DTU-based communication channels between services and applications. After a channel has been set up, services and applications communicate directly without involving the kernel. This approach allows to support arbitrary CUs as aforementioned first-class citizens, ranging from fixed-function accelerators to complex general-purpose cores

    Partial aggregation for collective communication in distributed memory machines

    Get PDF
    High Performance Computing (HPC) systems interconnect a large number of Processing Elements (PEs) in high-bandwidth networks to simulate complex scientific problems. The increasing scale of HPC systems poses great challenges on algorithm designers. As the average distance between PEs increases, data movement across hierarchical memory subsystems introduces high latency. Minimizing latency is particularly challenging in collective communications, where many PEs may interact in complex communication patterns. Although collective communications can be optimized for network-level parallelism, occasional synchronization delays due to dependencies in the communication pattern degrade application performance. To reduce the performance impact of communication and synchronization costs, parallel algorithms are designed with sophisticated latency hiding techniques. The principle is to interleave computation with asynchronous communication, which increases the overall occupancy of compute cores. However, collective communication primitives abstract parallelism which limits the integration of latency hiding techniques. Approaches to work around these limitations either modify the algorithmic structure of application codes, or replace collective primitives with verbose low-level communication calls. While these approaches give fine-grained control for latency hiding, implementing collective communication algorithms is challenging and requires expertise knowledge about HPC network topologies. A collective communication pattern is commonly described as a Directed Acyclic Graph (DAG) where a set of PEs, represented as vertices, resolve data dependencies through communication along the edges. Our approach improves latency hiding in collective communication through partial aggregation. Based on mathematical rules of binary operations and homomorphism, we expose data parallelism in a respective DAG to overlap computation with communication. The proposed concepts are implemented and evaluated with a subset of collective primitives in the Message Passing Interface (MPI), an established communication standard in scientific computing. An experimental analysis with communication-bound microbenchmarks shows considerable performance benefits for the evaluated collective primitives. A detailed case study with a large-scale distributed sort algorithm demonstrates, how partial aggregation significantly improves performance in data-intensive scenarios. Besides better latency hiding capabilities with collective communication primitives, our approach enables further optimizations of their implementations within MPI libraries. The vast amount of asynchronous programming models, which are actively studied in the HPC community, benefit from partial aggregation in collective communication patterns. Future work can utilize partial aggregation to improve the interaction of MPI collectives with acclerator architectures, and to design more efficient communication algorithms

    Enhancing HPC on Virtual Systems in Clouds through Optimizing Virtual Overlay Networks

    Get PDF
    Virtual Ethernet overlay provides a powerful model for realizing virtual distributed and parallel computing systems with strong isolation, portability, and recoverability properties. However, in extremely high throughput and low latency networks, such overlays can suffer from bandwidth and latency limitations, which is of particular concern in HPC environments. Through a careful and quantitative analysis, I iden- tify three core issues limiting performance: delayed and excessive virtual interrupt delivery into guests, copies between host and guest data buffers during encapsulation, and the semantic gap between virtual Ethernet features and underlying physical network features. I propose three novel optimizations in response: optimistic timer- free virtual interrupt injection, zero-copy cut-through data forwarding, and virtual TCP offload. These optimizations improve the latency and bandwidth of the overlay network on 10 Gbps Ethernet and InfiniBand interconnects, resulting in near-native performance for a wide range of microbenchmarks and MPI application benchmarks
    corecore