28 research outputs found

    Learning on graphs with high-order relations: spectral methods, optimization and applications

    Get PDF
    Learning on graphs is an important problem in machine learning, computer vision and data mining. Traditional algorithms for learning on graphs primarily take into account only low-order connectivity patterns described at the level of individual vertices and edges. However, in many applications, high-order relations among vertices are necessary to properly model a real-life problem. In contrast to the low-order cases, in-depth algorithmic and analytic studies supporting high-order relations among vertices are still lacking. To address this problem, we introduce a new mathematical model family, termed inhomogeneous hypergraphs, which captures the high-order relations among vertices in a very extensive and flexible way. Specifically, as opposed to classic hypergraphs that treat vertices within a high-order structure in a uniform manner, inhomogeneous hypergraphs allow one to model the fact that different subsets of vertices within a high-order relation may have different structural importance. We propose a series of algorithms and relevant analytic results for this new model. First, after we introduce the formal definitions and some preliminaries, we propose clustering algorithms over inhomogeneous hypergraphs. The first clustering method is based on a projection method, where we use graphs with pairwise relations to approximate high-order relations and then directly use spectral clustering methods over obtained graphs. For this type of method, we provide provable performance guarantee, which works for a sub-class of inhomogeneous hypergraphs that additionally impose constraints on the internal structures of high-order relations. Such constraints are related to submodular functions, so we term such a sub-class of inhomogeneous hypergraphs as submodular hypergraphs. Later, we study the Laplacian operators for these hypergraphs and generalize many important results in spectral theory for this setting including Cheeger's inequalities and discrete nodal domain theorems. Based on these new results, we further develop new clustering algorithms with tighter approximating properties than projection methods. Second, we propose some optimization algorithms for inhomogeneous hypergraphs. We first find that min-cut problems over submodular hypergraphs are closely related to an extensively studied optimization problem termed decomposable submodular hypergraph minimization (DSFM). Our contribution is how to leverage hypergraph structures to accelerate canonical solvers for DSFM problems. Later, we connect PageRank approaches to submodular hypergraphs and propose a new optimization problem termed quadratic decomposable submodular hypergraph minimization (QDSFM). For this new problem, we propose algorithms with first provable linear convergence guarantee and identify new relevant applications

    Learning with Structured Sparsity: From Discrete to Convex and Back.

    Get PDF
    In modern-data analysis applications, the abundance of data makes extracting meaningful information from it challenging, in terms of computation, storage, and interpretability. In this setting, exploiting sparsity in data has been essential to the development of scalable methods to problems in machine learning, statistics and signal processing. However, in various applications, the input variables exhibit structure beyond simple sparsity. This motivated the introduction of structured sparsity models, which capture such sophisticated structures, leading to a significant performance gains and better interpretability. Structured sparse approaches have been successfully applied in a variety of domains including computer vision, text processing, medical imaging, and bioinformatics. The goal of this thesis is to improve on these methods and expand their success to a wider range of applications. We thus develop novel methods to incorporate general structure a priori in learning problems, which balance computational and statistical efficiency trade-offs. To achieve this, our results bring together tools from the rich areas of discrete and convex optimization. Applying structured sparsity approaches in general is challenging because structures encountered in practice are naturally combinatorial. An effective approach to circumvent this computational challenge is to employ continuous convex relaxations. We thus start by introducing a new class of structured sparsity models, able to capture a large range of structures, which admit tight convex relaxations amenable to efficient optimization. We then present an in-depth study of the geometric and statistical properties of convex relaxations of general combinatorial structures. In particular, we characterize which structure is lost by imposing convexity and which is preserved. We then focus on the optimization of the convex composite problems that result from the convex relaxations of structured sparsity models. We develop efficient algorithmic tools to solve these problems in a non-Euclidean setting, leading to faster convergence in some cases. Finally, to handle structures that do not admit meaningful convex relaxations, we propose to use, as a heuristic, a non-convex proximal gradient method, efficient for several classes of structured sparsity models. We further extend this method to address a probabilistic structured sparsity model, we introduce to model approximately sparse signals

    Tractability through approximation : a study of two discrete optimization problems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Sloan School of Management, Operations Research Center, 2004.Includes bibliographical references.(cont.) algorithm, at one extreme, and complete enumeration, at the other extreme. We derive worst-case approximation guarantees on the solution produced by such an algorithm for matroids. We then define a continuous relaxation of the original problem and show that some of the derived bounds apply with respect to the relaxed problem. We also report on a new bound for independence systems. These bounds extend, and in some cases strengthen, previously known results for standard best-in greedy.This dissertation consists of two parts. In the first part, we address a class of weakly-coupled multi-commodity network design problems characterized by restrictions on path flows and 'soft' demand requirements. In the second part, we address the abstract problem of maximizing non-decreasing submodular functions over independence systems, which arises in a variety of applications such as combinatorial auctions and facility location. Our objective is to develop approximate solution procedures suitable for large-scale instances that provide a continuum of trade-offs between accuracy and tractability. In Part I, we review the application of Dantzig-Wolfe decomposition to mixed-integer programs. We then define a class of multi-commodity network design problems that are weakly-coupled in the flow variables. We show that this problem is NP-complete, and proceed to develop an approximation/reformulation solution approach based on Dantzig-Wolfe decomposition. We apply the ideas developed to the specific problem of airline fleet assignment with the goal of creating models that incorporate more realistic revenue functions. This yields a new formulation of the problem with a provably stronger linear programming relaxation, and we provide some empirical evidence that it performs better than other models proposed in the literature. In Part II, we investigate the performance of a family of greedy-type algorithms to the problem of maximizing submodular functions over independence systems. Building on pioneering work by Conforti, Cornu6jols, Fisher, Jenkyns, Nemhauser, Wolsey and others, we analyze a greedy algorithm that incrementally augments the current solution by adding subsets of arbitrary variable cardinality. This generalizes the standard best-in greedyby Amr Farahat.Ph.D
    corecore